精华内容
下载资源
问答
  •  采用宽带信号的视频设备必须解决好与同轴电缆匹配问题,一个输出端不能并联几根电缆。  信号分配的办法,可以在低输出阻抗放大器的输出端加几个匹配用的75欧电阻或象本电路那样,每路各加一个宽事缓冲放大...
  • 同轴电缆

    千次阅读 2020-03-26 23:10:47
    最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住[1]。 同轴电缆可用于模拟信号和数字信号的传输,适用于各种各样...

     编辑

    本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。

    同轴电缆(Coaxial Cable)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住 [1]  。

    同轴电缆可用于模拟信号和数字信号的传输,适用于各种各样的应用,其中最重要的有电视传播、长途电话传输、计算机系统之间的短距离连接以及局域网等。同轴电缆作为将电视信号传播到千家万户的一种手段发展迅速,这就是有线电视。一个有线电视系统可以负载几十个甚至上百个电视频道,其传播范围可以达几十千米。长期以来同轴电缆都是长途电话网的重要组成部分。今天,它面临着来自光纤、地面微波和卫星的日益激烈的竞争 [2]  。

    中文名

    同轴电缆

    外文名

    Coaxial Cable

    种类数

    两种

    构成材料

    绝缘材料隔离的铜线导体

    组    成

    由绝缘材料隔离的铜线导体

    应    用

    电视用户和社区天线之间

    目录

    1. 历史发展
    2. 发展概况
    3. 主要分类
    4. ▪ 基带同轴电缆
    1. ▪ 宽带同轴电缆
    2. 工作原理
    3. 优缺点
    4. 安装方法
    1. 参数指标
    2. 质量检测
    3. 应用

    历史发展

    编辑

    同轴电缆的发展主要分为四代:第一代是19世纪中期开始利用聚乙烯材料作为实芯绝缘介质;第二代是利用化学发泡PE材料作为绝缘介质;第三代是藕芯纵孔PE材料作为绝缘介质;第四代是利用物理发泡PE材料作为绝缘介质。同轴电缆按照结构可分为:泄漏同轴电缆、多芯同轴电缆、细径化同轴电缆、复合同轴电缆 [3]  。

    同轴电缆行业发展至今经历了一系列的变迁。由于全球电子产业在2000年进入高峰期,作为电子产业一部分, 同轴电缆市场规模也达到历史的高峰期。在随后的三年内,随着全球经济增长率进入低谷,同轴电缆产业也随着下游需求的萎缩而进入低迷期,直到2003年下半年才出现复苏迹象。从2004年开始,全球同轴电缆行业进入新一轮的增长期。随着移动通信信号覆盖面的不断扩大,基站数扩增,以及交通、能源、医疗等领域对移动信号要求的不断提高,全球射频同轴电缆行业的市场发展前景依然看好 [4]  。

    同轴电缆同轴电缆

    发展概况

    编辑

    中国经济持续快速的增长,为线缆产品提供了巨大的市场空间,中国市场强烈的诱惑力,使得世界都把目光聚焦于中国市场,在改革开放短短的几十年,中国线缆制造业所形成的庞大生产能力让世界刮目相看。随着中国电力工业、数据通信业、城市轨道交通业、汽车业以及造船等行业规模的不断扩大,对电线电缆的需求也将迅速增长,未来电线电缆业还有巨大的发展潜力 [5]  。

    主要分类

    编辑

    同轴电缆可分为两种基本类型,基带同轴电缆和宽带同轴电缆 [6]  

    基带同轴电缆

    基带同轴电缆的屏蔽层通常是用铜做成的网状结构,其特征阻抗为50Ω。该电缆用于传输数字信号,常用的型号一般有RG-8(粗缆)和RG-58(细缆)。粗缆与细缆最直观的区别在于电缆直径不同。粗缆适用于比较大型的局部网络,它的标准距离长,可靠性高;但是粗缆网络必须安装收发器和收发器电缆,安装难度也大,因此总体造价高。相反,细缆则比较简单,造价较低;但由于安装过程中要切断电缆,因而当接头较多时容易产生接触不良的隐患 [6]  。

    无论是使用粗缆还是细缆连接的网络,故障点往往会影响到整根电缆上的所有机器,故障的诊断和修复都很麻烦。因此,基带同轴电缆已逐步被非屏蔽双绞线或光缆所取代 [6]  。

    宽带同轴电缆

    宽带同轴电缆的屏蔽层通常是用铝冲压而成的,其特征阻抗为75Ω。这种电缆通常用于传输模拟信号,常用型号为RG-59,是有线电视网中使用的标准传输线缆,可以在一根电缆中同时传输多路电视信号。宽带同轴电缆也可用作某些计算机网络的传输介质 [6]  。

    同轴电缆同轴电缆

    工作原理

    编辑

    同轴电缆由里到外分为四层:中心铜线(单股的实心线或多股绞合线),塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名 [7]  

    同轴电缆传导交流电而非直流电,也就是说每秒钟会有好几次的电流方向发生逆转 [7]  。

    如果使用一般电线传输高频率电流,这种电线就会相当于一根向外发射无线电天线,这种效应损耗了信号的功率,使得接收到的信号强度减小 [7]  。

    同轴电缆的设计正是为了解决这个问题。中心电线发射出来的无线电被网状导电层所隔离,网状导电层可以通过接地的方式来控制发射出来的无线电 [7]  。

    同轴电缆也存在一个问题,就是如果电缆某一段发生比较大的挤压或者扭曲变形,那么中心电线和网状导电层之间的距离就不是始终如一的,这会造成内部的无线电波会被反射回信号发送源。这种效应减低了可接收的信号功率。为了克服这个问题,中心电线和网状导电层之间被加入一层塑料绝缘体来保证它们之间的距离始终如一。这也造成了这种电缆比较僵直而不容易弯曲的特性 [7]  。

    同轴电缆的屏蔽材料实质上主要是对外导体进行改进,从最初的管状外导体,依次发展为单层编织、双层金属。管状外导体虽然屏蔽性能非常好,但不易弯曲,使用不方便。单层编织的屏蔽效率最差,双层编织比一层编织的转移阻抗减少3倍,可见双层编织的屏蔽效果比单层有了很大的改善。各大同轴电缆制造商都在不断改进电缆的外导体结构以保持其性能 [7]  。

