精华内容
下载资源
问答
  • 本文介绍了向量的定义、向量的模、负向量、单位向量、零向量以及向量加减法的三种实现方法。

    ☞ ░ 老猿Python博文目录

    一、向量

    1.1、向量定义

    向量也称为欧几里得向量、几何向量、矢量,指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

    1. 在物理学和工程学中,几何向量更常被称为矢量。
    2. 一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如 :
      在这里插入图片描述
      也可以用大写字母AB、CD上加一箭头(→)等表示。但由于输入法不支持,本文后面的向量表示就不输箭头,如直接叫向量a、b、c。

    定义
    n个有顺序的数a1,a2,…,an组成的数组:
    a=(a1,a2,…,an)
    叫做n维向量,a1,a2,…,an叫做a的分量,ai叫做a的第i个分量。分量都是0的向量叫零向量

    两个向量相等当且仅当它们分量数量相同,且各分量都相等。

    1.2、向量的模和范数

    向量的模就是向量的大小,也就是向量的长度,表示符号为在向量两侧各加一竖线,如向量AB记作:
    在这里插入图片描述
    为了输入方便,以后老猿记为|向量AB|

    对于二维平面向量(x,y),其模长即为原点到该点的距离,大小为:
    在这里插入图片描述
    对于三维立体空间的向量(x,y,z),其模长为:
    在这里插入图片描述
    对于n维空间向量x(V1,V2,…,Vn),其模长为:
    在这里插入图片描述

    模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。推广到高维空间中称为范数。

    范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。

    1.3、向量的属性及自由向量

    • 向量规定了方向和大小,常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
    • 长度相等且方向相同的向量叫做相等向量,向量a与b相等,记作a=b。 零向量与零向量相等。
    • 当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示相同向量。
    • 一个向量只要不改变它的大小和方向,它的起点和终点可以任意平行移动的向量,叫做自由向量。自由向量可以平移至空间任意点,这样一来,若已知向量的大小和方向,则向量就算给出。例如物体运动时的速度和加速度就是自由向量,在数学中把自由向量,简称为向量。数学中只研究自由向量。
    • 因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

    1.4、单位向量

    长度为一个单位(即模为1)的向量,叫做单位向量。与a同向,且长度为单位1的向量,叫做a方向上的单位向量。一个非零向量除以它的模,可得所需单位向量。记作:
    在这里插入图片描述

    关于等式右边的含义,请参考下节关于向量点积的介绍:《https://blog.csdn.net/LaoYuanPython/article/details/112411742 人工智能数学基础-线性代数2:向量的点积、內积、数量积和外积》。

    1.5、负向量

    如果向量AB与向量CD的模相等且方向相反,那么我们把向量AB叫做向量CD的负向量,也称为相反向量。

    1.6、零向量

    长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

    规定:所有的零向量都相等。

    1.7、固定向量

    固定向量也叫做胶着向量。在数学上指的是确定方向与大小、以及起点位置的向量。力学中的作用力就是固定向量。数学上不研究固定向量,只研究自由向量。

    1.8、滑动向量

    凡有大小及方向且需沿某一特定直线作用之向量,称之为滑动向量。

    滑动向量的起点在空间内固定的一条直线上,而固定向量是起点位置固定,而自由向量则什么都没有固定。

    1.9、位置向量

    对于坐标平面(原点O)内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。

    1.10、方向向量

    方向向量(direction vector)是一个数学概念,空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。

    1.11、平行向量、共线向量

    方向相同或相反的非零向量叫做平行(或共线)向量。向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。

    1.12、 两向量共线

    两平行向量 a与 b,可以平移至同一条与它们平行的直线上,故称此二向量a与b共线,也称向量a与b线性相关,否则,即 a不平行于b 时,称a与b线性无关。

    1.13、共面向量

    平行于同一平面的三个(或多于三个)向量叫做共面向量。
    空间中的向量有且只有以下两种位置关系:⑴共面;⑵不共面。
    注意:只有三个或三个以上向量才谈共面不共面。

