图像处理 订阅
《图像处理》是科学出版社2009年出版的图书,作者是孙即祥。 展开全文
《图像处理》是科学出版社2009年出版的图书,作者是孙即祥。
信息
ISBN
9787030240873  [1]
作    者
孙即祥 [1]
定    价
35.00 元
书    名
图像处理
出版时间
2009年11月
开    本
16开
出版社
科学出版社
图像处理内容简介
《图像处理》内容简介:图像信息处理是一个多阶段、多途径、多目标的信息处理过程。本册书深入系统地阐述和论证了图像信息处理中共性的和基础性的知识,以及有关前端的处理理论、方法和技术。《图像处理》涉及关于图像信息处理的概述,有关的数学知识,视觉知识,图像的数学描述,图像的数字化,图像变换,图像增强,图像恢复等内容。某些章节介绍的技术内容既可以作为独立的技术,产生用户所需的输出,满足用户的需求,也可以是后续的某些信息处理的预处理。《图像处理》所涉及的内容及讨论的深度适合电子科学与工程类、控制理论与工程类、计算机科学与技术类、仪器科学与技术类以及其他有关专业和研究方向的研究生、本科高年级学生作为教材或教学参考书使用,也可供相关专业的科研人员参考。
收起全文
精华内容
下载资源
问答
  • Python+OpenCV实时图像处理

    万次阅读 多人点赞 2020-01-04 23:09:35
    初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。
    展开全文
  • 该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。...

    该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~

    本篇文章作为第一篇,将讲解图像处理基础知识和OpenCV入门函数,知识点如下:

    • 1.图像基础知识
    • 2.OpenCV读写图像
    • 3.OpenCV像素处理

    PS: 文章也学习了网易云高登教育的知识,推荐大家学习。

    该系列在github所有源代码:

    PS:请求帮忙点个Star,哈哈,第一次使用Github,以后会分享更多代码,一起加油。

    同时推荐作者的C++图像系列知识:

    展开全文
  • 图像处理之Matlab图像读取

    万次阅读 多人点赞 2017-05-29 12:50:45
    说到图像处理,第一步就是图像读取。Matlab最简单的就是imread函数,本节介绍imread的用法以及容易出错的地方

    说到图像处理,第一步就是图像读取。Matlab最简单的就是imread函数,本节介绍imread的用法以及容易出错的地方
    读取图片
    正如上图所示,在Matlab文档中,imread包括以上几种用法,但并不要求都要掌握,个人觉得会用一两种,其他了解语法即可。
    我们来介绍下最最常用的语句A = imread(filename)
    我们来读取一张图片

    >> a = imread('凝视.jpg');
    >> imtool(a)
    

    duqu
    如图所示,首先注意的是语法正确A = imread(‘凝视.jpg’);
    一.正确示范。
    他的意思是在当前路径里把文件名为“凝视.jpg”的图片数据读取到A中保存,那我们可以看到在图片最右边Workspace区域放着一些数据,这就是A的数据,我们看到这张图片是3405933大小,意思是340行,593列,3通道(RGB)的图片,右边的UINT8表示8位无符号的整型类型。(后面的imtool语句用于显示图片,这个将在后续细谈)
    补充一点小知识:
    想要清空Command Window,输入命令clc
    想要清空Workspace,输入命令clear
    想要关闭所有打开的窗口,输入命令close all
    想要观看图像信息,用whos

    二.踩坑
    好了,既然我们知道正确的写法,那我们来试试有什么坑。(敢于试错是干这行的一个优秀品质)
    1.为什么要分号?
    因为matlab是按行编译,一行一行编译,不写分好,就会直接出来编译结果,给你们看个例子就明白。
    juzhen
    上面创建一个a和b矩阵,a矩阵不用分号结尾,窗口直接显示内容,而b矩阵用了分号,并不显示内容,但是可以看到编译后,在workspace已经创建两个数组矩阵,我们也可以看到,点击变量名可以看到最上面有具体的数据。同理,如果我们读取图片a = imread(‘凝望.jpg’)不写分号,那么窗口就会出现一大波数据,刷刷刷地跳出来,那酸爽,那些数据就是保存在数组里面的像素了。
    小知识:
    如果你不写变量名,比如>>imread(‘凝望.jpg’);它很默认地给你个名字叫:ans
    当你想重新写一句语句和上面相同或相似的话,可以按键盘的上箭头按钮
    箭头
    这个快捷方式可以帮助你快速地修改语句,好用。

    2.英文半角符号
    这个学过编程的都应该知道吧,别整个中文“。”,也千万别用英文的全角符号“.”,至于为什么,我不知道。Matlab会出现:File “凝视.jpg” does not exist.

