精华内容
下载资源
问答
  • 同步编码器工作原理
    千次阅读
    2020-11-01 13:21:45

    欢迎同步关注公众号【逆向通信猿】

    扰乱编码原理

    在实际的数字通信中,由于语言统计特性和采用的信息编码方案等原因,信源输出序列普遍具有0、1不平衡性,即信息序列中比特 0 和比特 1 出现的概率并不是各占1/2且可能出现连续的“0”或连续的“1”,这不仅破坏了系统设计的前提,对系统性能造成不利影响,还导致接收端无法正确获得定时信息。因此需要对信源编码后的数据进行随机化处理以改善其传输特性,这种处理即为扰码。扰码不仅能提高信息比特的定时含量,还使得信号频谱弥散而保持稳恒。

    自同步和伪随机扰码

    扰码分为伪随机扰码和自同步扰码。伪随机扰码的优点是实现简单,且当信道序列在传输中出现错误时,反扰乱时错误不会增加,因而不降低数据序列的质量,但伪随机扰乱器也有严重的缺陷,即收发双方的线性移存器必须严格同步,且在同步以后,当信道序列中插入或漏掉若干数据时又会失去同步,造成数据序列无法恢复,因而必须重新建立同步。自同步扰乱器与伪随机扰乱器相反,它的优点是具有自同步功能,即收发双方的移存器初始状态不必相同,信道序列中插人或漏掉若干数据仍能自动恢复同步。然而自同步扰乱器与伪随机扰乱器相比也有一个明显缺点,即如果信道序列在传输过程中出现一个差错,在反扰乱时错误就会扩散,反扰乱器输出的数据序列就会出现多个错误。错误个数与联接多项式f(x) 的非零系数项的个数有关,因此自同步扰乱器的联接多项式f(x)一般都取最简的n次本原多项式,即f(x)一般取三项本原多项式。

    F2域上的本原三项式

    更多相关内容
  • 编码器工作原理

    万次阅读 多人点赞 2019-11-12 09:03:37
    首先简述一下编码器工作原理 编码器可按以下方式来分类。 1、按码盘的刻孔方式不同分类 (1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号, 编码器(图1) 然后对其进行细分,斩波出...

    最近公司项目用到了编码器

    选用的编码器  为360脉冲

    为了方便其一圈发360个脉冲  ,当然精度只有一度 ,如果为了高精度可以选用其他类型的

    首先简述一下编码器的工作原理

    编码器可按以下方式来分类。

    1、按码盘的刻孔方式不同分类

    (1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,

    编码器(图1)编码器(图1)

    然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。

    (2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。

    2、另外还有一种串口通信的 RS485 ,但基本原理同增量型和绝对值型一样,  只是输出的结果转化为485通信,不用来进行脉冲计数

     


      我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。
      编码器有5条引线,其中3条是脉冲输出线,1条是COM端线,1条是电源线(OC门输出型)。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。编码器的COM端与PLC输入COM端连接,A、B、Z两相脉冲输出线直接与PLC的输入端连接,A、B为相差90度的脉冲,Z相信号在编码器旋转一圈只有一个脉冲,通常用来做零点的依据,连接时要注意PLC输入的响应时间。旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地,提高抗干扰性。
      编码器-----------PLC
      A-----------------X0
      B-----------------X1
      Z------------------X2
      +24V------------+24V
      COM------------- -24V-----------COM

    工作原理

    由一个中心有轴的光电码盘,其上有环形通、暗的刻线,

    编码器(图5)编码器(图5)

    有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

    由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

    分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

    主要作用

    它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器

    编码器(图6)编码器(图6)

    这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

    编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.

    编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,

    编码器(图7)编码器(图7)

    位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的; 因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的; 不像增量编码器那样,必须去寻找零位标记。

    编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

    编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。

    按照工作原理编码器可分为增量式和绝对式两类。

    编码器(图8)编码器(图8)

    增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

    旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

    绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

    由于绝对编码器在定位方面明显地优于增量式编码器,

    编码器(图9)编码器(图9)

    已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出最常用的是SSI(同步串行输出)。

    多圈绝对式编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。多圈式绝对编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。

    信号输出

    信号输出有正弦波(电流或电压),方波(TTL、HTL),

    编码器(图10)编码器(图10)

    集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

    信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

    如单相联接,用于单方向计数,单方向测速。

    A.B两相联接,用于正反向计数、判断正反向和测速。

    A、B、Z三相联接,用于带参考位修正的位置测量。

    A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。

    简单的说,旋转编码器的abz分别是A相,B相,Z相在编码器旋转的时候都会输出脉冲,三相的脉冲是各自独立的。按常用的编码器来说,A相和B相的单圈脉冲量是相等的,Z相为一圈一个脉冲。总之,ABZ都是信号线,如果编码器是1000脉冲的,那编码器轴转一圈AB两通道各输出1000个脉冲, Z输出1个脉冲。

     

     

     

    对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

    对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

    展开全文
  • 编码器计数原理与电机测速原理——多图解析

    万次阅读 多人点赞 2021-02-10 19:21:40
    编码器,是一种用来测量机械旋转或位移的传感器。它能够测量机械部件在旋转或直线运动时的位移位置或速度等信息,并将其转换成一系列电信号。 编码器分类 按监测原理分类 光电编码器 光电编码器,是一种通过光电转换...