    同轴电缆同轴电缆

    优缺点

    编辑

    同轴电缆的优点是可以在相对长的无中继器的线路上支持高带宽通信,而其缺点也是显而易见的:一是体积大,细缆的直径就有3/8英寸粗,要占用电缆管道的大量空间;二是不能承受缠结、压力和严重的弯曲,这些都会损坏电缆结构,阻止信号的传输;最后就是成本高,而所有这些缺点正是双绞线能克服的,因此在现在的局域网环境中,基本已被基于双绞线的以太网物理层规范所取代 [8]  。

    安装方法

    编辑

    同轴电缆一般安装在设备与设备之间。在每一个用户位置上都装备有一个连接器,为用户提供接口。接口的安装方法如下 [9]  

    (1)细缆:将细缆切断,两头装上BNC头,然后接在T型连接器两端 [9]  。

    (2)粗缆:粗缆一般采用一种类似夹板的Tap装置进行安装,它利用Tap上的引导针穿透电缆的绝缘层,直接与导体相连。电缆两端头设有终端器,以削弱信号的反射作用。用于传输速率为10Mbit/s的网络 [9]  。

    参数指标

    编辑

    电气参数

    (1)同轴电缆的特性阻抗:同轴电缆的平均特性阻抗为50±2Ω,沿单根同轴电缆的阻抗的周期性变化为正弦波,中心平均值±3Ω,其长度小于2米 [10]  

    (2)同轴电缆的衰减:一般指500米长的电缆段的衰减值。当用10MHz的正弦波进行测量时,它的值不超过8.5db(17db/公里);而用5MHz的正弦波进行测量时,它的值不超过6.0db(12db/公里) [10]  。

    (3)同轴电缆的传播速度:需要的最低传播速度为0.77C(C为光速) [10]  。

    (4)同轴电缆直流回路电阻:电缆的中心导体的电阻与屏蔽层的电阻之和不超过10毫欧/米(在20℃下测量) [10]  。

    物理参数

    同轴电缆是由中心导体、绝缘材料层、网状织物构成的屏蔽层以及外部隔离材料层组成 [10]  。

    同轴电缆具有足够的可柔性,能支持254mm(10英寸)的弯曲半径。中心导体是直径为2.17mm±0.013mm的实芯铜线。绝缘材料必须满足同轴电缆电气参数。屏蔽层是由满足传输阻抗和ECM规范说明的金属带或薄片组成,屏蔽层的内径为6.15mm,外径为8.28mm。外部隔离材料一般选用聚氯乙烯(如PVC)或类似材料 [10]  。

    同轴电缆同轴电缆

    质量检测

    编辑

    1、查绝缘介质的整度

    标准同轴电缆的截面很圆整,电缆外导体、铝泊贴于绝缘介质的外表面。介质的外表面越圆整,铝箔与它外表的间隙越小,越不圆整间隙就越大。实践证明,间隙越小电缆的性能越好,另外,大间隙空气容易侵入屏蔽层而影响电缆的使用寿命 [11]  

    2、测同轴电缆绝缘介质的一致性

    同轴电缆缘介质直径波动主要影响电缆的回波系数,此项检查可剖出一段电缆的绝缘介质,用千分尺仔细栓查各点外径,看其是否一致 [11]  。

    3、测同轴电缆的编织网

    同轴电缆的纺织网线对同轴电缆的屏蔽性能起着重要作用,而且在集中供电有线电视线路中还是电源的回路线,因此同轴电缆质量检测必须对纺织网是否严密平整进行察看,方法是剖开同轴电缆外护套,剪一小段同轴电缆编织网,对编织网数量进行鉴定,如果与所给指标数值相符为合格,另外对单根纺织网线用螺旋测微器进行测量,在同等价格下,线径越粗质量越好 [11]  。

    4、查铝箔的质量

    同轴电缆中起重要屏蔽作用的是铝箔,它在防止外来开路信号干扰与有线电视信号混淆方面具有重要作用,因此对新进同轴电旨应检查铝箔的质量。首先,剖开护套层,观察编织网线和铝箔层表面是否保持良好光泽;其次是取一段电缆,紧紧绕在金属小轴上,拉直向反向转绕,反复几次,再割开电缆护套层观看铝箔有无折裂现象,也可剖出一小段铝箔在手中反复揉搓和拉伸,经多次揉搓和拉伸仍未断裂,具有一定韧性的为合格品,否则为次品 [11]  。

    5、查外护层的挤包紧度

    高质量的同轴电缆外护层都包得很紧,这样可缩小屏蔽层内间隙,防止空气进入造成氧化,防止屏蔽层的相对滑动引起电性能飘移,但挤包太紧会造成剥头不便,增加施工难度。检查方法是取1m长的电缆,在端部肃去护层,以用力不能拉出线芯为合适 [11]  。

    应用

    编辑

    在有线电视传输中,由于同轴电缆造价低、易施工,在中、小传输系统中得到了广泛的应用。特别是在HFC(Hybrid Fiber-Coaxial,混合光纤同轴电缆)网络“最后1公里”传输中,是无法用其他电缆所代替的。许多无源器件、有源器件及用户都需电缆连接,凡是用同轴电缆连接的各个器件之间都需达到阻抗匹配。如果不匹配,会使信号在元器件与电缆之间产生反射,增加噪声及重影对传输图像的影响。现市场出售的不同厂家生产的同种规格电缆,质量相差很大。但是只要选择正规厂家生产的电缆(价格偏高),其原材料、电气性能及生产工艺都能得到保证,质量也值得信赖 [12]  。

    展开全文
  • 天线阻抗可能同时包含电抗与电阻成分。...显然,无论选用特性阻抗为多少的同轴电缆,都很有可能是不合适的。  实际无线电应用中,为了将一个复杂负载(如天线)连到一个纯阻性源上,最常见的情形是在负载
  • 阻抗匹配是什么意思_阻抗匹配原理详解 -------本文轉載自<http://m.elecfans.com/article/671550.html>  本文主要详解什么是阻抗匹配,首先介绍了输入及输出阻抗是什么,其次介绍了阻抗匹配的原理,最后...

