精华内容
下载资源
问答
  • 针对交换式电力监测网中NTP同步精度较低的问题,提出一种理论上可使同步精度提高到原来的17倍且不增加硬件的改进协议。SN-NTP利用了交换机的IEEE802.1p优先级调度功能,首先由NTP客户端向NTP服务器不间断地发送具有...
  • 国内卫星授时时钟同步精度被推至亚纳秒级 国内卫星授时时钟同步精度被推至亚纳秒级 时间与每个人息息相关,当我们熟悉的时间被压缩到10-10量级(亚纳秒级),意味着什么?“新一代同步时间信息网络”究竟是什么?为...

    国内卫星授时时钟同步精度被推至亚纳秒级
    国内卫星授时时钟同步精度被推至亚纳秒级

    时间与每个人息息相关,当我们熟悉的时间被压缩到10-10量级(亚纳秒级),意味着什么?“新一代同步时间信息网络”究竟是什么?为什么说未来物联网、5G、人工智能等新兴领域的实现离不开精准时间技术?

    来自中国科学技术大学、中国科学院合肥分院、科大国盾量子技术有限公司、国防科技大学、合肥中科离子医学技术装备有限公司、产业投资机构等的参会嘉宾,共同探讨高精度定时技术在大科学工程、国防军工、清洁能源以及先进医疗领域的应用。

    研讨会当天,详细介绍了新一代实现亚纳秒级定时同步精度的新产品,这是国内将同步授时精度压缩到亚纳秒级。他并从技术本身出发,拓展到多个与国家建设以及人民生活息息相关的行业应用,生动描绘了未来智能世界与高精度时间技术的联系。

    为什么需要亚纳秒级的定时精度?

    物联网,5G等新技术大潮的涌现,加速了未来智能化时代的到来。在未来的智能化世界架构里,所有的终端(比如手机,汽车等等)都会连接到智能节点,实现智能化的互联互通。

    多种复杂节点的接入,必然会对同步和时间信息提出更高的要求,高精度定时技术作为高新技术实现的基础,其重要性已经越来越高。

    在国家公布的重大科技基础建设“十三五”规划中,已经将高精度地基授时系统作为建设目标的重点任务。由此可见其重要性。

    正是在这样一个行业与时代的大背景下,不断研究和探索自主研发的高精度定时方法,发布了同步设备,将国内的同步授时精度压缩到亚纳秒级,能够同时实现时间同步、相位同步以及事件同步。可以为从几米到几十公里范围部署的节点提供亚纳秒量级的时间同步、参考时钟、时间触发以及数据传输。

    高精度的定时技术能够广泛应用于相控阵雷达、智能网联汽车、大型科学工程及未来人工智能领域。

    高精度定时在新体制雷达的应用

    在新体制雷达,如相控阵雷达,多通道间的同步精确度会严重影响到雷达的成像质量。能够为大型相控阵雷达提供时钟同步精度小于200ps 的时钟基准、分布式的同步架构,使得雷达能够方便的实现多发多收,并为空基和海基的无线高精度同步提供实现的可能。

    更高的同步精度,更好的抗干扰性能以及更可靠的加密技术,使得可以满足从几米到几十公里量级的高精度同步需求,能够适用于大型陆基和海基相控阵雷达应用。

    智能网联汽车的实现需要高精度定时技术

    智能网联汽车是目前人工智能领域重要的落地方向之一,也是建设智慧城市重要的一环。对于智能驾驶汽车而言,安全性和可靠性是消费者对于新技术最大的担忧。

    高精度定位,是实现智能驾驶汽车安全稳定运行的重要技术。而高精度定位技术的实现,恰恰离不开高精度的定时技术。基站作为未来5G时代互联互通的重要设施,其定位精度一直受限于收拾精度不高的困扰,通过将定时精度提升至亚纳秒级,使得基站定位精度可以实现从米级到厘米级的飞跃,从而真正实现高精度定位。

    无人驾驶汽车在未来的智能化世界只是互联终端的一种,可以设想,对于需要将大量终端连接的智慧城市的建设,无疑将更加离不开高精度定时技术

    展开全文
  • 罗兰C系统受到原子钟工艺和无线电信号测量精度限制,难以实现台站间高精度时间同步。基于量子纠缠微波信号和腔电光力系统,通过将微波量子信号转换到光频域进行符合探测,可以得到更精准的罗兰C主副台的同步时差信息。...
  • 理论和仿真分析结果表明,在相位差为0.5π时,能得到最佳时差信息,精度能达到数十皮秒级别。相较于原有的主从同步或自由同步等方式,此方案不需要测量脉冲到达时间,而且能够突破量子噪声极限,有效提高了测时精度...
  • NTP授时服务器同步精度被推至亚纳秒级 NTP授时服务器同步精度被推至亚纳秒级 时间与每个人息息相关,当我们熟悉的时间被压缩到10-10量级(亚纳秒级),意味着什么?“新一代同步时间信息网络”究竟是什么?为什么...