    编码器,是一种用来测量机械旋转或位移的传感器。它能够测量机械部件在旋转或直线运动时的位移位置或速度等信息,并将其转换成一系列电信号。

    编码器分类

    按监测原理分类

    光电编码器

    光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光源、光码盘和光敏元件组成。

    光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

    此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。

    霍尔编码器

    霍尔编码器是一种通过磁电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

    霍尔编码器是由霍尔码盘(磁环)和霍尔元件组成。

    霍尔码盘是在一定直径的圆板上等分地布置有不同的磁极。霍尔码盘与电动机同轴,电动机旋转时,霍尔元件检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。

    按输出信号分类

    增量式编码器

    增量式编码器是将设备运动时的位移信息变成连续的脉冲信号,脉冲个数表示位移量的大
    小。其特点如下:

    • 只有当设备运动时才会输出信号。

    • 一般会输出通道A和通道B 两组信号,并且有90° 的相位差(1/4个周期),同时采集这两组信号就可以计算设备的运动速度和方向。

      如下图,通道A和通道B的信号的周期相同,且相位相差1/4个周期,结合两相的信号值:

      • 当B相和A相先是都读到高电平(1 1),再B读到高电平,A读到低电平(1 0),则为顺时针
      • 当B相和A相先是都读到低电平(0 0),再B读到高电平,A读到低电平(1 0),则为逆时针
    • 除通道A、通道B 以外,还会设置一个额外的通道Z 信号,表示编码器特定的参考位置

      如下图,传感器转一圈后Z 轴信号才会输出一个脉冲,在Z轴输出时,可以通过将AB通道的计数清零,实现对码盘绝对位置的计算。

    • 增量式编码器只输出设备的位置变化和运动方向,不会输出设备的绝对位置。

    绝对式编码器

    绝对式编码器在总体结构上与增量式比较类似,都是由码盘、检测装置和放大整形电路构成,但是具体的码盘结构和输出信号含义不同。

    它是将设备运动时的位移信息通过二进制编码的方式(特殊的码盘)变成数字量直接输出。其特点如下:

    • 其码盘利用若干透光和不透光的线槽组成一套二进制编码,这些二进制码与编码器转轴的每一个不同角度是唯一对应的。
    • 绝对式编码器的码盘上有很多圈线槽,被称为码道,每一条(圈)码道内部线槽数量和长度都不同。它们共同组成一套二进制编码,一条(圈)码道对应二进制数的其中一个位(通常是码盘最外侧的码道表示最低位,最内侧的码道表示最高位)。
    • 码道的数量决定了二进制编码的位数,一个绝对式编码器有N 条码道,则它输出二进制数的总个数是2的N次方个。
    • 读取这些二进制码就能知道设备的绝对位置,所以称之为绝对式编码器。
    • 编码方式一般采用自然二进制、格雷码或者BCD 码等。
      • 自然二进制的码盘易于理解,但当码盘的制造工艺有误差时,在两组信号的临界区域,所有码道的值可能不会同时变化,或因为所有传感器检测存在微小的时间差,导致读到错误的值。比如从000跨越到111,理论上应该读到111,但如果从内到外的3条码道没有完全对齐,可能会读到如001或其它异常值。
      • 格雷码(相邻的两个2进制数只有1个位不同)码盘可以避免二进制码盘的数据读取异常,因为格雷码码盘的相邻两个信号组只会有1位的变化,就算制造工艺有误差导致信号读取有偏差,最多也只会产生1个偏差(相邻信号的偏差)。

    编码器参数

    分辨率

    指编码器能够分辨的最小单位。

    • 对于增量式编码器,其分辨率表示为编码器转轴旋转一圈所产生的脉冲数,即脉冲数/转(Pulse Per Revolution 或PPR)

      码盘上透光线槽的数目其实就等于分辨率,也叫多少线,较为常见的有5-6000 线。

    • 对于绝对式编码器,内部码盘所用的位数就是它的分辨率,单位是位(bit),具体还分单圈分辨率和多圈分辨率。

    精度

    首先明确一点,精度与分辨率是两个不同的概念。

    精度是指编码器每个读数与转轴实际位置间的最大误差,通常用角度、角分或角秒来表示。

    例如有些绝对式编码器参数表里会写±20′′,这个就表示编码器输出的读数与转轴实际位置之间存在正负20 角秒的误差。

    精度由码盘刻线加工精度、转轴同心度、材料的温度特性、电路的响应时间等各方面因素共同决定。

    最大响应频率

    指编码器每秒输出的脉冲数,单位是Hz。计算公式为:

    最大响应频率= 分辨率* 轴转速/60

    例如某电机的编码器的分辨率为100(即光电码盘一圈有100条栅格),轴转速为120转每分钟(即每秒转2圈),则响应频率为100*120/60=200Hz,即该转速下,编码器每秒输出200个脉冲(电机带动编码器转了2圈嘛)。