    1.14、法向量

    法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

    二、向量的加减法

    向量的加法、减法以及向量与数的乘法都称为向量的线性运算

    向量是将几何问题转化为代数问题的桥梁,向量的加减则是用代数方法进行几何运算。向量的加减法有几种方法。

    2.1、分量加减法

    向量的加减法就是对向量各个分量进行加减,假设有向量A(a1,a2,…,an)、向量B(b1,b2,…,bn),则:

    向量A+向量B = (a1+b1,a2+b2,...,an+bn) 
    向量A-向量B = (a1-b1,a2-b2,...,an-bn)
    

    2.2、头尾相接法(三角形定则)

    对n维空间的向量A1、A2、…、An,各向量在n维空间表现为一原点到对应向量点的有向线段,起点为原点,终点为向量对应坐标点。当A1、A2、…、An各向量按顺序相加时,A1对应线段保持位置不变,其他向量对应线段的长度和方向保持不变,但将平移到其起点与前一向量线段的终点重合,如此将所有相加的向量首尾相接,最后构成的图形中,原点到最后一个向量终点的线段即为所有向量相加的结果。

    如果是二维空间,则向量A1+向量A2+向量A3的过程及结果如下图左边:
    在这里插入图片描述

    如果只有两个向量相加,则两个相加的向量和最终的结果向量构成一个三角形,如上图右边。因此这种方法又叫三角形定则。当超出三个的多个向量相加时,可以采用先将第一个和第二个向量相加得到的结果再与第三个向量相加,然后其结果再与第四个向量相加,…,以此类推,直到获得最后的结果。

    以上方法,似乎只能用于求向量和,无法求向量差,其实向量减法也可以通过上述方法进行,将减去某个向量看成加上某个负向量,负向量与原向量的线段相同,只是箭头方向相反,即起点和终点相反,下图是 向量A1+向量A2向量A1-向量A2 三角形定则法计算过程及结果图:
    在这里插入图片描述

    2.3、平行四边形定则

    平行四边形定则只适用于两个非零非共线向量的加减。

    平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。下图为两个向量相加的三角形定则和平行四边形定则的对比,可以看到结果相同。
    在这里插入图片描述

    平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。下图为向量加减法的三角形定则法和平行四边形定则法的运算过程及结果对比:
    在这里插入图片描述
    当将以上两个图中右边图形的线条改成虚线,将二者原点重合,可以得到如下图:
    在这里插入图片描述
    可以看到两种方法得到的加法结果向量完全重叠,而减法向量为平行四边形的对边,只是起点不同。

    三、向量数乘

    3.1、定义

    数乘向量(scalar multiplication of vectors)是与一个实数和一个向量有关的一种向量运算,即数量与向量的乘法运算。n个相等的非零向量a相加所得的和向量,叫作正整数n与向量a的积,记为na。

    数乘向量的定义:一个数m乘一个向量a,结果是一个向量ma,称为数乘向量的积,其模是|m||a|,当m>0时,ma与a同向,当m<0时,ma与a反向,当m=0时,0a=0。

    这个定义可以形象地理解为,把向量a伸缩|m|倍,再由m的符号确定是否调向。

    3.2、相关规则

    • 向量的数乘实际上是加法的乘法表示,因此向量数乘m等于向量的各分量都乘以m
    • 对于任意向量a、b和任意实数λ,μ,有如下规则:
    1. 结合律:λ(μa) = (λμ)a
    2. 第一分配律:(λ+μ)a=λa+μa
    3. 第二分配律:λ(a+b)=λa+λb。

    四、小结

    本文介绍了向量的定义、向量的模、负向量、单位向量、零向量以及向量加减法的三种实现方法。

    参考资料:

    百度百科向量介绍

    写博不易,敬请支持:

    如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

    更多人工智能数学基础的介绍请参考专栏《人工智能数学基础 》
    专栏网址https://blog.csdn.net/laoyuanpython/category_10382948.html

    关于老猿的付费专栏

    1. 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
    2. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
    3. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录 》。

    前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

    对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

    如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

    跟老猿学Python!

    ☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython

    展开全文
  • 方向向量和法向量的关系

    千次阅读 2020-12-31 07:42:18
    向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。...在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭...

    法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。方向向量是一个数学概念,空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。

    在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

    向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。

    在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

    几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

    展开全文
  • 向量组指的是矩阵每行构成一个向量,所有行构成的向量的整体称为一个行向量组列向量组指的是矩阵每列构成一个向量,所有列构成的向量的整体称为一个列向量组例如: 给你一个矩阵AA =1 2 34 5 6则A的行向量组为: (1,2...

    行向量组指的是矩阵每行构成一个向量,所有行构成的向量的整体称为一个行向量组

    列向量组指的是矩阵每列构成一个向量,所有列构成的向量的整体称为一个列向量组

    例如:  给你一个矩阵A

    A =

    1  2  3

    4  5  6

    则A的行向量组为: (1,2,3), (4,5,6)A的列向量组为:  (1,4)',(2,5)', (3,6)'

    扩展资料:

    在线性代数中,行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。行向量的转置是一个列向量,反之亦然。所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。

    设 F 是一个环或域,F 中的 mn 个元素  ,  ,排成一个表:

    称为 F 上的一个 m 行 n 列矩阵,或  阶矩阵,简称  矩阵,  称为矩阵的元素(entry of matrix),或更明确地,矩阵的 (i,j) 元素。上述矩阵亦常记作  或字母 A 。

    矩阵  称为 F 上的一个 n 元行向量,对应地,  矩阵  称为 F 上的一个 m 元列向量(column vector),一个  矩阵的各行构成的 m 个行向量称为矩阵的行向量,各列构成的 n 个列向量称为矩阵的列向量。

    矩阵称为 n 阶方阵(square matrix),而称一般的  矩阵为长方阵(rectangular matrix)。

    最常见的是 F 取实数域  或复数域  ,这时的矩阵分别为实矩阵(real matrix)或复矩阵(complex matrix)。

    在线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。

    单位列向量,即向量的长度为1,其向量所有元素的平方和为1。

    在线性代数中,行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。

    行向量的转置是一个列向量,反之亦然。

    所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。

    在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

    向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

    在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

    几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

    不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

    参考资料:百度百科——行向量

    参考资料:百度百科——列向量

    展开全文
  • 有向线段的长度表示向量大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度.这种具有方向和长度的线段叫做有向线段.)3、坐标表示:(1)在平面直角...

    1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。

    2、几何表示:向量可以用有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

    (若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度.这种具有方向和长度的线段叫做有向线段.)

    3、坐标表示:

    (1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底.a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。

    由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y).这就是向量a的坐标表示.其中(x,y)就是点P的坐标.向量OP称为点P的位置向量。

    (2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底.若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。

    由空间基本定理知,有且只有一组实数(x,y,z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y,k)叫做向量a的坐标,记作a=(x,y,z).这就是向量a的坐标表示.其中(x,y,k),也就是点P的坐标.向量OP称为点P的位置向量。

    (3) 当然,对于空间多维向量,可以通过类推得到 。

    c11b4f07c5c33bfa16992563673997be.png

    注:

    向量的定义:

    在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

    向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

    在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

    几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

    不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

    扩展资料:

    向量的运算法则:(向量的加法满足平行四边形法则和三角形法则)

    1、向量的加法

    OB+OA=OC.

    a+b=(x+x',y+y').

    a+0=0+a=a.

    向量加法的运算律:

    交换律:a+b=b+a;

    结合律:(a+b)+c=a+(b+c).

    2、向量的减法

    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

    AB-AC=CB.

    a=(x,y)b=(x',y') 则a-b=(x-x',y-y').