    3.路径
    这个是常会犯的,你记得你有那图片,也记得图片名称,但是你没有把他放在当前的路径里你叫人家怎么找,Matlab还没有那么强大到可以全搜索你电脑里面的图片文件。同样编译会出现 : does not exist。但是还有补救的方法,你可以给它指明可以去哪里找,例如:
    zairu
    我把图片‘凝视.jpg’放在D盘的build文件下面,结果不断地出错出错如图所示,乍一看,才发现把凝视写成凝望了,再一看,把build写成bulid,哈哈,我也只是个初学者,稍粗心就犯错,借此也说明写代码确实得聚精会神啊,这点BUG还容易改,但是如果你做的是大项目,写成百上千行代码,因为拼写错误而花了几个小时那实在是亏大了。

    好了,本次文件读写就写到这里,有什么疑问可以评论大家一起讨论学习,也许我们会有思想的火花。可能说的都是很琐碎很简单的东西,只要能给你一点点收获,这篇博客就有价值了。下节继续介绍其他函数。感谢观看

    欢迎关注我的公众号【CV之道】,一起学习交流~~

    展开全文
  • 用Python做图像处理

    万次阅读 多人点赞 2007-10-28 23:45:00
    用Python做图像处理 最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再...
    用Python做图像处理
           最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再好不过了。在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.6 ,用起来非常方便。大家可以在 http://www.pythonware.com/products/pil/index.htm 下载和学习。
           在这里,我主要是介绍一下做图像识别时可能会用到的一些 PIL 提供的功能,比如图像增强、还有滤波之类的。最后给出使用 Python 做图像处理与识别的优势与劣势。
    基本图像处理
           使用 PIL 之前需要 import Image 模块:
    import Image
           然后你就可以使用Image.open(‘xx.bmp’) 来打开一个位图文件进行处理了。打开文件你不用担心格式,也不用了解格式,无论什么格式,都只要把文件名丢给 Image.open 就可以了。真所谓 bmp、jpg、png、gif……,一个都不能少。
    img = Image.open(‘origin.png’)    # 得到一个图像的实例对象 img
    图 1原图
           图像处理中,最基本的就是色彩空间的转换。一般而言,我们的图像都是 RGB 色彩空间的,但在图像识别当中,我们可能需要转换图像到灰度图、二值图等不同的色彩空间。 PIL 在这方面也提供了极完备的支持,我们可以:
    new_img = img.convert(‘L’)
    把 img 转换为 256 级灰度图像, convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
    · 1 (1-bit pixels, black and white, stored with one pixel per byte)
    · L (8-bit pixels, black and white)
    · P (8-bit pixels, mapped to any other mode using a colour palette)
    · RGB (3x8-bit pixels, true colour)
    · RGBA (4x8-bit pixels, true colour with transparency mask)
    · CMYK (4x8-bit pixels, colour separation)
    · YCbCr (3x8-bit pixels, colour video format)
    · I (32-bit signed integer pixels)
    · F (32-bit floating point pixels)
    怎么样,够丰富吧?其实如此之处,PIL 还有限制地支持以下几种比较少见的色彩模式:LA (L with alpha), RGBX (true colour with padding) and RGBa (true colour with premultiplied alpha)。
    下面看一下 mode 为 ‘1’、’L’、’P’时转换出来的图像:
    图 2 mode = '1'
    图 3 mode = 'L'
    图 4 mode = 'P'
    convert() 函数也接受另一个隐含参数 matrix,转换矩阵 matrix 是一个长度为4 或者16 tuple。下例是一个转换 RGB 空间到 CIE XYZ 空间的例子:
        rgb2xyz = (
            0.412453, 0.357580, 0.180423, 0,
            0.212671, 0.715160, 0.072169, 0,
            0.019334, 0.119193, 0.950227, 0 )
        out = im.convert("RGB", rgb2xyz)
           除了完备的色彩空间转换能力外, PIL 还提供了resize()、rotate()等函数以获得改变大小,旋转图片等几何变换能力,在图像识别方面,图像实例提供了一个 histogram() 方法来计算直方图,非常方便实用。
    图像增强
           图像增强通常用以图像识别之前的预处理,适当的图像增强能够使得识别过程达到事半功倍的效果。 PIL 在这方面提供了一个名为 ImageEnhance 的模块,提供了几种常见的图像增强方案:
    import ImageEnhance
    enhancer = ImageEnhance.Sharpness(image)
    for i in range(8):
        factor = i / 4.0
        enhancer.enhance(factor).show("Sharpness %f" % factor)
    上面的代码即是一个典型的使用 ImageEnhance 模块的例子。 Sharpness 是 ImageEnhance 模块的一个类,用以锐化图片。这一模块主要包含如下几个类:Color、Brightness、Contrast和Sharpness。它们都有一个共同的接口 .enhance(factor) ,接受一个浮点参数 factor,标示增强的比例。下面看看这四个类在不同的 factor 下的效果
    图 5 使用Color 进行色彩增强,factor 取值 [0, 4],步进 0.5
    图 6 用 Birghtness 增强亮度,factor取值[0,4],步进0.5
    图 7用 Contrast 增强对比度, factor 取值 [0,4],步进0.5
    图 8用 Sharpness 锐化图像,factor取值 [0,4],步进0.5
    图像 Filter
           PIL 在 Filter 方面的支持是非常完备的,除常见的模糊、浮雕、轮廓、边缘增强和平滑,还有中值滤波、ModeFilter等,简直方便到可以做自己做一个Photoshop。这些 Filter 都放置在 ImageFilter 模块中,ImageFilter主要包括两部分内容,一是内置的 Filter,如 BLUR、DETAIL等,另一部分是 Filter 函数,可以指定不同的参数获得不同的效果。示例如下:
    import ImageFilter
    im1 = im.filter(ImageFilter.BLUR)
    im2 = im.filter(ImageFilter.MinFilter(3))
    im3 = im.filter(ImageFilter.MinFilter()) # same as MinFilter(3)
    可以看到 ImageFilter 模块的使用非常简单,每一个 Filter 都只需要一行代码就可调用,开发效率非常高。
     