    信号输出形式

    • 对于增量式编码器,每个通道的信号独立输出,输出电路形式通常有集电极开路输出、推挽输出、差分输出等。

    • 对于绝对式编码器,由于是直接输出几十位的二进制数,为了确保传输速率和信号质量,一般采用串行输出或总线型输出,例如同步串行接口(SSI)、RS485、CANopen 或EtherCAT 等,也有一部分是并行输出,输出电路形式与增量式编码器相同。

    码盘测速原理

    编码器倍频

    编码器倍频是什么意思呢,比如某光栅编码器一圈有N个栅格,理论上电机带动编码器转一圈,只能输出N个信号,通过倍频技术,可以实现转一圈,却能输出N*n个信号,这里的n为倍频数。

    增量式编码器输出的脉冲波形一般为占空比50% 的方波,通道A 和B 相位差为90°。

    • 如果只使用通道A计数,并且只捕获通道A的上升沿,则一圈的计数值=码盘的栅格数,即为1倍频(没有倍频)
    • 如果只使用通道A计数,并且捕获了通道A的上升沿和下降沿,则编码器转一圈的计数值翻倍,实现2倍频
    • 如果既使用通道A计数,又使用通道B计数,且都捕获了上升沿和下降沿,则实现了4倍频

    假设某个增量式编码器它的分辨率是600PPR,能分辨的最小角度是0.6°,对它进行4 倍频之后就相当于把分辨率提高到了600*4=2400PPR,此时编码器能够分辨的最小角度为0.15°。

    M法测速

    又叫做频率测量法。该方法是在一个固定的时间内(以秒为单位),统计这段时间的编码器脉冲数,计算速度值。M法适合测量高速

    假设:

    • 编码器单圈总脉冲数为C(常数)

    • 统计时间为 T 0 T_0 T0 (固定值,单位秒)

    • 该时间内统计到的编码器脉冲数为 M 0 M_0 M0(测量值)

    则:转速n(圈/秒)的计算公式为:

    在这里插入图片描述

    如何理解这个公式:

    M 0 M_0 M0/C 即统计时间内有多少个编码器脉冲,再除以统计时间 T 0 T_0 T0 ,即1s(单位时间)内转了多少圈

    例如:统计时间 T 0 T_0 T0 为3s,在3s内测得的脉冲数 M 0 M_0 M0为60,而编码器的单圈脉冲数C为20,则转速n=60/(20*3)=1圈每秒

    由于C 是常数,所以转速n 跟 M 0 M_0 M0成正比。这就使得:

    • 在高速时,测量时 M 0 M_0 M0变大,可以获得较好的测量精度和平稳性
    • 但在低速时(低到每个 T 0 T_0 T0 内只有少数几个脉冲),此时算出的速度误差就会比较大,并且很不稳定。

    如下图,方波为编码器某一通道输出的脉冲。

    当转速较高时,每个统计时间 T 0 T_0 T0 内的计数值较大,可以得到较准确的转速测量值。

    当转速较低时,每个统计时间 T 0 T_0 T0 内的计数值较小,由于统计时间的起始位置与编码器脉冲的上升沿不一定对应,当统计时间的起始位置不同时,会有一个脉冲的误差(只统计上升沿时,最多会有1个脉冲误差,统计上升沿和下降沿时,最多会有2个脉冲的误差)。

    通过倍频提高单位时间测得的脉冲数可以改善M 法在低速测量的准确性(比如原本捕获到的脉冲 M 0 M_0 M0 只有4 个,经过4 倍频后,相同电机状态 M 0 M_0 M0变成了16 个),但也不能从根本上改变低速时的测量问题。

    T法测速

    又叫做周期测量法。这种方法是建立一个已知频率的高频脉冲并对其计数。T法适合测量低速

    假设:

    • 编码器单圈总脉冲数为C(常数)

    • 高频脉冲的频率为 F 0 F_0 F0 (固定值,单位Hz)

    • 捕获到编码器相邻两个脉冲的间隔时间为 T E T_E TE ,其间的计数值为 M 1 M_1 M1 (测量值)

    则:转速n 的计算公式为:
    在这里插入图片描述

    如何理解这个公式:

    1/ T E T_E TE 即1s内有多少个编码器脉冲,再除以一圈的脉冲数C,即1s内转了多少圈

    F 0 F_0 F0/ M 1 M_1 M1 即1s内的高频脉冲数除以两编码器脉冲间的高频脉冲数,也即1s内有多少个编码器脉冲,再除以一圈的脉冲数C,即1s内转了多少圈

    例如:高频脉冲的周期是1ms,即频率 F 0 F_0 F0 为1000Hz,在编码器的两个脉冲之间,产生的高频脉冲数 M 1 M_1 M1为50个(即两个编码器脉冲的间隔 T E T_E TE 为0.05s),编码器一圈的脉冲数C为20,则转速 n = 1000 / ( 50 ∗ 20 ) = 1 n=1000/(50*20)=1 n=1000/(5020)=1圈每秒。

    由于C 和 F 0 F_0 F0 是常数,所以转速n 跟 M 1 M_1 M1成反比。这就使得:

    • 在高速时,编码器脉冲间隔时间 T E T_E TE 很小,使得测量周期内的高频脉冲计数值 M 1 M_1 M1也变得很少,导致测量误差变大
    • 在低转速时, T E T_E TE 足够大,测量周期内的 M 1 M_1 M1也足够多,所以T 法和M 法刚好相反,更适合测量低速。