    NTP授时服务器同步精度被推至亚纳秒级

    NTP授时服务器同步精度被推至亚纳秒级

    时间与每个人息息相关,当我们熟悉的时间被压缩到10-10量级(亚纳秒级),意味着什么?“新一代同步时间信息网络”究竟是什么?为什么说未来物联网、5G、人工智能等新兴领域的实现离不开精准时间技术?

     

    来自中国科学技术大学、中国科学院合肥分院、科大国盾量子技术有限公司、国防科技大学、合肥中科离子医学技术装备有限公司、产业投资机构等的参会嘉宾,共同探讨高精度卫星授时技术在大科学工程、国防军工、清洁能源以及先进医疗领域的应用。

     

    研讨会当天,详细介绍了新一代实现亚纳秒级授时同步精度的新产品,这是国内将同步授时精度压缩到亚纳秒级。他并从技术本身出发,拓展到多个与国家建设以及人民生活息息相关的行业应用,生动描绘了未来智能世界与高精度时间技术的联系。

     

    为什么需要亚纳秒级的授时精度?

     

    物联网,5G等新技术大潮的涌现,加速了未来智能化时代的到来。在未来的智能化世界架构里,所有的终端(比如手机,汽车等等)都会连接到智能节点,实现智能化的互联互通。

     

    多种复杂节点的接入,必然会对同步和时间信息提出更高的要求,高精度定时技术作为高新技术实现的基础,其重要性已经越来越高。

     

    在国家公布的重大科技基础建设“十三五”规划中,已经将高精度地基授时系统作为建设目标的重点任务。由此可见其重要性。

     

    正是在这样一个行业与时代的大背景下,不断研究和探索自主研发的高精度定时方法,发布了同步设备,将国内的同步授时精度压缩到亚纳秒级,能够同时实现时间同步、相位同步以及事件同步。可以为从几米到几十公里范围部署的节点提供亚纳秒量级的时间同步、参考时钟、时间触发以及数据传输。

     

     

    卫星授时服务

    高精度的授时技术能够广泛应用于相控阵雷达、智能网联汽车、大型科学工程及未来人工智能领域。

     

    高精度授时在新体制雷达的应用

     

    在新体制雷达,如相控阵雷达,多通道间的同步精确度会严重影响到雷达的成像质量。能够为大型相控阵雷达提供时钟同步精度小于200ps 的时钟基准、分布式的同步架构,使得雷达能够方便的实现多发多收,并为空基和海基的无线高精度同步提供实现的可能。

     

    更高的同步精度,更好的抗干扰性能以及更可靠的加密技术,使得可以满足从几米到几十公里量级的高精度同步需求,能够适用于大型陆基和海基相控阵雷达应用。

     

    智能网联汽车的实现需要高精度授时技术

     

    智能网联汽车是目前人工智能领域重要的落地方向之一,也是建设智慧城市重要的一环。对于智能驾驶汽车而言,安全性和可靠性是消费者对于新技术最大的担忧。

     

    高精度定位,是实现智能驾驶汽车安全稳定运行的重要技术。而高精度定位技术的实现,恰恰离不开高精度的定时技术。基站作为未来5G时代互联互通的重要设施,其定位精度一直受限于收拾精度不高的困扰,通过将定时精度提升至亚纳秒级,使得基站定位精度可以实现从米级到厘米级的飞跃,从而真正实现高精度定位。

     

    无人驾驶汽车在未来的智能化世界只是互联终端的一种,可以设想,对于需要将大量终端连接的智慧城市的建设,无疑将更加离不开高精度授时技术。

    展开全文
  • 传统的时间同步精度测试方法使用查询的方式需要占用无线网络资源,有可能影响系统正常运行。为此设计了基于误差映射的同步精度测试方法。通过使用FPGA对节点对应端口变化监测获得节点间时间同步误差的变化,从而避免...
  • 行业资料-电子功用-一种基于直线电机的运动同步精度检测装置.zip
  • 在矿井的测量工作中,要提高测量成果的精度,不能单纯依靠增加观测次数,还应设法提高观测值本身的精度
  • 电话授时系统同步精度改进研究,电话授时系统中怎么实现同步,怎么去发时间信息。
  • 摘要:讨论面向5G的同步支撑网在网络架构、同步精度、安全性、可靠性、监测性等方面的需求,介绍一种基于光纤的高精度时间同步网的实现方案,并给出经过现网1300km、19个节点传递的时间同步测试结果。利用该方案既...