    3、数乘向量

    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.

    当λ>0时,λa与a同方向;

    向量的数乘法则:

    当λ<0时,λa与a反方向;

    向量的数乘当λ=0时,λa=0,方向任意.

    当a=0时,对于任意实数λ,都有λa=0.

    注:按定义知,如果λa=0,那么λ=0或a=0.

    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.

    注:数与向量的乘法满足下面的运算律 :

    ①结合律:(λa)·b=λ(a·b)=(a·λb).

    ②向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

    ③数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

    ④数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

    4、向量的数量积

    定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

    定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.

    向量的数量积的坐标表示:a·b=x·x'+y·y'.

    向量的数量积的运算律 :

    ①a·b=b·a(交换律);

    ②(λa)·b=λ(a·b)(关于数乘法的结合律);

    ③(a+b)·c=a·c+b·c(分配律);

    向量的数量积的性质 :

    a·a=|a|的平方.

    a⊥b 〈=〉a·b=0.

    |a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

    注:向量的数量积与实数运算的主要不同点 :

    ①向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.

    ②向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.

    ③|a·b|≠|a|·|b|

    ④由 |a|=|b| ,推不出 a=b或a=-b.

    ⑤向量的向量积

    定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。

    若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。

    向量的向量积性质:

    ∣a×b∣是以a和b为边的平行四边形面积.

    a×a=0.

    a垂直b〈=〉a×b=|a||b|.

    向量的向量积运算律 :

    a×b=-b×a;

    (λa)×b=λ(a×b)=a×(λb);

    a×(b+c)=a×b+a×c.

    注:向量没有除法,“向量AB/向量CD”是没有意义的。

    参考资料:百度百科-向量

    展开全文
  • 向量叉乘公式是什么啊

    千次阅读 2021-02-05 03:17:56
    |向量c|=|向量向量b|=|a||b|sin向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的...
  • 向量(vector), 也称矢量,是一个具有方向和大小的几何对象,可以形象的用一个一端带有箭头的线段来理解它。箭头的指向代表它的方向,线段的长度代表它的大小。 在OpenGL的开发中,常常用用它来表示纹理的坐标,顶点...
  • 看了一遍 蓝棕 的相关的讲解,总结一下。1.向量是什么?从初到末的箭头(物理角度,表示一种运动过程)有序的数字列表(计算机/数学角度)[1,2]加和数乘运算有意义的anything(抽象意义)12两种理解之间的关系就是线性...
  • 向量的数量积公式大全

    千次阅读 2020-12-24 04:41:31
    平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的...
  • 向量的加减法

    2021-01-14 14:25:50
    求两个向量的和向量的运算叫做向量的加法.法则:①三角形法则;②平行四边形法则.运算律:交换律+=+,结合律(+)+=+(+).4、向量的减法向量的加法和减法互为逆运算.已知两个向量的和及其中一个向量,求另...
  • 向量复习(一):定义、求解、四则运算、点积和叉积
  • 在机器学习的各种关于向量或者矩阵的求导中,经常会出现各种需要转置或者不需要转置的地方,经常会看得人晕头转向。今天我对机器学习中关于这部分的常识性处理方法进行整理并记录下来方便大家参考。一些约定首先,在...
  • 引言当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质。而这些数学性质将成为PCA的理论基础。向量运算即:内积。首先,定义两个维数相同的向量的内积为:(a1,a2,⋯,an)T⋅(b1,b2,⋯,bn)T=a1b1+a2b2+...
  • python中向量指的是什么意思

    千次阅读 2021-01-13 18:46:33
    向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)在这里,向量即一维数组,用 arange 函数创建向量是最简单的方式之一:arange函数也可以指定初始值、终止值和步长来创建一维数组:向量还...
  • 向量总结