    如下图,黑色方波为编码器某一通道输出的脉冲,黄色方波为高频测量脉冲。

    当转速较低时,高频测量脉冲数 M 1 M_1 M1较大,可以得到较准确的转速测量值。

    当转速较高时,编码器两脉冲间的时间间隔变短,导致高频测量脉冲数 M 1 M_1 M1较小,由于高频脉冲的上升沿位置与编码器脉冲的上升沿不一定对应,当两波的上升沿位置不同时,会有一个脉冲的误差

    M/T法测速

    这种方法综合了M 法和T 法各自的优势,既测量编码器脉冲数又测量一定时间内的高频脉冲数

    在一个相对固定的时间内,假设:

    • 编码器脉冲数产生 M 0 M_0 M0个 (测量值)

    • 计数一个已知频率为 F 0 F_0 F0 (固定值,单位Hz)的高频脉冲,计数值为 M 1 M_1 M1 (测量值),计算速度值

    • 码器单圈总脉冲数为C(常数)

    则转速n 的计算公式为:
    在这里插入图片描述
    例如:在一个相对固定的时间内,编码器脉冲数 M 0 M_0 M0为3个;高频脉冲的周期是1ms,即频率 F 0 F_0 F0 为1000Hz,产生的高频脉冲数 M 1 M_1 M1为150个;编码器一圈的脉冲数C为20,则转速 n = 1000 ∗ 3 / ( 150 ∗ 20 ) = 1 n=1000*3/(150*20)=1 n=10003/(15020)=1圈每秒。

    由于M/T 法公式中的 F 0 F_0 F0 和C 是常数,所以转速n 就只受 M 0 M_0 M0 M 1 M_1 M1 的影响。

    • 高速时, M 0 M_0 M0 增大, M 1 M_1 M1 减小,相当于M 法
    • 低速时, M 1 M_1 M1 增大, M 0 M_0 M0 减小,相当于T 法。

    冲数 M 0 M_0 M0为3个;高频脉冲的周期是1ms,即频率 F 0 F_0 F0 为1000Hz,产生的高频脉冲数 M 1 M_1 M1为150个;编码器一圈的脉冲数C为20,则转速 n = 1000 ∗ 3 / ( 150 ∗ 20 ) = 1 n=1000*3/(150*20)=1 n=10003/(15020)=1圈每秒。

    由于M/T 法公式中的 F 0 F_0 F0 和C 是常数,所以转速n 就只受 M 0 M_0 M0 M 1 M_1 M1 的影响。

    • 高速时, M 0 M_0 M0 增大, M 1 M_1 M1 减小,相当于M 法
    • 低速时, M 1 M_1 M1 增大, M 0 M_0 M0 减小,相当于T 法。
    展开全文
  • 设计了一种基于 FPG A 的适用于伺服系统的同步机轴角编码器, 实现了同步机旋转角度的测量与输出, 其通过对旋转变压器输出的两路正交调制信号与激励信号进行混频解调, 得出轴相位。 首先进行了原理的分析 , 然后...
  • 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC)。 绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。 增量式编码器需要...

    编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC)。
    绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。
    增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,
    而绝对式编码器可产生能够识别绝对位置的数字信号。
    综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择–这些应用具有更高的速度和位置控制要求。

    增量式编码器
    增量式编码器只能记住自己走了多少步,当然会有一个原点。在开机第一次走过原点以前,它是不知道自己的位置在什么地方。
    增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。增量型编码器的一般应用:测速,测转动方向,测移动角度、距离(相对)。
    增量式编码器是将位移转换成周期性电信号,再把电信号转换成计数脉冲,用脉冲的个数表示位移的大小。
    在这里插入图片描述

    增量式编码器是由**光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)**组成。
    光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。

    编码器码盘的材料有玻璃、金属、塑料等。
    玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。
    金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。
    塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。

    1、增量式旋转编码器工作原理
    增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。
    增量式旋转编码器的工作原理如下图所示。
      在这里插入图片描述
    图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。
    当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。
      通过输出波形图可知每个运动周期的时序为:
      在这里插入图片描述
    我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向,
    在这里插入图片描述

    如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。
    S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。
    在这里插入图片描述

    实际使用的增量式编码器输出三组方波脉冲A、B和Z(有的叫C相)相。A、B两组脉冲相位差90º(一个周期为360°,1/4个周期就是90°,就是所说的A,B相位相差90°),可以判断出旋转方向和旋转速度。而Z相脉冲又叫做零位脉冲(有时也叫索引脉冲),为每转一周输出一个脉冲,Z相脉冲代表零位参考位,通过零位脉冲,可获得编码器的零位参考位,专门用于基准点定位,如下图所示。
      在这里插入图片描述
      
    增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点可以任意设定,可实现多圈无限累加和测量。
    编码器轴转动一圈会输出固定的脉冲数,脉冲数由编码器码盘上面的光栅的线数所决定,编码器以每旋转360度提供多少通或暗的刻线称为分辨率,也称解析分度、或称作多少线,一般在每转5~10000线,当需要提高分辩率时,可利用90度相位差的A、B两路信号进行倍频或者更换高分辩率编码器。