    摘要:讨论面向5G的同步支撑网在网络架构、同步精度、安全性、可靠性、监测性等方面的需求,介绍一种基于光纤的高精度时间同步网的实现方案,并给出经过现网1300km、19个节点传递的时间同步测试结果。利用该方案既可以实现面向5G的时频一体化的支撑网,又可以对5G网络中重要节点的时频性能进行实时监测。

    关键词:5G 网络 同步支撑网 时频监测

    一、引言

    随着通信技术的发展,移动通信从1G的模拟通信系统到2G的数字通信系统,再到3G、4G以及即将来临的5G,在不断地演进。正是人们对于更好、更快的追求才使得通信技 术不断地进步。目前热门的大数据、云计算、人工智能、VR/AR、4K/8K视频、无人驾驶等新兴产业对5G的需求非常迫切,因为只有5G才能满足这些应用对高速率、大容量和低时延通信的需求。因此,5G时代将迎来新一轮的科技浪潮。5G已成为通信行业未来发展的重点,加速5G的技术 研发、标准制定、商用推广已成为国际和国内社会的战略共识。由于5G应用前景广泛,5G战略制高点争夺战已风起云涌。我国企业已投入巨资,在5G技术和网络应用领域展开研发和布局,希望占据整个产业链的主导地位。

    二、5G对时间同步的需求

    近年来,ITU-T、3GPP、IEEE等业界主流的标准组 织都在研究同步问题。3GPP定义5G同步需求,ITU-T定 义同步解决方案,IEEE定义基础时间同步协议。2017年12 月,3GPP批准了Release 15 5G NR非独立(NSA)标准,该标准的独立(SA)部分将于2018年6月完成。虽然3GPP 对5G同步的具体精度要求目前尚未确定发布,但是同步要求精度越来越高的趋势已是必然。5G基站采用TDD制式, 除了传统的移动基站业务外,还可能承载其他各种行业的应用。一些特殊的业务对时间同步的精度要求可能更高,达到几百纳秒,甚至几十纳秒。例如,未来5G时代的物联 网络利用基站提供定位服务,时间同步精度要求在±10ns 左右,LTE-Advanced的关键技术CoMP-JP多点协同传输处理中要求相邻基站间的相对时间精度在百纳秒。5G网络中由于采用了MIMO+OFDM技术,其时序控制要求非常精确,如在3GPP TS 36 104中第6.5.3.1节定义的TAE(Time Alignment Error)最高要求不超过65ns。未来高精度的时间 同步将成为5G网络的基础功能和5G服务的使能开关。时钟 同步将变成一种增值服务,为5G网络运营商提供广阔的市场机会。

    三、面向5G的同步网演进

    在同步网的建设过程中,需要考虑网络发展的后向兼容性,保证面向5G需求的时间同步网能够实现平滑演进。5G同步网作为重要的通信基础设施,不仅需要进一步完 善同步网的架构,提高同步网的时间精度、安全性、可靠性和健壮性,而且需要提升同步网的可服务性和易用性。 面向高精度的时间同步解决方案的初步意向主要集中在提升PRTC、承载网、基站的时间同步精度,同时减少组网 的跳数。在基准源方面,在传统多制式卫星(G P S/北斗/ GLONASS)参考源的基础上,增加国家高精度地基授时系 统的专用光纤网络参考源,实现对天上卫星失效的可靠备份。通过建立基于光纤的地面时间同步网络,为基站提供空中和地面一主一备的两路时间同步信号是业界认同的最 佳方案。此外,利用高精度地基授时系统的专用光纤网络提供的参考源,还可以对5G同步网的重要节点进行实时的性能监测。在组网架构方面,采用共视法和高精度地基授时系统专用光纤网络参考源,可以实现真正的全网同步, 从而为5G网络提供一张安全可靠、自主可控的高精度时间同步支撑网。

