精华内容
下载资源
问答
  • 启发式算法学习记录

    2020-10-28 11:26:33
    启发式算法学习记录 1.什么叫启发式算法 百度百科: 启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造...

    启发式算法学习记录

    1.什么叫启发式算法

    百度百科:
    启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。

    其他一些不错的说法:

    启发式算法就是例如遗传算法,模拟退火,各种群算法,蚁群,鱼群,粒子群,人工神经网络等模仿自然界或生命体行为模式的算法,一般又称人工智能算法或全局优化算法。

    启发式算法是指具有自学习功能,可利用部分信息对计算产生推理的算法。

    有一个很值得关注的点,就是启发式算法的解具有偶然性,可能很接近最优解,也可能偏离的很远。

    从定义很难去理解一个算法,不如看个实例。

    2.模拟退火算法

    模拟退火是启发式算法的一种,具体学习的是冶金学中金属加热-冷却的过程。

    主要是将热力学的理论套用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。若概率大于给定的阈值,则跳转到“邻居”;若概率较小,则停留在原位置不动。

    模拟退火是启发示算法的一种,也是一种贪心算法,但是它的搜索过程引入了随机因素。在迭代更新可行解时,以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,假定初始解为左边蓝色点A,模拟退火算法会快速搜索到局部最优解B,但在搜索到局部最优解后,不是就此结束,而是会以一定的概率接受到左边的移动。也许经过几次这样的不是局部最优的移动后会到达全局最优点D,于是就跳出了局部最小值。

    img

    看了上图应该就很好理解模拟退火算法了;模拟退火算法以一定的概率接受比现在更差的解,以此来跳出局部最优解,从而增大获得全局最优解的概率。但在具体的实现中,这个一定概率应该怎么选择是一个值得深思的问题。太小了跳不出局部最优,太大了可能搜索过头。

    3.禁忌搜索

    禁忌(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。

    用一个形象的比方来解释:

    兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并且找过的每一座山他们都留下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索.

    为了找到全局最优解,禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它,从而或得更多的搜索区域。

    至于怎么避开局部最优解,我以前实现的禁忌搜索实现图着色算法中,是使用随机选择每一轮中相等最优解的方法。

    具体可移步至https://github.com/yogafans/Tabu_k_Color

    4.想法

    一些专业名词从字面上去理解是很难理解的,所以尽量少去想通过字面的意思来理解一个算法。

    启发式算法现阶段大都是通过模拟自然界中的现象或人和动物的行为来求解问题,但具有偶然性。

    所以大家也可以对在日常生活中看到的一些现象多多的思考,说不定就会有什么灵感呢。

    展开全文
  • 编码的表示代表,编码对算法的效率至关重要,其必须满足连通性原理才能为元启发式算法所用,为的是保证任意两解之间都存在一条搜索路径,尤其是对最优解来说更是如此。 常见的编码: 二进制编码:解可表示为一个n位...

    1 表示/编码

    编码的表示代表,编码对算法的效率至关重要,其必须满足连通性原理才能为元启发式算法所用,为的是保证任意两解之间都存在一条搜索路径,尤其是对最优解来说更是如此。

    常见的编码:

    • 二进制编码:解可表示为一个n位二值符号集,其搜索空间大小是 2 n 2^n 2n
    • 离散编码:变量的值不再局限于0和1,而是离散值
    • 实值编码:变量拥有真实的值
    • 排列编码:解可以表示为一个大小为n的排列,其搜索空间大小是 ( n − 1 ) ! (n-1)! (n1)!
    • 基于图的编码

    2 约束的满足

    • 仅考虑可行解
    • 惩罚不可行解:实际上对于不可行解的考虑会使得算法移向搜索空间中的其他区域,使得到的解更为多元化
    • 修正不可行解

    3 优化标准/目标函数

    f : D → R f:D→R fDR
    目标函数的构建必须非常仔细,因为如果目标函数定义不当,即使开发出有效的优化方法也是徒劳的。

    值得注意的是,确定单个优化标准通常很难,很多实际问题本质上是多目标问题

    4 性能分析

    元启发式算法是随机方法,其性能分析应格外仔细。在保证公平的前提下,需要对几种元启发式算法进行对比。

    s t e p 1 : step1: step1实验设计,要明确实验目标(解对质量、计算时间、顽健性等)和使用的基准(构建实际基准、随机基准、学术基准等以便获取最优解等先验知识)

    s t e p 2 : step2: step2确定性能测量和指标(两者会直接关系到实验目标),便于计算

    • 解的质量评估:若最优解已知,则评估计算所得解与最优解的质量差;若最优解未知,则可利用上下限来计算

      注意,比较的是解的质量,而不是目标函数值的质量

    • 顽健性的评估:同种方法运行若干次所产生的解的质量的变异性,运用统计检验方法来评估所得结果是否可信

    参考书籍《大数据元启发式算法教程》

    展开全文
  • PYthon中最先进的MEta启发式算法的集合(渐进式) “知识就是力量,分享是生活进步的前提。对某人来说,这似乎是一种负担,但这是实现永生的唯一途径。” --- 快速通知 嘿,在收到有关如何使用此库解决多个(许多)...
  • 我的机器学习教程「美团」算法工程师带你入门机器学习 以及「三分钟系列」数据结构与算法已经开始更新了,欢迎大家订阅~这篇专栏整合了这几年的算法知识,简单易懂,也将是我实体书的BLOG版。 欢迎大家扫码关注微信...