    增量型编码器精度取决于机械和电气的因素,这些因素有:光栅分度误差、光盘偏心、轴承偏心、电子读数装置引入的误差以及光学部分的不精确性,误差存在于任何编码器中。

    编码器的信号输出有正弦波(电流或电压)、方波(TTL、HTL)等多种形式。并且都可以用差分驱动方式,含有对称的A+/A-、B+/B-、Z+/Z-三相信号,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,信号稳定衰减最小,抗干扰最佳,可传输较远的距离,例如:对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。
      在这里插入图片描述
    在这里插入图片描述

    2、增量式编码器的分类
    1)单通道增量式编码器内部只有一对光电耦合器,只能产生一个脉冲序列。

    2)AB相编码器内部有两对光电耦合器,输出相位差为90°的两组脉冲序列。正转和反转时两路脉冲的超前、滞后关系刚好相反。
    需要增加测量的精度时,可以采用4倍频方式,即分别在A、B相波形的上升沿和下降沿计数,分辨率可以提高4倍,但是被测信号的最高频率相应降低。
    3)三通道增量式编码器内部除了有双通道增量式编码器的两对光电耦合器外,在脉冲码盘的另外一个通道有1个透光段,每转1圈,输出1个脉冲,该脉冲称为Z相零位脉冲,用做系统清零信号,或坐标的原点,以减少测量的积累误差。

    3、编码器的选型
    首先根据测量要求选择编码器的类型,增量式编码器每转发出的脉冲数等于它的光栅的线数。在设计时应根据转速测量或定位的度要求,和编码器的转速,来确定编码器的线数。编码器安装在电动机轴上,或安装在减速后的某个转轴上,编码器的转速有很大的区别。还应考虑它发出的脉冲的最高频率是否在计数器允许的范围内。

    绝对值编码器
    绝对值编码器只要上电就能知道自己现在所处的位置,绝对值编码器需要刻更多的线,成本高性能好,更贵。断电上电后,会记住原先的数值,不用回原点,绝对值相当于有一个CPU。
    绝对值编码器的每一个位置对应一个确定的数字码,因此他的示值只与测量的的起始和终止位置有关,而与测量的中间过程无关。

    绝对值编码器在机械臂上的运用
    首先,让我们先了解一下绝对值编码器,绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线……编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

    **绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。**这样,编码器无需开机找零,抗干扰特性、数据的可靠性大大提高了。另外,绝对值编码器无需判定方向、累计计数,可直接读数,其响应也较增量的快。

    一般来说,每一维的机械手臂位置信息的反馈,都需要绝对值编码器提供反馈。高精度机械手臂的应用中,比如半导体自动化的机械手臂,最高可提供高达30位的多圈位置信息,为机械手臂的精确控制提供必要的反馈信息。能检测出每分钟12,000转的运动信息,反应非常灵敏;可以通过读取的位置信息,计算得到机械手臂的运动速度等参数。对于多维机械手臂的运动位置,绝对值编码器上电时可以由主控制器读取,这对于增量式的编码器有很大的优势。

    对于机械手臂的设计要求高精度,高灵敏度,小尺寸,模块化设计,让绝对值编码器能更好的应用于其中。
    在多圈光电绝对值编码器应用中,由于其位置信息不需要电池供电或其他的储存,在系统上电后便能方便的读取,这些优点是增量编码器所不能比拟的。绝对值编码器高精度,高灵敏度,快速反应,能很好的应用在闸门开度控制、机械手臂、高精度位置控制部件中。

    绝对值编码器常见故障
    第一,编码器本身出现故障,这种情况一般都是说设备本身的元器件出现问题,导致设备不能产生和输出正确的波形。解决故障最简单最好的方法就是直接更换编码器或者是维修内部的器件。

    第二,编码器所连接的电缆出现故障,这是出现几率最高的一种故障,在维修的时候也会经常遇到这样的现象,所以很多用户发现设备出现故障,会第一时间考虑到这个因素。有可能是接触不良、电缆断路等等问题,用户可以直接更换一个电缆或者是接头,还要注意一下是不是电缆不定不紧固的原因,每次用之前检查一下。

    第三,编码器电源下降,电源太低的原因可能是供电电源出现故障,电源传送电缆阻值比较大引起的,可以检修电源或者是更换电缆,具体的要根据用户的实际情况。

    第四,编码器电池电压下降,电压下降说明一定的问题,这个时候需要更换电池。

    关于绝对值与绝对式编码器的混淆
    绝对值编码器的“绝对”是指数据的唯一、可靠、稳定,而不是停电记忆

    针对目前市场上鱼目混珠的绝对值编码器产品,对于编码器 “绝对值” 的概念做出解释,防止用户选择错误的产品,而受骗上当。 旋转编码器是工业中重要的机械位置角度、长度、速度反馈并参与控制的传感器,旋转编码器分增量值编码器、绝对值编码器、绝对值多圈编码器。

    从外部接收的设备上讲(如伺服控制器、PLC),增量值是指一种相对的位置信息的变化,从A 点变化到B 点的信号的增加与减少的计算,也称为“相对值”,它需要后续设备的不间断的计数,由于每次的数据并不是独立的,而是依赖于前面的读数,对于前面数据受停电与干扰所产生的误差无法判断,从而造成误差累计;而“绝对式工作模式”是指在设备初始化后,确定一个原点(通过校准标定),以后所有的位置信息是与这个“原点”的绝对位置,它无需后续设备的不间断的计数,而是直接读取当前位置值,对于停电与干扰所可能产生的误差,由于每次读数都是独立不受前面的影响,从而不会造成误差累计,这种称为接收设备的“绝对式”工作模式。