    四、实现方案

    针对5G网络对时间同步网更高精度的需求,与时间同 步相关的产业链中的厂商都在为了设备实现更高精度进行技术攻关,5G运营商也在对网络如何应用时间同步技术满足 5G需求进行研究。四川泰富公司与国内某电信运营商联合开展了面向5G的同步网新技术研究。主要研究内容为:在通 信光纤上进行长距离、多节点、高精度时频传输的研究。由于在高精度定位方面,3GPP标准中已出现3m的定位需求, 若采用基站测时测距的方式,时间同步误差要小于±10ns。 因此,测试的目的是采用高精度光纤时间传递设备,在某电信运营商的光纤现网上进行长距离(≥1000km)、多节点 (≥10个)、高精度(≤±10ns)的时频传输验证和测试。 现网测试的示意如图1所示。钟源是铯钟源,授时结构采取 主从模式。主站M跟踪钟源,主从之间、从站之间使用光纤连接,可以任意级联。要求各站(M,S1,S2,…,S20)的输出相对于铯钟源≤±10ns。采用非全光中继的方法,使每个授时节点可以任意上下时频信号(且保证各节点的时间 同步精度均≤±10ns),具备灵活的时频业务调度能力。

    4.1环回比对测试原理

    由于这次现网测试属于高精度时间测量,目前还没有仪表能够在异地实时准确地测量待测信号,需要把待测信号传递回源点,与参考源进行实时的比对测量。因此,所有的被测信号都由时间传递设备通过光纤传输到时间传递设备 N+2,然后对时间传递设备 N+2的输出与参考源进行比对测 量,测试示意如图2所示。
    
    在图2中,主设备(时间传递设备1)通过GPS/BD卫星 获得时间信息,也可以接收运营商标准的1PPS+TOD时间基 准信号并获得时间信息,频率通过铯钟获取。主站(Master) 时间信息通过SFP光模块传输到下一级从站(Slave)设备,并作为从站设备的时间参考源。时间传递设备2的时间信号通过两个方向传递,其中一个方向为备份路由,用于环路保护。 图2中的光纤是双纤,各代表一个传输方向。时间传递设备均可输出多路TOD+1PPS(差分)信号和频率信号,所有设备均可通过数据网由中心网管进行统一管理和控制。
    

    采用环回法进行实时测试,因为其他中间站没有参考源进行比对,中间站只能通过网管查询输出信号和输入信号的相位偏差。如果任一中间站的性能指标超出,那么最后环回站的性能指标也一定会超出,因此可以推断出:如果最后环回站测试正常, 那么其他中间站一定均正常,并且测得最后环回站的测试结果范围后,其他中间站的性能指标也一定在这个范围之内。

    4.2 现网测试方案及测试结果

    5G统一授时是面向全网的,因此在现网测试时同步网的组网需要达到一定的规模,至少应组建大于 1000k m的带环网的光 纤链路,同时传输的节 点数不少于10个。为了 达到10n s的时间同步精度,主站的时间源头需要配置铯钟源。结合某电信运营商光纤网络的 实际情况,综合考虑测试的内容和光纤线路资源,高精度光纤时间传递设备主要布置在成 都、内江以及成都到内江沿线。现网测试的具体实施方案如图3所示。

    以上光纤链路经过干线和本地环,传输距离超过1300k m,并且覆盖多种类型的光纤光 缆(其中有G.655光纤和G.652光纤)。不仅光纤类型不同,光缆的铺设环境也不同,包括管道光缆、架空光缆、直埋光缆及混合铺设等方式。时间源信号从主站(成都)输入,经过长距离传递后返回成都(环回测试)。

    现网测试的内容分为以下几个阶段。

    第一阶段主要进行基本功能测试、自动开局、1PPS+TOD 长期性能测试(大于7天)。

    第二阶段主要进行传输协议、环路保护功能测试、 1PPS+TOD应用功能测试、保持守时功能测试、2.048MHz 频率性能测试、基站侧1PPS+TOD性能测试、1PPS+TOD性能测试(跟踪GPS/BD)和PTP性能测试(跟踪GPS/BD)。

    第三阶段主要进行监测功能测试,通过监测盘测试输入 的2.048MHz性能并分析绘制图形(TIE、TDEV),与夏光 XG7010做比对测试,验证设备输入监控盘测试信号的正确性。

    现网测试光纤网络的传递距离为1305.65k m,经过19 个节点,实测精度在±5ns左右,优于±10ns。测试时间为9 天,最大值4.859ns,最小值-4.452ns,峰值为9.310ns。测试 结果如图4所示。