    图 9使用 BLUR
    图 10使用 CONTOUR
    图 11使用 DETAIL
    图 12使用 EMBOSS
    图 13使用 EDGE_ENHANCE
    图 14使用 EDGE_ENHANCE_MORE
    图 15使用 FIND_EDGES
    图 16使用 SHARPEN
    图 17使用 SMOOTH
    图 18使用 SMOOTH_MORE
           以上是几种内置的 Filter 的效果图,除此之外, ImageFilter 还提供了一些 Filter 函数,下面我们来看看这些可以通过参数改变行为的 Filter 的效果:
    图 19使用 Kernel(),参数:size = (3, 3), kernel = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
    图 20使用 MaxFilter,默认参数
    图 21使用 MinFilter,默认参数
    图 22使用 MedianFilter,默认参数
    图 23使用 ModeFilter,参数 size = 3
    图 24使用 RankFilter,参数 size = 3, rank = 3
    小结
           到此,对 PIL 的介绍就告一段落了。总的来说,对于图像处理和识别,PIL 内建了强大的支持,从各种增强算法到 Filter ,都让人无法怀疑使用 Python 的可行性。 Python唯一的劣势在于执行时间过慢,特别是当实现一些计算量大的算法时候,需要极强的耐心。我曾用 Hough Transform(霍夫变换)来查找图像中的直线,纯 Python 的实现处理一个 340 * 100 的图片也要花去数秒时间(P4 3.0G + 1G memory)。但使用 PIL 无需关注图像格式、内建的图像增强算法和 Filter 算法,这些优点使 Python 适合用于构造原型和进行实验,在这两方面Python 比 matlab 更加方便。商业的图像识别产品开发,可以考虑已经被 boost accepted的来自 adobe 的开源 C++ 库 gil,可以兼顾执行性能和开发效率。
    展开全文
  • 图像处理算法】直方图均衡化

    万次阅读 多人点赞 2019-03-26 20:24:54
    数字图像处理(第三版) 左飞. 图像处理中的数学修炼 目录 直方图均衡化的介绍 直方图的概念 直方图均衡化的理论基础 手工实现直方图均衡化 MATLAB上实现直方图均衡化 直方图均衡化的缺点 直方图均衡...
  • 图像处理之Matlab特征提取和表达

    万次阅读 多人点赞 2017-08-07 17:36:14
    介绍图像处理之特征提取和表达,使用bwboundaries函数获取边界,使用regionprops函数统计特征
  • 这篇文章是图像处理的最后一篇文章,后面我们将进入新的章节。图像处理文章主要讲解的图像处理方法包括图像几何运算、图像量化采样、图像点运算、图像形态学处理、图像增强、图像平滑、图像锐化、图像特效、图像分割...
  • 本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理...
  • MATLAB图像处理

    千人学习 2017-06-27 19:37:11
    MATLAB图像处理课程
  • Python图像处理PIL各模块详细介绍

    万次阅读 多人点赞 2018-01-21 22:01:16
    Image模块是在Python PIL图像处理中常见的模块,对图像进行基础操作的功能基本都包含于此模块内。如open、save、conver、show…等功能。 open类 Image.open(file) ⇒ image Image.open(file, mode) ⇒ image...
  • 图像处理入门教程

    万次阅读 多人点赞 2015-12-29 11:21:24
    最近有人问我图像处理怎么研究,怎么入门,怎么应用,我竟一时语塞。仔细想想,自己也搞了两年图像方面的研究,做个两个创新项目,发过两篇论文,也算是有点心得,于是总结总结和大家分享,希望能对大家有所帮助。在...
  • 冈萨雷斯 数字图像处理 第三版

