精华内容
下载资源
问答
  • 1平面向量的所有公式a=(x,y),b=(x',y')。1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、...

    1

    平面向量的所有公式

    a=

    (

    x

    y

    )

    b=(x'

    y')

    1

    、向量的加法

    向量的加法满足平行四边形法则和三角形法则。

    AB+BC=AC

    a+b=(x+x'

    y+y')

    a+0=0+a=a

    向量加法的运算律:

    交换律:

    a+b=b+a

    结合律:

    (a+b)+c=a+(b+c)

    2

    、向量的减法

    如果

    a

    b

    是互为相反的向量,那么

    a=-b

    b=-a

    a+b=0. 0

    的反向量为

    0

    AB-AC=CB.

    共同起点,指向被减

    a=(x,y) b=(x',y')

    a-b=(x-x',y-y').

    3

    、数乘向量

    实数

    λ

    和向量

    a

    的乘积是一个向量,记作

    λa

    ,且∣

    λa

    =

    λ

    a

    ∣。

    λ

    0

    时,

    λa

    a

    同方向;

    λ

    0

    时,

    λa

    a

    反方向;

    λ=0

    时,

    λa=0

    ,方向任意。

    a=0

    时,对于任意实数

    λ

    ,都有

    λa=0

    注:按定义知,如果

    λa=0

    ,那么

    λ=0

    a=0

    实数

    λ

    叫做向量

    a

    的系数,

    乘数向量

    λa

    的几何意义就是将表示向量

    a

    的有向线段伸长或压

    缩。

    当∣

    λ

    ∣>

    1

    时,表示向量

    a

    的有向线段在原方向(

    λ

    0

    )或反方向(

    λ

    0

    )上伸长为原来

    的∣

    λ

    ∣倍;

    当∣

    λ

    ∣<

    1

    时,表示向量

    a

    的有向线段在原方向(

    λ

    0

    )或反方向(

    λ

    0

    )上缩短为原来

    的∣

    λ

    ∣倍。

    数与向量的乘法满足下面的运算律

    结合律:

    (λa)•b=λ(a•b)=(a•λb)

    向量对于数的分配律(第一分配律)

    (λ+μ)a=λa+μa.

    数对于向量的分配律(第二分配律)

    λ(a+b)=λa+λb.

    数乘向量的消去律:

    如果实数

    λ≠0

    λa=λb

    那么

    a=b

    如果

    a≠0

    λa=μa

    那么

    λ=μ

    4

    、向量的的数量积

    定义:

    已知两个非零向量

    a,b

    OA=a,OB=b,

    则角

    AOB

    称作向量

    a

    和向量

    b

    的夹角,

    记作

    a,b

    〉并规定

    0≤

    a,b

    ≤π

    定义:

    两个向量的数量积

    (内积、

    点积)

    是一个数量,

    记作

    a•b

    a

    b

    不共线,

    a•b=|a|•|b|•cos

    a

    b

    ;若

    a

    b

    共线,则

    a•b=+

    -

    a

    ∣∣

    b

    ∣。

    向量的数量积的坐标表示:

    a•b=x•x'+y•y'

    向量的数量积的运算律

    a•b=b•a

    (交换律)

    (λa)•b=λ(a•b)(

    关于数乘法的结合律

    )

    (

    a+b)•c=a•c+b•c

    (分配律)

    向量的数量积的性质

    a•a=|a|

    的平方。

    a

    b

    =

    a•b=0

    |a•b|≤|a|•|b|

    向量的数量积与实数运算的主要不同点

    1

    、向量的数量积不满足结合律,即:

    (a•b)•c≠a•(b•c)

    ;例如:

    (a•b)^2≠a^2•b^2

    展开全文
  • a·b=|a|·|b|·cos〈ab〉是定义,推出交换律,分配率,与数的乘法的结合律,以及垂直时为零。∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]=x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.[ i,j是x轴。y轴上...

    a·b=|a|·|b|·cos〈a,b〉是定义,推出交换律,分配率,与数的乘法的结合

    律,以及垂直时为零。

    ∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]

    =x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.

    [ i,j是x轴。y轴上的单位向量。i²=1, j²=1, i·j=0 ]

    看你是要高中证明还是大学证明还是更严密的证明。

    向量有点量积、矢量积、旋量积之分。大多高中只接触个点积而已

    三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

    下面把向量外积定义为:

    a

    ×

    b

    =

    |a|·|b|·Sin

    b>.

    分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

    下面给出代数方法。我们假定已经知道了:

    1)外积的反对称性:

    a

    ×

    b

    =

    -

    b

    ×

    a.

    这由外积的定义是显然的。

    2)内积(即数积、点积)的分配律:

    a·(b

    +

    c)

    =

    a·b

    +

    a·c,

    (a

    +

    b)·c

    =

    a·c

    +

    b·c.

