精华内容
下载资源
问答
  • notforcommercialuse平面向量内积坐标运算与距离公式德清乾元职高朱见锋【教材分析】:本课是在平面向量坐标运算、内积定义基础上学习的,主要知识是平面向量内积坐标运算与平面内两点间的距离公式,是后面学习...

    For

    personal

    use

    only

    in

    study

    and

    research;

    not

    for

    commercial

    use

    平面向量内积的坐标运算与距离公式

    德清乾元职高

    朱见锋

    【教材分析】

    本课是在平面向量坐标运算、

    内积定义基础上学习的,

    主要知识是平面向量内积的坐标运算与平面内两点

    间的距离公式,是后面学习曲线方程的重要公式和推导依据,是进一步学习相关数学知识的重要基础。

    【教学目标】

    1.

    掌握平面向量内积的坐标表示,会应用平面向量内积的知识解决平面内有关长度、两向量的夹角和垂直的问题.

    2.

    能够根据平面向量的坐标,判断两向量是否垂直,求两向量的夹角等。

    3.

    通过学习平面向量的坐标表示,使学生进一步了解数学知识的相同性,培养学生辩证思维能力.提高学生数学知识

    的应用能力。

    【教学重点】

    :平面向量内积的坐标公式式,平面向量垂直的充要条件,平面内两点间距离公式的应用.

    【教学难点】

    :平面向量内积的坐标公式的推导和应用。

    【教学方法】

    本节课采用问题启发式教学和讲练结合的教学方法.

    展开全文
  • 向量内积坐标表示7.11向量内积坐标表示 授课人:邱群灯 * 7.11 向量内积坐标表示 向量的内积 a⊥b a · b=0 (判断两向量垂直的依据) 运算律: 1. 2. 3. 平面向量基本定理: 如果 是同一平面内的两个不共 线...

    向量内积的坐标表示

    7.11向量内积的坐标表示 授课人:邱群灯 * 7.11 向量内积的坐标表示 向量的内积 a⊥b a · b=0 (判断两向量垂直的依据) 运算律: 1. 2. 3. 平面向量基本定理: 如果 是同一平面内的两个不共 线向量,那么对于平面内的任一向量a ,有且只有与一对实数 , 使 . 7.11 向量内积的坐标表示 ① _____ ② ______ ③ ______ ④ _____ 单位向量i 、j 分别与x 轴、y 轴方向相同,求 1 1 0 0 能否推导出 的坐标公式? 两个向量的内积等于它们对应坐标的乘积的和,即 7.11向量内积的坐标表示 (1)设a =(x,y),则 或|a |= . 性质 若设 、 则 即平面内两点间的距离公式. (2)写出向量夹角公式的坐标式,向量平行和垂直的坐 标表示式. 7.11向量内积的坐标表示 例题讲解 例1.设 , ,求 . 解: a 、b 夹角的余弦值? 7.11平面向量数量积的坐标表示 例2.已知 , , ,求证 是直角三角形. 证明:∵ ∴ 是直角三角形. 7.11 向量内积的坐标表示 例3.求 与向量的夹角为 的单位向量. 解:设所求向量为 ∵ a 与b 成 ∴ 又 ……② 联立解之: , 或 , ……① 另一方面 ∴ 7.11向量内积的坐标表示 练习: (1)已知 , 且 ,求 . (2)已知a =(4,2),求与a 垂直的单位向量. (3) 中, , ,求k 的值. *

    展开全文
  • 向量内积坐标运算 结论:两个向量的数量积等于它们 对应坐标的乘积的和。 即: x o B(b1,b2) A(a1,a2) y 所以,根据平面向量数量积的坐标表示,向量的数量积的运算可转化为向量的坐标运算。 二.探究新知: 2...