    而对于绝对值编码器的内部的“绝对值”的定义,是指编码器内部的所有位置值,在编码器生产出厂后,其量程内所有的位置已经“绝对”地确定在编码器内,在初始化原点后,每一个位置独立并具有唯一性,它的内部及外部每一次数据刷新读取,都不依赖于前次的数据读取,无论是编码器内部还是编码器外部,都不应存在“计数”与前次读数的累加计算,因为这样的数据就不是“独立”“唯一”“量程内所有位置已经预先绝对确立”了,也就不符合“绝对”这个词的含义了。

    所以,真正的绝对编码器的定义,是指量程内所有位置的预先与原点位置的绝对对应,其不依赖于内部及外部的计数累加而独立、唯一的绝对编码。

    关于“绝对式”编码器的概念的“故意混淆”与认识的误区

    关于绝对值编码器,很多人的认识还是停留在“停电”的位置保存这个概念,这个是片面而有局限性的,“绝对值”编码器不仅仅是停电的问题,对于接收设备,真正的“绝对值”的意义在于其数据刷新与读取无论在编码器内部还是外部,每一个位置的独立性、唯一性、不依赖于前次读数的“绝对编码”,对于这个“绝对”的定义市场上还是模糊不清的,为此有些商家就会对于此概念的“故意混淆”:

    混淆一:
    将接收设备的“绝对式工作模式”与绝对值编码器的“绝对式”的混淆。接收设备的“绝对式”是指接收设备的无需不间断计数累加,所有位置对于设备原点的“绝对”工作模式,事实上这种模式通过增量编码器+自身的计数累加装置+电池记忆,一样可以提供给设备“绝对式”的位置信息,它与绝对值编码器的“绝对编码”完全不是一个概念,它存在计数的误差及累加误差的可能性、计数装置供电故障可能性、高速时计数无法响应等可能性。

    混淆二:
    将绝对值单圈编码器+内部及外部的计数累加装置与真正意义的绝对值真多圈编码器的混淆。**绝对值单圈+计圈计数装置,它在360 度以内是绝对值的,但是超过360 度以后,它的位置就不是“独立”“唯一”了,**它是依靠内部或外部的计数来判断多少圈内的单圈绝对位置信息的,这种内部或外部的“计数装置”,与增量编码器+计数装置+电池记忆的性质是一样的,任何计数上的误差,或者计数装置工作时电源的瞬间故障,都会造成误差而累计而无法判断,造成欺骗性假绝对化信息。而真正的绝对值多圈编码器,除了360 度内的位置都是绝对唯一的以外,在超过360 度后继续有齿轮机械带动的绝对值码盘,仍然提供“独立”“唯一”、不依赖于前次数据刷新读取累加的绝对编码。实际上从“绝对”这个定义上讲,前面的那种单圈绝对+计数累加装置的“假多圈绝对值编码器”,它就不能再叫“绝对值多圈编码器”了,尽管在360 度以内是绝对的,但是超过360 度的工作量程,就不再是“绝对值编码”了。

    关于为什么要强调绝对值编码器的“绝对”概念的定义,其意义在于:

    第一、可以为每个轴位置提供一个绝对的码值。 特别是在位置控制中,绝对值编码器无需计数,可以实现直接的内部高速读数与外部输出,此为绝对值编码器的“高速”及“经济”的特征,其可减轻了后续接收设备控制器的计算任务,并且降低了其他附加的输入部件的成本。例如在多轴并行工作的工业机器人,可以实现高速多轴的并行同步工作。以及各种需要多轴同步的控制领域。

    第二、无需计数的绝对值编码器在电源启动后或者内部及外部电源故障,不需要参考驱动,在电源正常后即可获得当前的准确位置。 而在各种工业电气环境下的复杂干扰情况下(例如变频器与电机的干扰),由于绝对值编码器其原始的位置信息是绝对的,而不会受干扰的影响。上述特征,决定了这种编码器的安全可靠性特征,可使用在具有安全要求的场合,例如风力发电变桨系统、港口机械同步于定位、起重机械、建筑机械(塔吊)、电梯、工程机械、钢铁冶金、石油化工、水利电力、医疗设备雷达火炮回转装置、太阳能跟踪回转装置等,以及重工业、核工业、汽车制造等领域的大型工业机器人。

    第三、在今天,快速可靠的数字化的数据传输已经是绝对值编码器的核心要素之一,工业用的标准的Canopen、Profibus-DP 现场总线,Profinet、Eerthnet 工业以太网,Endat2.2、Hiperface、Biss、专用高速含CRC 数据安全的RS485 等伺服与机器人专用高速数据传输协议,原来用“脉冲”方式发送信息的增量值编码器是无法实现的。此为绝对值编码器的高速总线式特征。