    现网的测试结果表明各个站点的时间同步精度在±5ns左右,满足未来5G时代的物联网利用基站提供定位服务时, 时间同步精度优于±10ns的要求。

    五、基于光纤的高精度同步网在5G中的应用展望

    基于光纤的高精度同步网在5G通信中主要有两个方面的应用,一是构建面向5G的时频一体化支撑网;二是对5G网络中的重要节点进行时频监测。由于基于光纤的高精度同步网通 过独立的地面光纤网络进行时间频率传递,时间频率信号与业务信号分离,形成独立的时频支撑网,实现对基站的统一授时。同时频率信号也提供给传输设备用作同步定时信号,从而形成面向5G网络的全网时频一体化支撑网。基于光纤的高精度时间同步网用于全网的时频同步场景,具体如图5所示。

    由于现有的同步网缺乏有效的监测手段,难以实时监测网络中重要节点的时间频率性能指标。利用基于光纤的高精度时间同步网形成独立的时频支撑网,能够有效地解决现网 BITS同步网以及PTN传输链路中重要的频率或时间节点的时频信号性能指标的监测问题,可以对同步网的时钟性能进行在线实时监测。监测方案如图6所示。

    如图6所示,对时钟性能监测最有效的方法即用绝对参考源(铯钟+GNSS)对时间频率监测点进行测量和比对。采 用铯钟+GNSS的绝对参考源后,利用基于光纤的高精度时间传递设备(图6中标识为“TF设备”)进行组网,组网后的 基准源输出能力可以达到:频率稳定度≤±5E10-14、时间 准确度≤±10ns。利用如此高精度的时间频率基准作为参考源,对现网设备的时钟同步性能进行比对测试,可以实时监控现网设备的同步性能。由于基准参考源的精度高于现网设备时间频率精度一个数量级以上,因此保证了监测数据的准确性和可靠性。

    六、结束语

    作为通信网络最重要的支撑网之一,同步网在5G网 的建设中具有非常重要的作用。面向5G的同步网必须进行全面和综合的考虑,使同步网在架构、精度、安全性、可靠 性、监测性等方面都进行全面提升,这样才能满足5G的应用需求。文中提出的基于光纤的高精度时频一体同步网的解决方案,不仅在精度上可以满足5G网络对时间同步精度更高的需求,而且可以用于5G网络重要节点的时间频率监测。现网测试表明,经过光纤传输1305.65km,连接19个网络节点, 实测同步精度优于±10ns,为面向5G的高精度时间同步网提供了一种可实现的方案。

    展开全文
  • 超高精度北斗GPS时钟同步设备(时间频率)及其应用 超高精度北斗GPS时钟同步设备(时间频率)及其应用 1 引言 时间,这是最早被人类意识到的同时也是最神秘的一个基本物理量。从古时代人们的日出而作,日落而息,到...

    超高精度北斗GPS时钟同步设备(时间频率)及其应用
    超高精度北斗GPS时钟同步设备(时间频率)及其应用
    1 引言

    时间,这是最早被人类意识到的同时也是最神秘的一个基本物理量。从古时代人们的日出而作,日落而息,到地心说和日心说,再到相对论和宇宙大爆炸理论,人类从未停止过对时间本质与起源的探求。另一方面,如何不断地提高“时间”这一基本物理量的测量精度,也一直是人类不懈追求的重要目标之一。早在18 世纪,为争夺海上霸权,解决远距离航海定位(经度)的难题,欧洲各国都在积极寻找海上精确守时的办法。最终,一位英国钟表匠约翰·哈里森(John Harrison)发明了航海钟,首次使钟摆的摆动频率摆脱了重力影响,大大提高了航海过程中的时间测量精度,从而使安全的长距离海上航行成为可能。在一定程度上,这也是日后英国成为“日不落帝国”的根本原因所在。

    在此之后,随着现代高精度原子钟的快速发展,时间测量的精度已经遥遥领先于其他物理量的测量精度,时间因而成为测量精度最高的基本单位。1967年,国际度量衡大会通过了新的国际单位制原子秒的定义——位于海平面上的铯(133Cs)原子基态的两个超精细能级在零磁场中跃迁振荡9192631770周期所持续的时间为1 秒(定义中的铯原子在温度为0 K时必须是静止的),这标志着时频计量由天文基准过度到量子基准。极高的测量精度和可直接传递的特性也使时频计量成为其他计量向量子基准转化的先导;1983年,国际计量大会(CGPM)会议重新定义长度计量单位“米”为光在真空中1/299792458秒所传播的距离。长度和时间的这种密切关系已被广泛应用于卫星定位系统,例如全球定位系统(GPS)以及我国的北斗系统。在卫星定位系统中,星载钟之间的时间同步精度决定了定位精度。为了提高定位精度,一方面要提高星载守时钟的稳定度和准确度,更重要的则是提高整个系统的时间同步精度。