           阻抗匹配是什么意思_阻抗匹配原理详解

                                             -------本文轉載自<http://m.elecfans.com/article/671550.html>

      本文主要详解什么是阻抗匹配,首先介绍了输入及输出阻抗是什么,其次介绍了阻抗匹配的原理,最后阐述了阻抗匹配的应用领域,具体的跟随小编一起来了解一下吧。

      一、输入阻抗

      输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。

      输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题

      二、输出阻抗

      无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。当这个电压源给负载供电时,就会有电流 I 从这个负载上流过,并在这个电阻上产生 I×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。

      三、阻抗匹配

      阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:

      

      对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

      在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。

      实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。影響特征電阻的因素有很多,比如倒顯得材料和導線與地板之間的距離。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

      当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。(始端串联匹配,终端并联匹配)

      为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况

      四、阻抗匹配的原理

      阻抗匹配的基本原理:

      1、纯电阻电路

      在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上,在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。

                                                   

       2、电抗电路

      电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感。元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而。容抗和感抗的值除了与电容和电感本身大小有关之外,还与所工作的交流电的频率有关。值得注意的是,在电抗电路中,电阻R,感抗而与容抗双的值不能用简单的算术相加,而常用阻抗三角形法来计算(见图 2)。因而电抗电路要做到匹配比纯电阻电路要复杂一些,除了输人和输出电路中的电阻成分要求相等外,还要求电抗成分大小相等符号相反(共轭匹配);或者电阻成分和电抗成分均分别相等(无反射匹配)。这里指的电抗X即感抗XL和容抗XC之差(仅指串联电路来讲,若并联电路则 计算更为复杂)。满足上述条件即称为阻抗匹配,负载即能得到最大的功率。

      阻抗匹配的关键是前级的输出阻抗与后级的输人阻抗相等。而输人阻抗与输出阻抗广泛 存在于各级电子电路、各类测量仪器及各种电子元器件中。那么什么是输人阻抗和输出阻抗呢?输人阻抗是指电路对着信号源讲的阻抗。如图3所示的放大器,它的输人阻抗就是去掉信号源E及内电阻r时,从AB两端看进去的等效阻抗。其值为Z=UI/I1, 即输人电压与输人电流之比。对于信号源来讲,放大器成为其负载。从数值上看,放大器的等效负载值即为输人阻抗值。输人阻抗值的大小,对于不同的电路要求不 一样。

      例如:万用表中电压挡的输人阻抗(称为电压灵敏度)越高,对被测电路的分流就越小,测量误差也就小。而电流挡的输人阻抗越低,对被测电路的分压就越 小,因而测量误差也越小。对于功率放大器,当信号源的输出阻抗与放大电路的输人阻抗相等时即称阻抗匹配,这时放大电路就能在输出端获得最大功率。输出阻抗 是指电路对着负载讲的阻抗。如图4中,将电路输人端的电源短路,输出端去掉负载后,从输出端CD看进去的等效阻抗称为输出阻抗。如果负载阻抗与输出阻抗不相等,称阻抗不匹配,负载就不能获得最大的功率输出。输出电压U2和输出电流I2之 比即称为输出阻抗。输出阻抗的大小视不同的电路有不同的要求。

      例如:电压源要求输出阻抗要低,而电流源的输出阻抗要高。对于放大电路来讲,输出阻抗的值表 示其承担负载的能力。通常输出阻抗小,承担负载的能力就强。如果输出阻抗与负载不能匹配时,可加接变压器或网络电路来达到匹配。例如:晶体管放大器与扬声 器之间通常接有输出变压器,放大器的输出阻抗与变压器的初级阻抗相匹配,变压器的次级阻抗与扬声器的阻抗相匹配。而变压器通过初次级绕组的匝数比来变换阻 抗比。在实际的电子电路中,常会遇到信号源与放大电路或放大电路与负载的阻抗不相等的情况,因而不能把它们直接相连。解决的办法是在它们之间加人一个匹配 电路或匹配网络。最后要说明一点,阻抗匹配仅适用于电子电路。因为电子电路中传输的信号功率本身较弱,需用匹配来提高输出功率。而在电工电路中一般不考虑 匹配,否则会导致输出电流过大,损坏用电器。

      五、阻抗匹配的应用

      对于一般的高频信号领域,比如时钟信号,总线信号,甚至高达几百兆的DDR信号等,一般器件的收发端的感抗和容抗都比较小,相对电阻(即阻抗中的实部) 来说可以忽略不记,这时,阻抗匹配就只需要考虑实数部分就可以了。

      在射频领域,很多器件如天线,功放等其输入输出阻抗是非实数的(非纯电阻),并且其虚部(容抗或者感抗) 很大以至于不可忽略,这时就要采用共轭匹配的方法。

                                                  


    下面是我的个人微信公众号,关注【一个早起的程序员】精彩系列文章每天不断。

    展开全文
  • PCB的阻抗匹配

    2021-03-27 08:59:46
    阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。 当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。同样,当信号传输中如果...

    一、什么是阻抗?

    在一般状态下,导体多少都存有阻止电流流动的作用,其阻止程度可用电阻表示,单位是欧姆。在交流电路中,除电阻外,还有还有电感和电容等器件,皆有阻碍电流流动的作用。通常将阻碍交流电流作用的部分总称为阻抗

    阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。阻抗匹配主要有两点作用,调整负载功率抑制信号反射

    当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。同样,当信号传输中如果传输线上发生特性阻抗突变也会发生反射。波长与频率成反比低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题。高频领域,当信号的波长与传输线长出于相同量级时,反射的信号易与原信号混叠,影响信号质量。通过阻抗匹配可有效减少、消除高频信号反射。

    二、阻抗匹配的方法?

    阻抗匹配的方法主要有两个,一是改变阻抗力二是调整传输线

    ● 改变阻抗力就是通过电容、电感与负载串并联,来调整负载阻抗值,以达到源和负载阻抗之间的匹配。

    ● 调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。此时信号不会发生发射,能量都能被负载吸收。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为85-100欧姆。

    在PCB走线时:高频领域中,信号频率对PCB走线的阻抗值影响非常大。一般来说当数字信号边沿时间小于1ns或者模拟信号频率超过300M时就要考虑阻抗问题。

    PCB走线阻抗主要来自寄生的电容、电阻、电感系数,主要因素有材料介电常数、线宽、线厚乃至焊盘的厚度等。PCB 阻抗的范围是25至120欧姆,USB、LVDS、HDMI、SATA等一般要做85-100欧姆阻抗控制。

    三、什么是输入/输出阻抗?