    第四、绝对值编码器高位数的分辨率特征,由于无需内部与外部的计数而直接输出数字信号,所以不再受读取“脉冲”及“累加”而在高速中响应速度跟不上的困惑,先进的数字与模拟技术的混合,绝对值编码器已经能够做到高位数分辨率,例如德国绝对值编码器的单圈的25 位(360 度内2 的25 次方分割),这种高分辨率可满足于伺服电机与机器人高速精确定位及最小步距抖动。例如在加速度、加加速度等高位次位置导数的精确计算(运动刚性),机器人手臂前端的最小晃动准确定位等。
    综合上述的对于绝对值编码器“绝对”的定义,在具有高速、安全性等特征的应用场合要求下,一定不能使用那种有混淆意义的“绝对编码器”或“假绝对值多圈编码器”,而必须用真正意义上的绝对值编码器或绝对值真多圈编码器,及任何不依赖于计数的(无论内部还是外部,有电池无电池的),所有的位置独立、唯一、绝对,以确保数据的绝对可靠与高速准确性。

    编码器一般外接6根线,分别是V+、GND、Data+、Data-、Clock+、Clock-
    如果买到绝对式编码器,可以通过外接电池持续供电的方式去解决掉电情况下不能计数的问题
    即使是绝对值编码器,在外接减速器的情况下,依然会出现丢圈现象,这是由于绝对值编码器有效范围只有一圈,经过减速之后,编码器要记的值会超过一圈,此时同样可以采用外接电池的方式来解决(减速器输出轴一圈,电机输出轴转多圈)

    光电编码器的选购须知要素
    第一、选择专业正规的厂家有助于大家购买到优质高效的产品,现在市面上涌现了不少小作坊,推出了一些三无产品,不仅在精度、参数上不符合标准,更加不能确保产品的品质问题,在后期使用过程内频频出现故障问题,导致使用者需要付出大额维修费用,并且耽误生产效率。
      第二、类型和型号的选择,现在光电编码器的种类分为了增量式、混合式以及绝对是三个不同的类别,每个类别都有着自己的优势,并且这类编码器还有着各式各样的型号,每个型号的装置在性能参数上也存在一定的区别。建议大家结合自己的实际需求、辅助使用的电器设备等来进行选择。
      第三、运行使用环境的考虑,因为光电编码器主要是帮助我们进行相关角度测量以及位移测量等,它虽然具备了很强的抗干扰性能,但是在运行环境当中,仍旧存在不少因素对它可以造成影响,这个时候大家就要尽可能的在选型过程内,避免这些问题的发生,比如电流、电压是不是相符、接口开关是不是相符等。
      第四、价格的选择,现在市场当中推出的品牌光电编码器和三无产品价格存在一定的差异,但是大家在购买这类高精密装置的时候,不能一味强调低廉的价格,也不是最贵的就是最好的。性价比的挑选是非常重要的,首先要确保编码器的性能符合自己的要求,其次再考虑价格的高低问题。
      除了以上几点外,该企业的产品质量管理体系、售后服务体系、销售体系等都是大家在选型过程当中应该把握好的几点,只有一个完整的销售体系,才能提供给大家更多选购指导,然而可靠的质量管理体系可以带给大家更多优质的产品,售后服务体系的保障,又可以帮助各位消费者解决很多后顾之忧。

    开环/半闭环/闭环
    开环:没有检查 机制,走多少送出指令,没有任何对应回馈。
    半闭环:有检测机制,但不是作用于最终实物,目前市面10多万的都是这种,他能检测电机的实际运动量但检测不了,机床实际机械运动体,的运动量。也就是说有一部分不在检测范围内。(所以有皮带断了,伺服电机能单独运行,这种情况。如果全闭环皮带断了,电机动,机械体不动,会出现位置超差报警。)
    全闭环:就是检测实际运动机构是实际走量。我发出指令,到一个点,这个点实际运动多少,得到检测,高级的还能误差补偿。所有因素都在检测范围内。

    展开全文
  • 编码器工作原理,光电编码器工作原理分析 编码器工作原理  绝对脉冲编码器:APC  增量脉冲编码器:SPC  两者一般都应用于速度控制或位置控制系统的检测元件.  旋转编码器是用来测量转速的装置。它分为单路...
  • 旋转式光电编码器概念,增量式编码器、绝对式编码器工作原理;在视觉检测中,编码器常用于线阵相机的图像采集触发信号,描述了设置线阵相机中频率转换系数计算方法。
  • 增量式旋转编码器工作原理

    千次阅读 2013-05-31 15:16:58
    增量式旋转编码器工作原理 徐海 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式...
  • 基于复合式光电编码器的永磁同步电机启动方法研究,徐华中,何锦权,本文简述了复合式光电编码器工作原理,分析现有永磁同步电机转子位置检测方法的不足,提出了使用复合式光电编码器对永磁同步
  • 发光元件光栅盘光敏元件工作原理常见的光电编码器由光栅盘,发光元件和光敏元件组成。光栅实际上是一个刻有规则透光和不透光线条的圆盘,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经整形后,变为...
  • 编码器工作原理(转载)

    千次阅读 2016-07-28 18:34:00
    编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在...
  • 旋转编码器原理

    千次阅读 2019-05-20 21:30:02
    旋转变压器(resolver)是一种电磁式传感器,又称同步分解。它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。其中定子绕组作为变压器的原边,接受励磁电压,励磁...
  • 编码器学习笔记