    2021-05-20 00:12:39
    既有大小又有方向的量叫做向量。 1、向量积可以被定义为: 模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。) 2、向量的大小,也就是向量...
  • 一个简单的例子,比如我们要表示一个不会改变物体大小的变换过程,所谓“不可压缩性”如果用变换矩阵直接表达,那是一个颇为复杂的非线性约束,而如果使用向量场表达,我们只需要把向量场限制在某个有限维子空间里...
  • 本来想着总结得简洁明了易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述,再加上前辈们也整理的很好,所以啰嗦了很长很长。但也算是很详细了。 ...
  • 我们在小学的时候,学完了什么是数字之后,接下来学习的是什么呢?...两个力合成时,以表示这两个力的线段为邻边作平行四边形,这个平行四边形的对角线就表示合力的大小和方向,这就叫做平行四边形定则(Parallelog...
  • 参数通常可选择下面几个数的倒数:0.1 0.2 0.4 0.6 0.8 1.6 3.2 6.4 12.8,默认的是类别数的倒数,即1/k,2分类的话就是0.5) 3)sigmoid核函数 又叫做S形内核 两个参数g以及r:g一般可选1 2 3 4,r选0.2 0.4 0.60...
  • 向量的加法

    2021-01-19 21:18:56
    向量的加法 设已知向量 a , b , 以空间任意一点O为始点接连作向量 OA→=a\overrightarrow{OA} = \mathbf{a}OA=a,...\mathbf{c}OB=c,叫做向量 a 与 b 的和,记做 c=a+b\mathbf{c} = \mathbf{a} + \mathbf{b}c=a+b。求
  • 最近在做聚类的时候用到了主成分分析PCA技术,里面涉及一些关于矩阵特征值和特征向量的内容,在网上找到一篇对特征向量及其物理意义说明较好的文章,整理下来,分享一下。一、矩阵基础[1]:矩阵是一个表示二维空间的...
  • 向量

    2021-04-05 15:29:47
    向量对数学家是数字列表 向量对程序员是数组 数学上区分向量和标量 速度和位移是向量,速率和长度是...得到一个和原向量大小相等,方向相反的向量 向量的长度: 各分量平方和的平方根 标量与向量的乘法: 以标量为单
  • 文 | 橙橙子亲爱的读者,你是否被各种千亿、万亿模型的发布狂轰乱炸,应接不暇,甚至有点产生对大模型的审美疲劳?出于这个目的,今天来分享一篇研究静态词向量的小清新文章。希望大家可以在理性追热...
  • SVM支持向量机详解

    2021-02-15 14:23:51
    SVM支持向量机详解
  • 向量范数和矩阵范数

    2021-08-09 21:11:53
    它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。...
  • a=torch.tensor([1,2,3]) c=torch.tensor([[1,2,3],[4,5,6]]) ...点乘:又叫做点积、内积、数量积、标量积,向量a[a1,a2,...,an]和向量b[b1,b2b...,bn]点乘的结果是一个标量,记作a.b; 得到一个值。 ...
  • 展开全部在数学中,向量(也称为欧几里得向62616964757a686964616fe59b9ee7ad9431333431373333量、...与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的...
  • 线性代数学习之特征值与特征向量

    千次阅读 2021-10-22 17:02:44
    - cexo - 博客园学习了行列式相关的一些概念,其中也多次提到学好行列式是为了学习“特征值和特征向量”的基础,所以此次就正式进入这块内容的学习,也是线性代数中非常重要的概念,因为它是线性代数其它重要概念...
  • 文本向量化 介绍

    2021-01-22 12:24:09
    文章目录1 文档信息的向量化1.1 文档信息的离散表示1.1.1 One-Hot独热编码表示法1.1.2 词袋模型Bag of Words(BOW)1.1.3 生成 文档词条矩阵1.1.3.1 用sklearn库实现1.1.4 从词袋模型到N-gram(离散表示)1.2 文档...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 38,208
精华内容 15,283
关键字:

向量的大小又叫做向量的