    向量积的坐标运及度量公式

    * * 向量数量积的 坐标运算与度量公式 一.复习回顾: 2. 二.探究新知: 三.新课讲授: 1.向量内积的坐标运算 结论:两个向量的数量积等于它们 对应坐标的乘积的和。 即: x o B(b1,b2) A(a1,a2) y 所以,根据平面向量数量积的坐标表示,向量的数量积的运算可转化为向量的坐标运算。 二.探究新知: 2.两向量垂直和平行的条件 平行 垂直 巩固提高: 二.探究新知: 3.向量的长度、距离、夹角公式 3.向量的长度、距离、夹角公式 ∴ =60o. θ 三.典型例题 例 1 已知a=(1,√3 ),b=(– 2,2√3 ), (1)求a·b; (2)求a与b的夹角θ. 解:(1)a·b=1×(–2)+√3×2√3=4; (2) a =√12+(√3 )2=2, b =√(– 2)2+(2√3 )2 =4, cos = = = , 4 2×4 a·b a b 1 2 θ 变式1: 练习A 1(4). A 3. x 0 y 例2 已知A(1,2),B(2,3),C(-2,5), 试判断?ABC的形状,并给出证明. A(1,2) B(2,3) C(-2,5) 练习A.2.3. 课堂练习: B D A ①②③④ 例3 已知四点坐标:A(-1,3)、B(1,1)、C(4,4)、D(3,5).(1)求证:四边形ABCD是直角梯形;(2)求∠DAB的大小. (1) 证明: AB = (1 – (-1), 1 – 3) = (2, -2), BC = (4 – 1,4 – 1) = (3, 3). DC = (4 – 3, 4 – 5) = (1, -1), ∵ AB = 2DC, x A B C D y ∴ AB⊥BC. ∵ AB·BC = 2×3 +(-2) ×3 = 0, ∴ AB//DC. 知识反馈 ∴ ABCD是直角梯形. 又∵ AB≠DC, x A B C D y (2)解: |AB| = √(1 – (-1))2 + (1 – 3)2 = 2√2 , AD = (3 – (-1), 5 – 3) = (4, 2), |AD| = √(3 – (-1))2 + (5 – 3)2 = 2√5 , AD·AB = 4×2 + 2× (-2) = 4, cos∠DAB = = = , AD·AB |AD||AB| 4 2√5 ·2√2 √10 10 ∴∠DAB = arccos . √10 10

    展开全文
  • 展开全部已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)32313133353236313431303231363533e59b9ee7ad9431333365656531叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即...

    展开全部

    已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)32313133353236313431303231363533e59b9ee7ad9431333365656531叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

    向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

    一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。

    [扩展资料]

    数量积的性质

    设a、b为非零向量,则

    ①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ

    ②a⊥b=a·b=0

    ③当a与b同向时,a·b=|a||b|;当a与b反向时,a·a=|a|2=a2或|a|=√a·a

    ④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立

    ⑤cosθ=a·b╱|a||b|(θ为向量a.b的夹角)

    ⑥零向量与任意向量的数量积为0。

    向量数量积的运算律

    ⑴交换律:a·b=b·a

    ⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)

    ⑶分配律:(a+b)·c=a·c+b·c

    平面向量数量积的几何意义

    ①一个向量在另一个向量方向上的投影

    设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影,|a|cosθ叫做向量a在向量b方向上的投 影。

    ②a·b的几何意义

    数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积

    ★注意:投影和两向量的数量积都是数量,不是向量。

    ③数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

    展开全文
  • 什么是向量在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带...向量垂直公式a,b是两个向量a=(a1,a2) b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,...
  • 是一种常见的数据分析手段,通过 可以解除线性相关,即通过线性变换将数据变换为一组各...数学基础知识回顾1.1 内积 通过内积可以把两个向量映射成一个实数,为了避免过于抽象,我们使用一个二元向量举例:假设: ...
  • 职业数学家在民间大家好!这里是微信公众号《职业数学家在民间》的专栏...会等于1第三期:世界著名数学难题——圆内格点问题第四期:欧拉公式——上帝创造的数学公式第五期:巴塞尔问题第六期:布劳威尔(Brouwer)...
  • 一、什么叫量。量是为了衡量度量现象、物体或物质的特性而...因此我们引入了一个新的概念:向量,用来表示这种特殊的有大小和方向的矢量,并研究它的运算法则。为了方便理解向量的方向性,我们来看这样一个例子。...
  • 在涉及到计算机视觉的几何问题中,我们经常看到齐次坐标这个术语。本文介绍一下究竟为什么要用齐次坐标?使用齐次坐标到底有什么好处?什么是齐次坐标?简单的说:齐次坐标就是在原有坐标上加上一个维度:使用齐次...
  • [一点一题]05904A平面向量模的相关问题 [一点一题]05904B平面向量模的相关问题 [一点一题]05905A夹角的相关问题 [一点一题]05905B夹角的相关问题 [一点一题]05906A平面向量的投影问题(无坐标)与数量的几何意义 ...
  • 05901A平面向量共线定理 [一点一题]05901B平面向量共线定理 [一点一题]05902A平面向量垂直的关系 [一点一题]05902B平面向量垂直的关系 [一点一题]05903A平面向量数量的相关问题 [一点一题]05903B平面向量数量的...
  • 向量着实是高中数学里的重要内容,但是如今的教学将它处理得实在是太差了,沦落成代入公式和计算。向量是通向从一维到高维,从数量到空间的桥梁。其中起到关键作用的,正是那个被无数学生和老师遗忘的平面/空间向量...
  • 在空间几何这一章的学习当中,首先需要建立空间直角坐标系,利用数形结合的方法,再者就是一些公式,空间两点的距离公式,各个图形的标准形式的方程,本章节我们是从平面的图形方程过渡到空间里的图形方程,方便...
  • 向量内积也叫向量的数量积、点积。我们定义两个向量内积是一个数:其中 是这两个向量的夹角。对于向量内积,最重要的一个结论是:定理1:...坐标下的内积:如果 ,则这个式子我们可以看成内积的定义,当然也可...
  • 向量内积和外积