    输入阻抗:输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗,它反映了对电流阻碍作用的大小。

    输出阻抗:无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。

    我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。当这个电压源给负载供电时,就会有电流 I 从这个负载上流过,并在这个电阻上产生 I×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。

    假设负载电阻为R,电源电动势为U,内阻为r:

     

    电阻R上的电流:

     

    电阻R上的电压:

    电阻R的功率为:

    当R=r时,可取得最小值为0,这时负载电阻R上可获得最大输出功率。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

    当阻抗不匹配时,有哪些办法让它匹配呢?

    第一,可以考虑使用变压器来做阻抗转换;

    第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用;

    第三,可以考虑使用串联/并联电阻的办法。

    一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。(始端串联匹配,终端并联匹配)

    当传输路径上阻抗不连续时,会有反射发生,阻抗匹配的作用就是通过端接元器件,时传输路线上的阻抗连续以去除传输链路上产生的反射。常见的阻抗匹配有如下几种:

    一、串联端接方式 

    靠近输出端的位置串联一个电阻,要达到匹配效果,串联电阻和驱动端输出阻抗的总和应等于传输线的特征阻抗Z0。

     

     

    在通常的数字信号系统中,器件的输出阻抗通常是十几欧姆到二十几欧姆,

    传输线的阻抗通常会控制在50Ω,所以始端匹配电阻常见为33Ω电阻。

    当然要达到好的匹配效果,驱动端输出到串联电阻这一段的传输路径最好较短,短到可以忽略这一段传输线的影响。

    串联电阻优缺点如下:

       (1)优点

               1、只需要一个电阻;

               2、没有多余的直流功耗;

               3、消除驱动端的二次反射;

               4、不受接收端负载变化的影响;

       (2)缺点

               1、接收端的一次发射依然存在;

               2、信号边沿会有一些变化;

               3、电阻要靠近驱动端放置,不适合双向 传输信号;

               4、在线上传输的电压是驱动电压的一半,不适合菊花链的多型负载结构。

    二、并联端接方式 

    并联端接又叫终端匹配,要达到阻抗匹配的要求,端接的电阻应该和传输线的特征阻抗Z0相等。

     

    在通常的数字信号传输系统里,接收端的阻抗范围为几兆到十几兆,终端匹配电阻如果和传输线的特征阻抗相等,其和接收端阻抗并联后的阻抗大致还是在传输线的特征阻抗左右,那么终端的反射系数为0。不会产生反射,消除的是终端的一次反射。

    并联端接优缺点

         (1)优点

         1、适用于多个负载

         2、只需要一个电阻并且阻值容易选取

         (2)缺点

         1、增加了直流功耗

         2、并联端接可以上拉到电源或者下拉到地,是的低电平升高或者高电平降低,减小噪声容限。

    三、AC并联端接 

    并联端接为消除直流功耗,可以采用如下所示的AC并联端接(AC终端匹配)。要达到匹配要求,端接的电阻应该和传输线的特征阻抗Z0相等。

     

    AC并联端接优缺点描述如下:

    (1)优点 

    1、适用于多个负载

    2、无直流功耗增加

    (2)缺点 

    1、需要两个器件

    2、增加了终端的容性负载,增加了RC电路造成的延时

    3、对周期性的信号有效(如时钟),不适合于非周期信号(如数据)

     

    四、戴维南端接 

    戴维南端接同终端匹配,如下图,要达到匹配要求,终端的电阻并联值要和传输线的特征阻抗Z0相等。

     

    戴维南端接优缺点描述:

    (1)优点 

    1、适用于多个负载

    2、很适用于SSTL/HSTL电平上拉或下拉输出阻抗很好平衡的情况。

    (2)缺点 

    1、直流功耗增加

    2、需要两个器件

    3、端接电阻上拉到电源或下拉到地,会使得低电平升高或高电平降低

    4、电阻值较难选择,电阻值取值小会使低电平升高,高电平降低更加恶劣;电阻值取大有可能造成不能完全匹配,使反射增大,可以通过仿真来确定。

     

    PCB走线中的阻抗匹配:

    在进行PCB布线时,经常会发生这样的情况:走线通过某一区域时,由于该区域布线空间有限,不得不使用更细的线条,通过这一区域后,线条再恢复原来的宽度。走线宽度变化会引起阻抗变化,因此发生反射,对信号产生影响。

    那么什么情况下可以忽略这一影响,又在什么情况下我们必须考虑它的影响?

    有三个因素和这一影响有关:

    1、阻抗变化的大小;

    2、信号上升时间;

    3、窄线条上信号的时延

     

     

     

     

     

    24G/77G毫米波雷达高频PCB板材

     

    展开全文
  • 方法 论述信号反射产生机理,讨论解决反射问题常用的若干终端阻抗匹配方法,对其各自优缺点及适用场合进行分析。结果 结合同轴电缆的传输特性给出不同端接情况下具体仿真实例。结论 在终端阻抗与电缆特性阻抗相匹配...
  • 一文掌握阻抗匹配

    千次阅读 2021-03-26 23:39:59
    我们在上周的文章中,着重介绍了阻抗匹配的相关概念和方法。阻抗匹配,作为射频设计中最为重要的一个环节,每一个射频工程师都无法绕过去的。今天我们再加以总结,把整个阻抗匹配,展现给大家。 Chapter 1 阻抗 ...

    全文约8500字,阅读需要20分钟,记得收藏,分享或者点击 在看哦

     

    我们在上周的文章中,着重介绍了阻抗匹配的相关概念和方法。阻抗匹配,作为射频设计中最为重要的一个环节,每一个射频工程师都无法绕过去的。今天我们再加以总结,把整个阻抗匹配,展现给大家。

     

    Chapter 1

    阻抗 三 兄弟

     

    射频工程师必知必会—— 阻抗,特征阻抗与等效阻抗

    阻抗,顾名思义就是对电路中电流起到阻碍作用的元器件。我们在射频电路中,又引入了特征阻抗和等效阻抗两个概念。

     

    No.1.1 阻抗

    谈到阻抗的概念,大家的第一影响就是电阻和电抗的组合。没错,在低频领域,或者在我们学习的电路原理的课程中,阻抗就是电阻和电抗的组合。

    图片

    我们借用百度百科的定义就是:

    在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。

    阻抗可以是电阻、电容、电感的任意组合对电流起到的阻碍作用。由于电容对直流电的阻抗无穷大,而电感对直流电的阻抗是零,因此,阻抗更多用于描述交流电路中对电流的阻碍作用。高阻抗是指阻抗值大,低阻抗是指阻抗值小。