    超高精度时间频率同步的重要性不仅仅体现在导航领域,而且在基础科学、天文观测、国防安全、通信以及金融等领域,精密授时与同步均有着广泛而重要的应用。本文将介绍几种主要的时间同步方法及其在科学领域的一些重要应用。

    在此,有必要指出,约翰·哈里森在250年前提出的使用高精度守时钟保持时间同步的基本概念影响至今。就基本概念而言,假如有两台独立守时钟,计时分别为t1与t2,那么,二者相对误差为

    其中,σ1和σ2分别为两台钟的独立稳定度,σ12为二者相互不确定度。当两台钟完全独立时,其互相关系数C12=0,那么它们都必须有很高的稳定度(即σ1,σ2均较小)才可以保证其相对误差很小。今天,我们需要重新审视这个基本假设。事实上,当两台钟频繁地进行比对时,则两台钟可以不再独立,其相对误差可以非常小,而对其“绝对”稳定度,例如σ21的要求可以大大放宽。在大家熟知的重要应用方面,超高精度的异地时间频率同步才是根本;“绝对”时间并没有太多意义。所以,近年来国际、国内大量发展的“光钟”假如不能做到长期运行(守时)和异地可搬运,其实际应用意义并不是很大。相比之下,“授时”(同步)将有可能带来相关方面科学上的革命性进展。

    2 时频同步方法

    在原子钟技术发展初始,人们最早采用搬运钟的方法进行时间同步,然而这种方法限制了同步距离,同时对原子钟稳定性有很高要求。随着卫星导航系统的发展,目前异地时钟的时间频率传输与同步主要是通过卫星链路来实现的。利用卫星双向时间频率传递(TWSTFT),卫星共视(CV)等方法可以实现10-15/天量级的频率传输稳定度以及纳秒量级的时间同步精度。

    随着现代高精度原子钟的快速发展,频率稳定度在10-16/s的频率振荡器以及频率不确定度在10-18的光钟相继出现。现有的时频传输和同步技术已无法满足高精度原子钟时间频率比对的需求,需要发展具有更高精度的时频传输与同步方法。基于光纤链路的时频同步技术以其具有的低损耗、高稳定度优势而逐渐发展成为一种新型同步技术,世界各国均已开展对此项技术的研究。2012年6月1日,由欧盟9国(德国、法国、英国、奥地利、意大利、荷兰、瑞典、芬兰、捷克)共同出资合作进行的联合研究项目NEAT-FT正式启动,旨在未来建设一个频率传输稳定度优于10-17/天,时间同步精度优于100ps的欧洲时频光纤同步网络。此外,在光纤链路中,在进行微波、光频、脉冲以及飞秒光梳信号的传输与同步技术方面,也逐渐有越来越多的研究成果出现。

    清华大学精密测量联合实验室长期从事超高精度时频同步领域的研究,且其成果在世界上处于领先水平。2011年,我们在清华大学与中国计量科学研究院(昌平)之间往返80km的商用光纤链路上,首次演示了时标脉冲、微波频率的同时传输与同步实验。图1 为该实验的原理图,通过在发射端(图中左侧)主动探测并补偿光纤传输引入的相位噪声,实现了7×10-15/s,5×10-19/天的频率传输稳定度以及优于50ps的时标同步精度。使用此时标,并进一步使用频率信号过零点作为时间同步基准,可以将时间同步精度提高至50fs。相比于卫星传输中常见的ns级稳定度指标,这一结果在传输天稳定度上提高了4个数量级。

    图1 时间频率光纤传输与同步系统原理图

    与卫星同步相比,基于光纤的时频同步方法一个显著的不足之处就在于其覆盖范围的局限性——传统方案具有“点对点”结构,即一个发射端对应一个接收端,这在很大程度上限制了光纤时频同步技术的应用范围。基于此,我们提出并演示了一种可在光纤链路任意位置处下载高稳定度频率信号的方案,如图2 所示,这一技术大大拓展了传统方案的应用范围,使光纤时频同步的网络化建设成为可能。

    图2 可多点下载光纤时频同步系统原理图

    我们还进一步研究了不同拓扑结构的光纤同步网络,针对一个发射站对应于多个接收站的多分支网络化结构,提出了在接收端对光纤传输引入相位噪声进行被动式补偿的同步方案,采用此方案进行高精度时频同步,各接收站相互之间独立,具有树状拓扑结构并且易于扩展,增加新的分支。在国际合作建设的平方公里阵列天文望远镜(SKA)等实际系统中具有广阔的应用前景。