    2021-02-06 08:07:43
    1、a和b的内积公式为: 要求一维向量a和向量b的行列数相同。 2、内积的几何意义 点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。 二、向量的外积和几何意义...
  • 本节为线性代数复习笔记的第二部分,矩阵的概念与计算(1),主要包括:向量组的秩,向量内积、正交、模,施密特标准正交化(正交规范化),向量空间以及坐标变换公式。 1. 向量组的秩   向量组α1⃗,α2⃗,...,...
  • 向量的外积和内积

    2020-09-07 09:43:14
    内积 计算公式 几何意义 两个向量之间的夹角 向量b在向量a上的投影 推导过程 外积 计算公式 几何意义 两个向量构成的平面的法向量 构件三维坐标系 外积在数值上等于两个向量组成平行四边形的面积 ...
  • 展开全部平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是32313133353236313431303231363533e58685e5aeb931333431373139a与b的模的...
  • 展开全部平面向量夹角公式:32313133353236313431303231363533e4b893e5b19e31333431373139cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是a与b的模的...
  • 设两向量分别为 α 和 β, 数量积  α • β = |α| |β| cosθ (θ 为向量 α 和 ... 数量积又称为点积或者内积。  ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),  ...
  • 展开全部平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是a与b的模的62616964757a686964616fe58685e5aeb931333431333939乘积:设a=...
  • 平面向量平行对应坐标交叉相乘相等,即x1y2=x2y,垂直是内积为0。方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其...
  • 平面向量平行对应坐标交叉相乘相等,即x1y2=x2y,垂直是内积为0。方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:...
  • 向量内积(点积、数量积)与外积(叉积、向量积) 1.内积 a和b的点积公式为:(也就是投影) a.b=|a||b|cos(a, b) 。 1)推导下面坐标表达式: ...
  • 向量的模:向量的大小或长度. 向量与标量向乘:加减速或改变...向量点乘:内积.a*b = ax*bx + ay*by.点乘等于向量大小与向量夹角cos的积. 向量与矩阵相乘: 坐标坐标系旋转后的矩阵为M: |cos sin| ...
  • 向量

    2018-01-11 23:55:51
    1、向量定义: 有方向有大小的量,也称矢量。 a⃗ \vec{a}=(x,y)(x,y)可以理解为从坐标(0,0)(0,0)到坐标(x,y)(x,y)有向线段即(x−0,y−0)(x-0,y-0)...3、向量内积(点乘或数量积) 定义:对两个向量执行点乘运算
  • 在笛卡尔坐标系中有向量 (x1,y1)和(x2,y2),他们间夹角的cos值等于 向量内积 除以 两个向量摸的乘积。 如果你仔细比较一下 求向量夹角的公式和皮尔逊公式,你会发现他们之间很相似!但还是有点不一样。 是的...
  • 向量的点积,也叫向量内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。设有两个向量:则它们的点积为:可以表示为: X . Y 1) 坐标点到原点的距离...

空空如也

空空如也

1 2 3 4
收藏数 71
精华内容 28
关键字:

向量内积公式坐标