    对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。

     

    阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。

    但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

    阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

    当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。

     

    No1.2 特征阻抗

     

    特征阻抗是射频传输线的一个固有特性,其物理意义是在射频传输线上入射波电压与入射波电流的比值,或者反射波电压和反射波电流的比值。

    图片

    如果按照分布参数的理论去表示,传输线的特征阻抗可以表示为:

    图片

    从上式可以看出,对于一个有耗传输线来说,特征阻抗是一个复数,有耗传输线的损耗就来自于这个传输线的电阻。而对于理想的无耗传输线来说,特征阻抗就是一个实数。这也就告诉我们,对于一个理想的无耗的50欧姆传输线来说,其电阻为0,这和上文中的带电阻的阻抗就不一样了。

     

    特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用V/I表示。在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。阻抗合起来影响无线电波电压、电流的幅值和相位。同轴电缆的特性阻抗和导体内、外直径大小及导体间介质的介电常数有关,而与工作频率传输线所接的射频器件以及传输线长短无关。也就是说,射频传输线各处的电压和电流的比值是一定的,特征阻抗是不变的。对于一个已知特性阻抗的传输线来说,它与频率无关。

    相关阅读,可参考长线理论:射频工程师必知必会——长线效应与分布参数


    No1.3 等效阻抗

    等效阻抗也是传输线理论的一个概念,我们在设计中,经常要求知道在传输线上指定位置的阻抗是多少。这个指定位置的阻抗就是等效阻抗Z(z),其定义为传输线上该位置处的电压和电流的比值:

    图片

    注意对比特征阻抗与等效阻抗定义公式之间的区别:特征阻抗是入射波或者反射波的比值,而等效阻抗则是指定位置处入射波和反射波两者叠加之后的比值。这个是位置的函数。对于无耗传输线来说,特征阻抗是固定的,而等效阻抗则随位置的不同而变化。
    这个位置的变化,还涉及到一个看过去的方向问题。比如我们看向负载还是源,这个所得到的等效阻抗,有时候是有区别的。我们设定观察点,向负载看去的等效阻抗,就是负载阻抗。

    图片

    如上图所示,如果我们在指定的位置z处截断,在负载处用一个阻抗为Z(z)的来代替系统中的负载部分,那么对于截断点到电源部分的电压和电流分布将不会改变,这说明Z(z)与截断的电路ZL相等,Z(z)就是负载的等效阻抗,或称为负载阻抗。
    相反,如果我们向源的方向看去,我们把源到截断点的阻抗用Z(z)来替代Zin,那么从截断点到负载的传输特性也不会改变,那么这个Z(z)就可以表示为系统的输入阻抗。

    图片

    等效阻抗与特征阻抗的关系可以用反射系数来计算。

    图片

    只要知道传输线上指定位置的反射系数,就可以得到其等效阻抗。相应的,如果知道传输线上的等效阻抗,就可以求出该位置的反射系数。

    图片

    我们如果用传输线上的电流和电压方程来表示等效阻抗Z(z)的话,我们还能够发现一个更有趣的现象。
    电流和电压方程:

    图片

    带入等效阻抗方程可得到:

    图片

    注意观察上述方程,您是否注意到方程里面的那个Tan,也就是说,在无耗传输线上等效阻抗是三角函数的复合函数。由于三角函数的周期性特征,无耗传输线上的等效阻抗也必然具有周期性。这个周期就是pi,180°。

    图片

    至此,我们不难发现,在传输线上,任意相距二分之波长和其整数倍的位置,其等效阻抗相等。

    图片

    二是在传输线上,任意相距四分之一波长极其整数倍的位置等效阻抗满足如下关系式:

    图片

    这就巧了,当负载处阻抗等于0时,那么距离负载二分之一波长整数倍的地方阻抗也等于零,在距离负载四分之一波长整数倍的位置等效阻抗则为无穷大。
    相反,当负载阻抗为无穷大时,上述结论也翻一下。这不就是开路短路状态的转化吗?在射频设计中,会经常用到哦。您用过没?

     


    Chapter 2 

    为什么要阻抗匹配

     

    阻抗匹配就是为了电磁波能够更好的传播。我们总是希望有用的射频信号能够无衰减或者小衰减的传输到负载,如果阻抗不匹配的话,反映到系统的就是该器件的回波损耗差。回波损耗也是损耗。这个反射回去的射频信号,会对系统造成很大的影响,甚至烧坏某些器件。

    什么是回波损耗?什么是插入损耗?

    我们通过例子讲述了回波损耗到底反射回去多少射频功率。

    电磁波功率P1 从端口1进入网络,从端口2出来。由于在端口1处存在不匹配,那么有一部分电磁波功率P1- 反射回去。

    图片

    回波功率P1-应该怎么算呢?

    对于一个双端口网络,我们只要知道其S2p文件,就可以确定网络的特性,至于网络内部到底是什么样子,我们不用关心,有时候也不需要去关心。

    我们再来看一下回波损耗的定义。回波损耗就是反射损耗,是反射系数的dB形式。

    图片

    那么问题就转换成了已知输入功率P1和回波损耗RL,求回波的功率P1-。

    根据上面公式,直接求,就可以算出来了。公式如下。

    图片

    那我们再两边同时取dB呢?也就是 加上 10log,就成了下面形式。

    图片

    通过上述计算推导,我们得知,回波损耗的功率就是 输入功率P1加上回波损耗RL(注意,RL此处为负值)。所以对于大功率器件,我们对其回波损耗的要求越严格。对于小信号器件,有时候可以放宽回波损耗的指标。

     

    Chapter 3

    共轭匹配和负载匹配

     

    共轭匹配的意义是在于信号源能够输出最大的功率到负载,而负载匹配则是负载能够吸收最大的功率。这两种都是我们做匹配负载所要做的。

    说起共轭匹配,我们先复习一下共轭的概念。

    一提到数学就头疼,共轭是什么玩意?带大家一起回忆一下。共轭就是两个复数的实部相同,虚部符号相反,大小相等,如下图所示,在复平面上,共轭也就是在坐标系里沿着x轴(实轴)镜像了一下。

    图片

    实现最大功率传输,为什么要共轭呢?我们一起看一下。假设在一个最简单的电路中,如下图所示,Us为信号源电压,Rs为信号源内阻,RL为负载电阻。在什么情况下才能够使得信号源把最多的功率提供给负载呢?也就是如何让信号源的输出功率尽可能大。