    3 重要科学应用

    超高精度的异地时间频率同步与精密授时在众多科学领域均扮演着举足轻重的角色,研究结果往往取决于时间同步的精度。

    在卫星导航领域,星载钟之间的时间同步精度很大程度上决定了最终的定位精度。卫星定位、导航的基本原理十分简单:假设位于地表或地表附近的用户看到四颗或更多导航卫星,并接收到了导航卫星所广播的信号。此信号包括了精确的发射时刻及该时刻卫星的精确位置,据此,用户可以列出至少4个方程:

    其中Rj是第j颗卫星在tj时刻所处的位置, R是用户在接收时刻t的位置。这里的未知量一般是位置R(x,y,z)及时刻t,共4个变量。通过上述4个方程可以求出这4个未知数,用户也就得到了自己的时间和位置信息。从以上方程我们很容易看出,定位精度取决于星载钟之间的时间同步精度。以GPS系统为例,其星载钟与分布在全球范围的地面监测站地面站之间每天进行两次时间同步校准,校正后便自由运行,运行一段时间≈40000s之后,这些钟的时间将不再一致,偏离值的不确定量为。其中σ为描述原子钟频率稳定度的阿伦标准方差,典型原子钟的频率稳定度满足关系式。因此,星载钟间的偏离值将随着运行时间发生正比于的积累。针对于此,我们提出了对北斗系统星载钟利用星间微波链路进行相位锁定时间同步的设想,有望使其定位精度得到大幅度提高。例如,相比于GPS每40000s校准钟差,假如北斗系统每5分钟校准钟差,则其精度可以提高10倍。

    另一方面,将卫星导航的原理反过来应用,即所谓倒GPS系统(reversed GPS),通过设立在地面的观测站,实现对卫星以及其他天体进行观测定位,由于地面守时钟精度远高于星载钟,且利用光纤进行时间同步可以大大提高同步精度,因此可对卫星运行轨道以及天体星历进行精确测定。

    在天文观测领域,采用甚长基线干涉测量技术(VLBI)时,可以通过距离达数千公里的观测站对同一射电源发出的信号进行接收,并根据时延差做相关处理,最终得到超高分辨率的干涉信号。观测精度最终取决于延时的测量精度,即时间同步精度。传统的方案是,通过在各观测站放置独立运行的高精度原子钟(如氢钟)进行守时,时延误差随时间积累。若采用光纤链路进行时间同步,各观测站无需分别放置守时钟即可获得高精度同步的时频信号,并对时延实时进行补偿,保证误差不随时间积累,天稳定度可比采用独立氢钟守时提高3个数量级。

    此外,清华大学精密测量实验室已加入“平方公里射电望远镜阵列(SKA)”这一国际大型合作项目的研究工作,此项目由澳大利亚、加拿大、意大利、新西兰、荷兰、南非、英国、中国等20个国家共同合作,旨在通过建设一个由3000—4000个大型天线组成的阵列,形成1km2的信息采集区,构成世界上最大的射电天文望远镜。实施SKA将有助于科学家真正了解宇宙和人类起源的奥秘,并有望推动一些直接影响人们日常生活的新技术的诞生。超高精度时间同步是其中一项十分关键的新技术,为保证组成阵列的数千面天线之间的相位相干,短期时间同步精度需要达到1ps量级,同时长期稳定度要达到10年内时间误差不超过10ns,并且天线阵列具有在中心处呈网状分布,在3个旋臂处呈链状分布的不同的拓扑结构。针对以上要求,我们提出了适用于不同网络结构的光纤时间同步方案,有望最终应用于SKA项目。

    综上所述,在众多科学研究领域,新兴的基于光纤链路的超高精度时间同步技术以及空间微波链路时间同步技术与传统的授时与同步技术相比,有着巨大的精度优势;随着相关技术的逐步发展与完善,这两项新技术也会逐步展现其在其他领域的巨大应用潜力。

    展开全文
  • 本文精简了该协议,设计并实现了一种低成本、高精度的时钟同步系统方案。该方案中,本地时钟单元、时钟协议模块、发送缓冲、接收缓冲以及系统打时标等功能都在FPGA中实现。经过测试,该方案能够实现ns级同步精度。该...
  • 局域网内实现高精度设备时钟同步