    千次阅读 2021-06-29 10:11:55
    编码器,是一种用来测量机械旋转或位移的传感器。这种传感器能够测量机械部件在旋转或直线运动时的位移位置或速度等信息, 并将其转换成一系列电信号。编码器是工业中常用的传感器之一,广泛应用于工业生产当中需要...
  • 现介绍一种采用PCM编码原理及FPGA编程技术实现PCM数字接入的设备,可以实现异步低速速率数据透明接入PCM(2M)码流的任意时隙的传输,而且此接入无须改变传输设备的配置。采用直接采样法从高速系统中最高倍同步时钟...
  • 正余弦编码器的单片机测量编码器波形测量原理单片机测量步骤 编码器波形 CHA 是cos ,CHB是sin。CHA 超前CHB 90° 测量原理 反正切测量方法: a=sinX,b=cosX. tanX=a/b, X=arctan(a/b) 其中a,b是AD采样值,X是角度...
  • 永磁同步电机FOC控制----STM32 定时器关于编码器模式的应用 唔,最近开始研究和学习关于永磁同步...(1)我这里使用的是正交编码器,接线原理图如下: 网络号对应单片机的IO口为:EA-----PA0;EB-----PA1;EZ-----PA2。
  • 最近开始学习编码器相关内容,目的在于搞清楚编码器原理,与上位机的联系等问题。笔记资料来源为网络,整理的同时也会有一些总结和感悟。由于研究方向需求,主要研究数字旋转编码器。 1.编码器的定义 编码器...
  • SSI编码器通信

    千次阅读 2021-08-10 21:12:58
    之后也可以分享一下其他的一些编码器协议或者原理。 绝对值编码器协议还挺多的,比如常用德国公司的一些协议SSI,BISS,ENDAT,HIPERFACE协议等等,还有日系的多摩川。当然还有一些基于modbus的,can的,模拟量的。...
  •  接收系统则通过磁棒天线接收低频时码信号,由集成芯片进行时码信号的解调,再将此信号送入处理器进行解码等处理,得到标准时间信息,消除计时的时间积累误差,使接收系统的时间与标准时间保持高度同步,见图2。...
  • 提出了一种不用查询表的正弦正交编码器细分方法,利用控制系统临界稳定原理生成一个高频数字正弦载波与采样得到的正弦编码信号实时比较来获取相位信息曰与传统查询表细分方法相比,节省了大量的存储空间,而且整个细分...
  • 伺服电机编码器调零的含义1、伺服电机的控制原理是采用矢量控制方式来控制和驱动的,因此将编码器在电机轴上的安装角度称为零点。这里需要注意的一点是不同系列的伺服电机其安装的角度值不同。2、伺服电...
  • http://wuhuotun.blog.163.com/blog/static/73085450200910655748516/ ... 永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴...
  • 这篇主要是介绍一下BISS编码器协议,以及TI的对于绝对值编码器的方案。主要针对BISS的是线路延迟补偿的一些介绍。顺便一提,有一说一,TI的文档写的全,还细致。 关于SSI的绝对值编码器协议可以看这里: SSI编码器...
  • 数字逻辑_编码器

    千次阅读 2019-11-17 16:51:57
    编码器二进制编码器 二进制编码器 1.定义:用n位二进制代码对 N=2的n次方 个特定信息进行编码的逻辑电路。 2.分类:输入互斥编码器和优先编码器 3.输入互斥编码器:在某一时刻,编码器的N个输入端中仅有1个为...
  • 今天遇到一个解码编码器的触发器鉴相电路,看到D触发器一下蒙了,似乎懂,但又不懂的样子,还没找到数电书,网上搜了搜,还是简单总结一下。 要了解D触发器,首先要了解RS触发器和同步RS触发器这些,SO,,,一步一步...
  • 现介绍一种采用PCM编码原理及FPGA编程技术实现PCM数字接入的设备,可以实现异步低速速率数据透明接入PCM(2M)码流的任意时隙的传输,而且此接入无须改变传输设备的配置。采用直接采样法从高速系统中最高倍同步时钟...
  • 关于电机编码器的知识汇总,都在这里了!

    千次阅读 多人点赞 2021-03-02 00:13:20
    基本原理与使用电磁感应的变压器相同,这种编码器称为旋转变压器。由于使用电刷的接触方法,旋转变压器旋转感应线圈的电源存在磨损的风险。但是,有一个VR(可变电抗)解析器可以改善这种风险。 图11 电磁感应编码...
  • 编码器是一种角位移传感器,它通过检测机器人轮子在一定时间内转过的弧度数来确定机器人位姿的变化,主要分为光电式、接触式、电磁式三种,其中光电编码器是机器人最常用的位置传感器。 根据提供的位置信息,编码器...
  • 引言 在进行电机矢量控制时,需要通过坐标变换将三相电流ia,ib,ic转换为id,iq,要实现正确的坐标变换,必须知道电机转子的准确位置,很多电机安装有霍尔传感器,根据霍尔传感器...1、 辨识原理 令初始角度为θ0,从...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 81,850
精华内容 32,740
热门标签
关键字:

同步编码器工作原理