    图片

    利用上面这个简单的电路,很容易得到信号源输出功率与电路元器件之间的关系:

    图片

    在这里,我们假设:

    图片

    这时,我们就可得到:

    图片

    我们就得到了,信号源的输出功率只取决于Us,Rs和RL。当信号源一定时,输出功率只取决于k,负载阻抗和信号源内阻的比值。

    图片

    取右边的极值呗。我们也可以得到这个功率比和阻抗比的关系曲线。

    图片

    也就是当k等于1时,即RL=Rs时,负载可获得最大的输出功率,此时的状态为匹配状态。无论负载阻抗大于还是小于信号源内阻,都不可能使得负载获得最大功率,并且这两个电阻值偏差越大,输出功率就越小。

    当源阻抗为复数时,我们可以用同样的推导过程进行计算。这时的等效电路如下图所示:

    图片

    其信号源电压为Vs,信号源内阻为Zs=Rs+jXs。负载阻抗为Z=R+jX。电路中的电流为:

    图片

    电流的幅度值为:

    图片

    负载处的功率为:

    图片

    参照前文到的结论,当R=Rs,X=-Xs时,负载的功率最大,即输出功率最大。这时即有

     

    图片

     

    那么在共轭匹配下,负载能够得到最大的功率是多少呢?

    只有四分之一的源功率能够到负载,剩下的到哪去了呢?被源自己的电阻吃掉了。所以我们发现,源都是最热的那一个。

    如果负载阻抗不能满足共轭匹配条件怎么办呢?很简单,让他匹配嘛,在源与负载之间加一个匹配网络,将负载阻抗变换为信号源阻抗的共轭匹配。这个阻抗变换就是阻抗匹配的重要方法之一。

    图片

     

    Chapter 4

    如何进行阻抗匹配?

     

    阻抗匹配的方法有很多,我们在之前的文章中介绍了集总参数阻抗匹配电路和阻抗变换器和短截线分布参数匹配,这其中也详细介绍了Smith Chart的用法。但是这其中的匹配都是对于单频点的匹配,其大部分匹配都是窄带的。而宽带匹配电路我们在以后的章节,会详细介绍。

     

    No4.1 集总参数匹配电路

    集总参数对应着分布参数,我们知道在低频频段,我们常用的一些电阻电容电感就是集总参数元件。在微波和微波低端的电路设计中,我们也常用到集总参数的元器件,因此采用集总参数元器件来进行阻抗匹配,也是在射频设计中经常用到的。

    常见的集总参数匹配电路有三种,L型,T型和Π型。我们在这里一一进行学习。

     

    4.1.1 L型匹配电路

    常用的L型匹配电路有两种,如下图所示,即右L(图a)和左L(图b)。这种匹配电路只有两个元器件,简单易做,成本低廉并且性能稳定。应用比较广泛。

    图片

    在电路匹配中,左L和右L的选择由所需要匹配的负载阻抗和源阻抗的关系决定。

    对于负载阻抗RL和源阻抗Rs 都为纯电阻的情况下,详细过程如下:

    1, 确定工作频率fc,源阻抗Rs和负载阻抗RL。这就是我们对电路匹配左右处理的对象。

    2,根据前文所述的共轭匹配条件,可以推导出:

    图片

    3, 根据源阻抗和负载阻抗的大小关系进行判断,计算:

          如果 Rs<RL,则选用右L电路进行匹配:

    图片

             如果 Rs>RL,则选用左L电路进行匹配:

    图片

    4, 当选出匹配电路形式之后,可利用电感和电容组成的电路进行阻抗匹配。

    对于 右L 型电路,可以分为Ls-Cp 低通形式,也可以采用Cs-Lp 高通形式, 如下图所示:

    图片

    Ls-Cp低通电路,电感和电容值可以有以下公式计算:

    图片

    Cs-Lp高通电路,电感和电容值可以有以下公式计算:

    图片

    至于高通形式还是低通形式可以根据电路设计的需求进行选择。

     

    同理,如果Rs>RL, 则选用左L型,其电路形式依然可以分为低通型和高通型。

    图片

    低通电路,电感和电容值计算公式:

    图片

    高通电路,电感和电容值计算公式:

    图片

    注释,当源阻抗和负载阻抗不是纯电阻时,处理的方法也很简单,只考虑电阻部分,按照上述方法计算中匹配电路中的电容和电感值,再扣除两端的虚数部分,就可得到实际的匹配电路。

     

    4.1.2 T 型匹配电路

     

    T型匹配电路也是一种常见的匹配方法,其一般有三个元件组成,因此复杂度略高于L型。如下图a所示,其常用的四种形式有图b,c,d,e。

    图片

    T型匹配电路的分析方法可参照L型匹配电路,我们不再详细说明,其计算公式如下:

    图片

     

    图片

    图片

    4.1.3 Π型匹配电路

    Π型匹配电路的结构如下图a所示,我们这里只根除设计公式。

    图片

    设计公式:

    图片

    图片

     

    对于电路匹配,有一个重要的工具,就是史密斯圆图,现在很多的射频电路仿真软件上,如ADS和AWR等,都集成有史密斯圆图工具,我们可以利用史密斯圆图,快速得到电路的匹配网络。

    图片


    No4.2 Smith Chart 匹配示例

    问题:

    设计一个L型匹配网络,使其在频率500MHz处,完成负载到传输线的匹配。负载阻抗为ZL=200-j100Ω,传输线阻抗为Z0=100Ω。

    这个问题的示意图如下:

    图片

    常见的L型匹配电路有两种,左L和右L,具体选择哪种,可根据源阻抗与负载阻抗的大小关系来定S(不得不掌握的几种常见的集总参数阻抗匹配电路)。

    图片

     

    首先我们将负载阻抗ZL归一化得到zL=2-j,把这个点标注在Smith 圆图上。这个点在1+jx的圆内部,所以我们选用右L型匹配电路,或者按照我们上节学习到的规律RL>RS(不得不掌握的几种常见的集总参数阻抗匹配电路)。从负载看过去,第一个元件时并联电纳B,通过负载话SWR圆,且从负载过圆心画一条直线,就可以把负载阻抗转换成导纳,才能与该并联导纳相加。