    千次阅读 2018-05-28 18:42:39
    有时候,需要在局域网内保证各个设备之间时间是同步的,使用PTP协议是个很好的选择,如果有物理层级别的同步支持,可以达到微妙,甚至纳秒级别。...
  • 为满足时频设备高精度同步的需求,提出了一种基于主从站工作方式的分布式时频同步系统设计方案,并完成系统的软硬件设计。该系统采用模拟内插法等精度频率测量进行误差修正,采用直接数字合成技术对从站时基进行微调...
  •  高精度时钟是实现高精度时钟同步的基础, 因此本方法首先构造高精度时钟。在此基础上,通过对PTP 协议的分析,为了解决网卡的缓存效应、网络的不平稳性和操作系统进程调度对时钟同步精度造成的影响, 在PTP 协议基础上...
  • 提出了一种基于全数字锁相环的电力系统高精度同步时钟实现方法。该方法基于卫星时钟与晶振时钟授时误差互补的特点,在卫星时钟工作正常时,利用全数字锁相环使晶振时钟跟踪卫星时钟秒脉冲的相位波动,实时消除晶振...
  • PTP协议时间同步精度测试陈良华;黄源【摘要】本文根据PTP精确时间协议的同步原理,研究了时间同步的测试方法与实现,提出了测试时间同步的方法和系统结构,开发了时间同步测试仪.通过实际应用,证明这种测试方法能够准确...
  • 针对特定通信系统中需要实现快速、高精度的时间同步需求,设计了一种基于FPGA同步信号生成的系统方案。系统以C/A码码片为最小时间刻度,通过对信号中码片数计数输出秒脉冲信号,并在同源情况下,根据码相位累加器溢出后...
  • 3) 从站时钟要从高一级设备或一级设备获得基准。 4) 应从分散路由获得主备用时钟基准,以防止当主用时钟传递链路中断后导致时钟基准丢失的情况。 5 )选择可用性高的传输系统来传递时钟基准。 网同步的实现(S1...
  • 通过电阻并联,提高电阻精度的小软件,做运算放大时对于那些精度要求较高的电阻可用该软件计算出较为常用的电阻组合
  • Windows操作系统内置的NTP授时精度不高,分辨率最高只有10 ms。给出一个基于Windows操作系统的计算机网络同步时钟实现方案,该方案可以有效提高计算机时钟同步精度,在LAN中时钟同步精度达250 μs。同时采用了校正...
  • 根据对时钟同步装置守时误差的分析,提出了一种通过降低测量误差进一步提高守时精度的同步时钟装置设计方案。该方案利用时钟内插方法降低全球定位系统(GPS)秒脉冲周期测量误差,对秒脉冲均值进行余数补偿消除均值...
  • Qstring 和double的精度

    千次阅读 2019-02-22 16:44:07
    1 QInputDialog获取值 n1 = 10; n1= QInputDialog::getDouble( imageregion.parent, QString::fromLocal8Bit("请输入数值"), QString::fromLocal8Bit("...2 double 根据精度转为Qst...
  • 0 引言  超声波测距作为一种非接触性的检测方法,因其结构简单紧凑、可靠性高、价格...因此,研究了一种控制精度高,适用范围宽的高精度多路同步超声波测距系统。  1 超声波测距工作原理与结构  1.1 工作原理
  • 对于特定辐射源识别的预处理环节,现有符号同步方法存在时延估计方式不妥和插值计算精度不足的问题。针对该问题,提出一种高精度的符号同步方法。对于时延估计,采用2步估计的方式,先由前向算法得到粗估计值,再...
  • 在分析IEEE1588原理以及影响同步精度因素的基础上,设计了基于Windows平台的时间同步方法,为分布式网络系统的时钟精确同步提供了一种有效可行的解决办法。目前,Windows平台下直接在应用层获取的时间戳精度在10ms级...
  • stm32使用超高精度的同步时钟的设计

    千次阅读 2015-10-10 07:25:00
    有些场合可能需要超高精度的同步时钟,比如0.5ppm甚至更低的时钟,并且保证多台设备很好的重复率,因此这篇文章主要讲述如何设计基于stm32的超高精度的时钟。  首先时钟精度要0.5ppm甚至更低的话,显然要使用...
  • matlab之作图设置游标的精度

    千次阅读 2017-12-21 11:23:10
    matlab画出的figure游标的精度往往是固定的,这就对我们的调试和查看数据造成了不便。 那么怎么修改游标的精度呢? 首先,获取游标dcm_obj = datacursormode(gcf);然后对游标的精度进行设置:set(dcm_obj,'...
  • 讨论了常用的检测频信号相位差的方法。对于广泛应用的过零时间差测量方式,分析了其主要缺点并提出了对策,介绍了高频鉴相器的特性及适用场合。针对单片机系统,提出了具有较高测量精度同时简化计算的线性插值方法...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 199,212
精华内容 79,684
关键字:

同精度