    这由内积的定义a·b

    =

    |a|·|b|·Cos

    展开全文
  • 向量叉乘计算公式

    千次阅读 2021-11-08 11:16:24
    二维向量叉乘 A=(a1,a2) B=(b1,b2) A×B =(a1,a2)×(b1,b2) =a1b2-a2b1 三维向量叉乘 A=(a1,a2,a3) B=(b1,b2,b3) A×B =(a1,a2,a3)×(b1,b2,b3) =(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)

    二维向量叉乘

    A=(a1,a2)
    B=(b1,b2)
    
    A×B
    =(a1,a2)×(b1,b2)
    =a1b2-a2b1
    

    三维向量叉乘

    A=(a1,a2,a3)
    B=(b1,b2,b3)
    
    A×B
    =(a1,a2,a3)×(b1,b2,b3)
    =(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)
    
    展开全文
  • 向量积坐标表示公式

    千次阅读 2020-12-30 13:38:07
    展开全部表示方法两个向量ab的叉积写作a×b(有时也被写成ab,避免32313133353236313431303231363533e78988e69d8331333431363036和字母x混淆)。定义向量积可以被定义为:。模长:(在这里θ表示两向量之间的夹角...

    展开全部

    表示方法

    两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免32313133353236313431303231363533e78988e69d8331333431363036和字母x混淆)。

    定义

    向量积可以被定义为:。

    模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)

    方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

    也可以这样定义(等效):

    向量积|c|=|a×b|=|a||b|sin

    即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

    而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

    扩展资料:

    证明

    为了更好地推导,加入三个轴对齐的单位向量i,j,k。

    i,j,k满足以下特点:

    i=jxk;j=kxi;k=ixj;

    kxj=–i;ixk=–j;jxi=–k;

    ixi=jxj=kxk=0;(0是指0向量)

    由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。

    这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。

    对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:

    u=Xu*i+Yu*j+Zu*k;

    v=Xv*i+Yv*j+Zv*k;

    那么uxv=(Xu*i+Yu*j+Zu*k)x(Xv*i+Yv*j+Zv*k)

    =Xu*Xv*(ixi)+Xu*Yv*(ixj)+Xu*Zv*(ixk)+Yu*Xv*(jxi)+Yu*Yv*(jxj)+Yu*Zv*(jxk)+Zu*Xv*(kxi)+Zu*Yv*(kxj)+Zu*Zv*(kxk)

    由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为

    uxv=(Yu*Zv–Zu*Yv)*i+(Zu*Xv–Xu*Zv)*j+(Xu*Yv–Yu*Xv)*k。

    展开全文
  • 向量数量积公式是什么

    千次阅读 2020-12-24 04:39:20
    展开全部已知两个非零向量ab,那么|a||b|cosθ(θ是ab的夹角)32313133353236313431303231363533e59b9ee7ad...即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2向量的数量积公式a*b=|a||b|cosθ,...
  • 向量夹角(求两个向量的夹角公式)

    万次阅读 2021-01-30 16:12:45
    向量的夹角就是向量两条向量所成角 其范围是在0到180度 而向量夹角的余弦值等于= 向量的乘积/向量模的积 即cos=ab/ (|a|·|b|)两向量夹角怎么求???给的是坐标,要求步骤详细点,多谢夹角为α=arccos...
  • 向量的数量积公式大全

    千次阅读 2020-12-24 04:41:31
    平面向量的数量积平面向量数量积的定义已知两个非零向量ab,它们的夹角为θ,把数量|a||b|cosθ叫做ab的数量积(或内积),记作a·b.即a&m...积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的...
  • 本文介绍了向量的定义、向量的模、负向量、单位向量、零向量以及向量加减法的三种实现方法。
  • 平面向量加减法口诀

    千次阅读 2021-01-14 14:25:55
    一、向量的加法两个向量做加法运算就是向量的加法,是一种向量的运算。首先我们来看图像。向量加法图像向量的加法口诀:首尾相连,首连尾,方向指向末向量。以第一个向量的起点为起点,以第二个向量的终点为终点的...
  • 向量的夹角公式是什么?

    千次阅读 2020-12-18 20:44:53
    展开全部平面向量夹角公式:32313133353236313431303231363533e4b893e5b19e31333431373139cos=(ab的内积)/(|a||b|)(1)上部分:ab的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是ab的模的...
  • 向量的夹角公式!急急急!!!