    我们加上这个并联导纳之后再转换回阻抗,将它画在1+jx圆上,这样我们才能加上一个串联电抗来抵消jx并与负载匹配。也就是说,这个并联电纳B能够将YL转移到Smith圆图的1+jx圆上。我们可以看到在外加一个jb=j0.3电纳之后,便能沿着等电导圆移动到y=0.4+j0.5处,再将导纳转换成相应的阻抗z=1-j1.2,在此处接上串联电抗x=j1.2就可实现匹配。使我们回到Smith圆图的中心点。

    详细过程如下:

     

    图片

    如果该匹配电路是由一个并联电容和串联电感组成,如下图所示,在频率f=500MHz处,可求出该匹配电路的电容值和电感值。

    图片

    图片

    图片

     

    如果我们用一个b=-j0.7的并联电纳来替换之前外加的b=j0.3的并联电纳,则在移位后的1+jx圆的下班圆移动这个点到y=0.4-j0.5处,然后转换回阻抗并且加上一个x=-1,2 的串联电抗,也可以达到匹配。这时,匹配网络使一个有并联电感和串联电容来实现。在频率f=500MHz时的电感和电容值可以计算得出:

     

     

    图片

    图片

    图片

    对于这两种匹配网络,其反射系数的大小与频率的关系如下图所示。

    图片

    如果单纯从匹配角度来说,两种方案都可以选择,匹配带宽没有明显的区别。但是实际应用中,可以根据射频电路的需求进行选择。比如是否需要隔直?是否需要滤波?实际电感和电容的选型等等。

     

    No4.3 短截线匹配法

    用集总参数元器件进行阻抗匹配,大家理解起来比较容易,但是在微波电路中,我们常常不喜欢加进去那些林林总总的电感电容,一个原因是贵,另一个原因则是对应值的电感电容很难取寻找。我们通常希望直接在线上进行匹配。今天,我们一起来看一下如何利用一段传输线来进行阻抗匹配?

    图片

    最常用到的短截线匹配法有单支节和双支节,有双支节了,当然还会有多支节。我们就最常用的单支节和双支节进行讨论。

    图片

    单支节就是使用单个开路或者短路的传输线段在距离负载某一确定位置处,通过与传输线的并联或者串联,实现阻抗匹配。如下图所示。在这种单支节短截线匹配电路中,有两个可调节的参数,第一个是从负载到短截线的距离d,第二个就是短截线所能提供的电纳或者电抗,短截线所能提供的电纳或者电抗实际上是由短截线本身的特性阻抗Z0和短截线的长度决定。因此,单支节短截线匹配法实际上是对短截线到负载距离d和短截线特性阻抗Z0,以及短截线长度L这三个参数组合优化。

    图片

    对于并联短截线,其基本思路是首先确定短截线到负载的距离d,在此点向传输线方向看过去的导纳为:Y=Y0+jB,然后选择短截线的电纳为-jB,就可以达到匹配条件。

    对于串联短截线,短截线到负载的距离d,在此位置,向传输线方向看过去的阻抗为Z=Z0+jX,那么选择短截线的电抗为-jX,便达到阻抗匹配的条件。

    另一个就是双短截线匹配。双短截线匹配,增加了设计参量,提高了设计的灵活度。双短截线匹配电路如下图所示,负载到第一个短截线的距离不再有特殊要求,但是两个短截线直接的距离d是有要求的。

    图片

    在《微波工程》中,作者通过两个例子,利用Smith圆图对单路短截线的参数进行求解。具体过程,请参照书籍。推荐在设计中,利用仿真软件进行匹配,因此,理论推导过程不再赘述。

    No4.4 四分之一波长阻抗变换器

    常用的阻抗匹配方法很多,我们今天一起来学习下四分之一阻抗变换器匹配的原理。

     

    图片

    四分之一波长阻抗变换器是有一段长度为lambda0/4,阻抗为Z01的传输线构成,其中Lambda0是传输线所传输信号的中心频率所对应的相波长,与信号频率f0,传输线的结构,填充介质等因素有关。当传输线的终端接纯电阻负载RL时,在中心频率上的输入阻抗为:

    图片

    为了计算该式在图片时的值,我们可以用图片去除上式的分子分母,并取图片的极限,即可得:

    图片

    为了使反射系数等于0,必须有Z0=Zin,可得四分之一波长变换器的特性阻抗为:

    图片

    可以看出了,这个阻抗就是负载阻抗和传输线阻抗的几何平均。因此在传输线上就没有驻波,反射系数为0,但是在四分之一阻抗变换器内还是有驻波存在。变换器上的驻波系数为:

    图片

    注意:上式是基于信号的中心频率f0来求解的,因此只能在这个点上实现匹配,或者匹配线的长度是该频率的四分之一波长或者四分之一波长的奇数倍(2n+1)处实现完全匹配,在其他频率上将会失配。

    上式只能用于实阻抗匹配,即负载的阻抗为纯电阻。但是对于一般的复阻抗负载,ZL=RL+jXL,时,一般先经过一个适当长度的传输线把负载阻抗变换为实阻抗负载。下面介绍两种常用的匹配方法:
    方法一:终端接四分之一波长阻抗变换器的同时,并联一段特性阻抗为Z0,长度为s的终端段路线。
     

    图片

    终端短路线在负载处提供一个纯电抗,只要选择合适的长度s,就可以使其在负载处所呈现的电抗来抵消负载的电抗部分,从而使负载的总阻抗为实数,然后利用四分之一波长阻抗变换器将负载处的等效阻抗变换为Z0,实现阻抗匹配。
    方法二:在靠近终端的电压波腹点或者波节点处接入四分之一波长阻抗变换器来实现复阻抗匹配。

    图片

    传输线上电压波节点或者波腹点的阻抗为实数,所以如果在这两个位置剪短传输线,接入特性阻抗为Z01的四分之一波长变换器就可以进行阻抗匹配。负载与电压波节点或者波腹点位置的传输线称为相移段。
    1,当电压波腹点接入四分之一波长变换器时,相移段长度L和变换器特性阻抗分别为:

    图片

    2,当电压波节点接入四分之一波长变换器时,相移段长度L和变换器特性阻抗分别为:

    图片

    这个时候阻抗变换器上的驻波系数为:

    图片

    为了更深入的了解四分之一波长阻抗变换器的特性,我们一起来看一下多次反射的概念。
     

    图片

    对于上图给出的四分之一波长变换器,它具有一下的反射系数:

    图片

    这些反射系数可以表示为:

    图片

    我们可以想象一下,当电磁波信号沿着传输线进入四分之一波长变换器时,它首先看到的阻抗是Z1,因为还没有到达负载RL,因而负载还看不到它的影响。一部分电磁波被反射,另一部分被传输进入四分之一波长变换器,然后被传输的电磁波到达负载时遇到了组在阻抗RL,再次被反射,经过四分之一波长到达传输线和变换器的交界处,遇到阻抗Z0,再次被反射回到负载,电磁波在变换器内不断额被反射吸收,每次反射波都要经过往返两次四分之一波长,产生相位差180°,总的反射系数就是这无数次反射系数的和:

    图片

    经过一系列的计算:

    图片

    我们发现,当时,上式为0,那么总的反射系数也为0,传输线是匹配的。
    那么我们发现四分之一波长变换器匹配的原理就是通过选择恰当的匹配段的特性阻抗,和长度,使得所有的部分反射的结果叠加为0,来消除组播,形成整个传输线上的行波。可见变换器内部的斗争还是蛮激烈的。

     

    小结:其实到这里,阻抗匹配还远远没有结束。在很多的射频电路中,宽带阻抗匹配才更利于整个系统设计。但是最为高级的一个阻抗匹配方式就是滤波器的设计。让我们在以后的章节慢慢完善阻抗匹配吧。

    全文完。。。

    参考文献

    • 1,David M Pozer  《微波工程》

    • 2,雷振亚,谢拥军 等  《微波工程导论》

    • 3,栾秀珍,王钟葆,傅世强,房少军   《微波技术与微波器件》

    • 4,梁昌洪,谢拥军   《简明微波》

     

    推荐阅读

     

    这里是RF小木匠,觉得有用,别忘记点赞和分享哦

    图片

     

     

    这里是5G射频圈儿,欢迎扫描关注,加入射频圈儿

     

    图片

     

    有什么问题,赶紧留言讨论吧

     

     

     

    展开全文
  • 阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。回答了什么是阻抗匹配阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波...
  • 阻抗和阻抗匹配

    2020-03-15 16:58:55
    阻抗和阻抗匹配 在本教程中,您将学习有关使用高速数字化器进行采样的基本理论以及优化数据采样性能的各种方法的基本信息。本教程的这一部分将介绍以下主题。 内容 什么...
  • 原标题:为什么要进行阻抗匹配?电子行业的工程师经常会遇到阻抗匹配问题。什么是阻抗匹配,为什么要进行阻抗匹配?本文带您一探究竟!一、什么是阻抗在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。阻抗单位为...
  • 电路设计中的阻抗匹配

    千次阅读 2020-04-18 21:12:50
    一、什么是阻抗匹配 相信大家在电路原理中都学到过,某个电路的负载电阻多大时,其输出功率才是最大; 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,...
  • 如何挑选射频同轴电缆

    千次阅读 2019-05-28 16:31:10
    关键词:射频电缆组件、射频电缆、同轴电缆 摘要:概述什么是射频同轴电缆以及挑选射频电缆的相关知识。 在实际挑选射频电缆组件的正确选择时,我们除了要考虑到它的特性阻抗、额定功率、衰减量和频率范围,驻波比、...
  • 射频基础之阻抗匹配与Smith图

    万次阅读 多人点赞 2017-09-06 10:57:09
    对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,...
  • 实现电路阻抗匹配的两个方法

    千次阅读 2020-10-20 11:16:20
    阻抗匹配原则:高频、射频、高速电路必做,低频电路可不做。 阻抗常用Z表示:阻抗由电阻、感抗和容抗三者组成。阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。 具体说来阻抗可分为两个部分,...
  • 阻抗匹配

    2019-01-15 11:00:37
    什么是阻抗? 具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。如果三者是串联的,又知道交流电的频率f、电阻R、电感L和电容...
  • 前言:本文主要详解什么是阻抗匹配,首先介绍了输入及输出阻抗是什么,其次介绍了阻抗匹配的原理,最后阐述了阻抗匹配的应用领域,具体的跟随小编一起来了解一下吧。  一、输入阻抗  输入阻抗是指一个电路输入端...
  • 阻抗匹配基础知识详解

    千次阅读 2018-02-01 13:44:02
    对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音
  • 一小时学懂阻抗匹配

    万次阅读 多人点赞 2018-04-16 15:47:35
    一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出...
  • 同轴电缆传输容易出现哪些干扰?

    千次阅读 2020-10-28 22:20:31
    基带传输的一个缺点就是抗干扰能力差,同轴电缆的屏蔽层对频率越低的电磁波的屏蔽作用越差,因此易受到广播干扰和低频电磁波的干扰。那么,同轴电缆传输容易出现哪些干扰呢?一 广播干扰同轴电缆在架...
  • 阻抗匹配的简单理解

    千次阅读 2017-05-04 12:00:04
    阻抗匹配的简单理解 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。 阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把...
  • pcb 50欧姆阻抗匹配设计技巧

    千次阅读 2020-12-20 07:50:09
    阻抗匹配阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。在高速PCB设计中,阻抗的匹配与否关系到信号的质量...
  • 关注、星标公众号,不错过精彩内容来源:志博PCB阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根...
  • 【解析】为什么要进行阻抗匹配

    千次阅读 2020-03-06 14:55:40
    一、什么是阻抗 在电学中,常把对电路中电流所起的阻碍作用叫做阻抗阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。其中电抗又包括容抗和...
  • 高速电路设计阻抗匹配的几种方法

    千次阅读 2020-03-06 15:33:31
    为什么要阻抗匹配? 在高速数字电路系统中,电路数据传输线上阻抗如果不匹配会引起数据信号反射,造成过冲、下冲和振铃等信号畸变,当然信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且...
  • 一、输入阻抗输入阻抗是指一个电路输入端的等效阻抗.在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I.你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗.输入阻抗跟一个普通的...
  • 初识阻抗匹配

    2018-01-09 17:08:06
    阻抗匹配 阻抗匹配是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 以波动的观点来看电路,交变能量沿着传输线前进...
  • 在这里,我不打算做任何让人头疼的数学公式和推导,只是想以这个VGA接口为例说一说我对于阻抗匹配问题的理解:为什么要做阻抗匹配,在什么地方该考虑阻抗匹配,怎样去做阻抗匹配。当然,这些理解很可能不正确,只是...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,064
精华内容 425
关键字:

同轴电缆阻抗匹配