    千次下载 热门讨论 2013-04-13 09:43:56
    冈萨雷斯数字图像处理,第三版
  • 数字图像处理Matlab

    万次阅读 多人点赞 2018-06-18 20:25:13
    (注:本文代码大部分可从《数字图像处理 第三版》中找到)使用软件:MATLAB R2018a学习前提:了解matlab的GUI界面的每个按钮参考资料:《数字图像处理 第三版》,CSDN博客使用初音图片P站画师uid:1589657。...
  • MATLAB图像处理MATLAB图像处理MATLAB图像处MATLAB图像处理
  • 数字图像处理复习总结

    万次阅读 多人点赞 2019-01-03 22:19:26
    复习着感觉记不住,于是乎,有了这篇博文,如果也同样选修了数字图像处理课程的小伙伴们可以参考一哈! 纯手码字…逢考必过! 概念 采样与量化 灰度变换缓慢的景物:粗采样、细量化 有大量细节变化的图像:...
  • 图像处理】数字图像处理简介

    千次阅读 2019-12-20 10:36:34
    2.模拟图像处理 3.数字图像处理 4.什么是图像 5.数字图像和信号之间的关系 信号 关系 6.如何形成数字图像 7.应用 机器/计算机视觉 计算机图形学 人工智能 信号处理 1.介绍 数字图像处理(Digital Image ...
  • 如何学好图像处理——从小白到大神?

    万次阅读 多人点赞 2016-02-26 17:48:13
    什么是数字图像处理?历史、以及它所研究的内容。 说起图像处理,你会想到什么?你是否真的了解这个领域所研究的内容。纵向来说,数字图像处理研究的历史相当悠久;横向来说,数字图像处理研究的话题相当广泛。 ...
  • OpenCV-Python实战(1)——OpenCV简介与图像处理基础

    万次阅读 多人点赞 2021-08-07 17:10:19
    它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时也提供了 Python 接口,实现了图像处理和计算机视觉方面的很多通用算法。在本文中,将介绍 OpenCV 库,包括它的主要模块和典型应用场景,同时使用 ...
  • 该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。...
  • 数字图像处理技术的开发对数学基础的要求很高,一些不断涌现的新方法中,眼花缭乱的数学推导令很多期望深入研究的人望而却步。一个正规理工科学生大致已经具备了包括微积分、线性代数、概率论在内的数学基础。但在...
  • MATLAB06:数字图像处理

    万次阅读 多人点赞 2019-11-18 13:15:09
    文章目录MATLAB06:数字图像处理图像的读取和展示图像在MATLAB中的存储格式读取和展示图像图像的点运算图像的四则运算像素的统计分布 MATLAB06:数字图像处理 图像的读取和展示 图像在MATLAB中的存储格式 MATLAB能够...
  • 数字图像处理知识点

    千次阅读 多人点赞 2020-02-03 16:11:34
    数字图像处理知识点 目录 数字图像处理知识点 第一章 概述 1.1数字图像处理相关概念 1.2数字图像处理系统流程图: 1.3 数字图像处理主要研究内容 第二章 数字图像处理基础 2.1图像的数字化及表达 2.2图像...
  • 该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。...
  • 数字图像处理

    千次阅读 2019-03-04 13:38:44
    图像处理 数字图像处理 利用计算机技术或其他数字技术,对图像信息进行数学运算与加工的处理 模拟图像处理 又称光学图像处理,利用光学透镜或光学照相方法对模拟图像进行处理 光电结合处理 (模拟图像处理与...
  • 数字图像处理第九章——形态学图像处理

    千次阅读 多人点赞 2019-05-11 08:31:12
    数字图像处理第九章数字图像处理---形态学图像处理(一)预备知识1.1 预备知识1.1.1 集合理论中的基本概念1.2 二值图像、集合及逻辑算子(二)膨胀和腐蚀2.1 膨胀2.2 结构元的分解2.3 strel函数2.4 腐蚀(三) 膨胀...
  • 基于MATLAB图像处理的中值滤波、均值滤波以及高斯滤波的实现与对比 1.背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤波是基于排序...
  • 图像处理技术(一)图像处理基础知识

    万次阅读 多人点赞 2018-08-30 15:52:26
    图像处理的概念是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需求。 模拟图像:连续图像,采用数字化(离散化)表示和数字技术处理之前的图像。 数字图像:由连续的模拟图像采样和量化而得的图像,...
  • MFC图像处理

    热门讨论 2012-11-07 20:41:18
    适合MFC 图像处理初学者,自己也是菜鸟级的。有基本的点运算

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 850,584
精华内容 340,233
关键字:

图像处理