    千次阅读 2020-12-20 18:46:33
    展开全部平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:ab的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是32313133353236313431303231363533e58685e5aeb931333431373139ab的模的...
  • 向量加减法,向量的点积(乘),向量的叉积(乘) 向量 是用来表示既有大小又有方向的量,不过向量在空间中没有具体的...a = B - A 用有向线段的结束点B减去起始点A就得到这个向量 a |a| 表示向量a的长度 â 表示
  • 展开全部平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:ab的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是ab的模的62616964757a686964616fe58685e5aeb931333431333939乘积:设a=...
  • 向量叉乘公式是什么啊

    千次阅读 2021-02-05 03:17:56
    |向量c|=|向量a×向量b|=|a||b|sin向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的...
  • 向量点积公式证明

    2020-12-24 04:40:59
    就这么一个简简单单的公式:$$\vec{a}\cdot{\vec{b}}=|\vec{a}||\vec{b}|\cos\theta$$要是没记错的话,初中学的东西,一直在用,可总是想不起来是怎么来的。这里给出一个形象化的解释,省的后面再次遇到仍然不爽。...
  • 向量积的坐标运及度量公式.ppt

    千次阅读 2020-12-30 13:38:07
    向量积的坐标运及度量公式* * 向量数量积的 坐标运算与度量公式 一.... 即: x o B(b1,b2) A(a1,a2) y 所以,根据平面向量数量积的坐标表示,向量的数量积的运算可转化为向量的坐标运算。 二.探究新知: 2...
  • 矩阵、向量求导公式
  • 肯定会先想起初中时的那条最简单的公式cosA=a/c(邻边比斜边),见下图:但是,初中那条公式是只适用于直角三角形的,而在非直角三角形中,余弦定理的公式是:cosA=(c2 + b2 - a2)/2bc不过这条公式也和向量空间模型中的余弦...
  • 向量的三重积公式是经常会在向量代数中使用到的恒等式,它的表达形式如下所示:a⃗×(b⃗×c⃗)=(a⃗⋅c⃗)b⃗−(a⃗⋅b⃗)c⃗\vec{a}\times\left(\vec{b}\times\vec{c}\right) = \left(\vec{a}\cdot\vec{c}\right)\...
  • 向量加减口诀首尾相接

    千次阅读 2021-02-05 08:16:17
    三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。平行四边形定则...
  • 一、对ΔABC重心O来讲有 OA⇀+OB⇀+OC⇀=0\mathop{OA}\limits ^{\rightharpoonup}+\mathop{OB}\limits ^{\rightharpoonup}+\...根据A、D、B三点共线公式 OD⇀=mOA⇀+nOB⇀\mathop{OD}\limits ^{\rightharpoonup}=m
  • 向量的叉乘运算法则

    万次阅读 2021-01-13 03:30:55
    向量的叉乘运算法则为|向量c|=|向量a×向量b|=|a||b|sin,向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。点乘和叉乘的区别点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·...
  • 向量的数量积和向量积怎么算?

    千次阅读 2021-02-05 03:17:56
    展开全部数量积AB=ac+bd向量积要利用行列式若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|e68a8462616964757a686964616f31333363396364 i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-...
  • 向量数量积的定义式:a·b=|a||b|cosθ.其中θ为a.b的夹角. 在这一点联系上与向量法证明正弦定理有相似之处.但又有 所区别.首先因为无须进行正.余弦形式的转换.也就省去添加 辅助向量的麻烦.当然.在各边所在向量的...
  • 向量平行公式和垂直公式

    千次阅读 2020-12-19 23:10:52
    高中数学在高中理科的学习中是非常重要的,常言道“数理化不分家”,学好数学对学习其他理科学科有非常大的帮助。...向量ab平行(共线),记作ab。零向量长度为零,是起点与终点重合的向量,其...
  • 向量运算(叉乘几何意义)

    千次阅读 2020-12-21 16:10:06
    向量的叉乘,即求同时垂直两个向量向量,即c垂直于a,同时c垂直于b(a与c的夹角为90°,b与c的夹角为90°)c = a×b = (a.y*b.z-b.y*a.z , b.x*a.z-a.x*b.z , a.x*b.y-b.x*a.y)以上图为例a(1,0,0),b(0,1,0),c=a×b =...
  • 支持向量机(support vector machines,SVM)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。 分割的前提是样本已经进行过分类,有...
  • 平面向量减法怎么死活都不会?...人气:688 ℃时间:2020-03-28 02:54:52优质解答设a=(x,y),b=(x',y').1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=...
  • 三个向量叉乘的公式的证明推导

    万次阅读 2021-03-28 17:23:19
    三个向量叉乘的公式 二重积应该都看得懂有手就行 那么三重积应该怎么推导呢? 首先看标量三重积 标量三重积是三个向量中的一个和另两个向量的...[流氓证法]先算bxc 会获得b向量和c向量所在平面的法向量 再叉乘a
  • 题目:由LIBSVM的svmtrain输出结果得到分类超平面的法向量w和偏移项b 原文链接:由LIBSVM的svmtrain输出结果得到分类超平面的法向量w和偏移项b_彬彬有礼的专栏-CSDN博客 相信很多人都会使用LIBSVM软件包,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 102,608
精华内容 41,043
关键字:

向量a加向量b的公式