    我的机器学习教程「美团」算法工程师带你入门机器学习  以及 「三分钟系列」数据结构与算法  已经开始更新了,欢迎大家订阅~这篇专栏整合了这几年的算法知识,简单易懂,也将是我实体书的BLOG版。

    欢迎大家扫码关注微信公众号「图灵的猫」,除了有更多AI、算法、Python相关文章分享,还有免费的SSR节点和外网学习资料。其他平台(微信/知乎/B站)也是同名「图灵的猫」,不要迷路哦~

     

    我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。

    1. 梯度下降法(Gradient Descent)

    梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示:

    梯度下降法的缺点:

      (1)靠近极小值时收敛速度减慢,如下图所示;

      (2)直线搜索时可能会产生一些问题;

      (3)可能会“之字形”地下降。

     

     

    从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。

    在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

    比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J(theta)为损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的样本个数,n是特征的个数。

     

    1)批量梯度下降法(Batch Gradient Descent,BGD)

    (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度:

    (2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta:

    (3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。

    对于批量梯度下降法,样本个数m,x为n维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2。

    2)随机梯度下降(Stochastic Gradient Descent,SGD)

    (1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

    (2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta:

    (3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

    随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

    对批量梯度下降法和随机梯度下降法的总结:

    批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

    随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

     

    2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)

      1)牛顿法(Newton's method)

      牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

      具体步骤:

      首先,选择一个接近函数 f (x)零点的 x0,计算相应的 f (x0) 和切线斜率f  ' (x0)(这里f ' 表示函数 f  的导数)。然后我们计算穿过点(x0,  f  (x0)) 并且斜率为f '(x0)的直线和 x 轴的交点的x坐标,也就是求如下方程的解:

      我们将新求得的点的 x 坐标命名为x1,通常x1会比x0更接近方程f  (x) = 0的解。因此我们现在可以利用x1开始下一轮迭代。迭代公式可化简为如下所示:

      已经证明,如果f  ' 是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f  ' (x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

      由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。牛顿法的搜索路径(二维情况)如下图所示:

      牛顿法搜索动态示例图:

     

    关于牛顿法和梯度下降法的效率对比:

      从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

      根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

     

    注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

    牛顿法的优缺点总结:

      优点:二阶收敛,收敛速度快;

      缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。

      2)拟牛顿法(Quasi-Newton Methods)

      拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

      拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

      具体步骤:

      拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:

      这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:
      其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk  
    代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk
     的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:
      我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求 
     
      从而得到
      这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。

    3. 共轭梯度法(Conjugate Gradient)

     

    共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
      具体的实现步骤请参加 wiki百科共轭梯度法
      下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:
    注:绿色为梯度下降法,红色代表共轭梯度法

     

    4. 启发式优化方法

      启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

      还有一种特殊的优化算法被称之多目标优化算法,它主要针对同时优化多个目标(两个及两个以上)的优化问题,这方面比较经典的算法有NSGAII算法、MOEA/D算法以及人工免疫算法等。

     5. 解决约束优化问题——拉格朗日乘数法

      有关拉格朗日乘数法的介绍请见另一篇博客: 《拉格朗日乘数法》
     

     参考:http://www.cnblogs.com/maybe2030/p/4751804.html

    展开全文
  • A*算法详细讲解,另外还包含了自动驾驶学习资料的获取: 涵盖感知,规划和控制,ADAS,传感器; 1. apollo相关的技术教程和文档; 2.adas(高级辅助驾驶)算法设计(例如AEB,ACC,LKA等) 3.自动驾驶鼻祖mobileye的...
  • 我的机器学习教程「美团」算法工程师带你入门机器学习 以及「三分钟系列」数据结构与算法已经开始更新了,欢迎大家订阅~这篇专栏整合了这几年的算法知识,简单易懂,也将是我实体书的BLOG版。 欢迎大家扫码关注微信...

    我的机器学习教程「美团」算法工程师带你入门机器学习  以及 「三分钟系列」数据结构与算法  已经开始更新了,欢迎大家订阅~这篇专栏整合了这几年的算法知识,简单易懂,也将是我实体书的BLOG版。

    欢迎大家扫码关注微信公众号「图灵的猫」,除了有更多AI、算法、Python相关文章分享,还有免费的SSR节点和外网学习资料。其他平台(微信/知乎/B站)也是同名「图灵的猫」,不要迷路哦~

     

    一、退火算法

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

    模拟退火算法新解的产生和接受可分为如下四个步骤:

    第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

    第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

    第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis接受准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。

    第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

    有关退火算法的CSDN文章:模拟退火算法 - ACdreamer - 博客频道 - CSDN.NET

    二、遗传算法

    遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

    遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:

    1. 建初始状态 初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
    2. 评估适应度 对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
    3. 繁殖 繁殖(包括子代突变) 带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
    4. 下一代 如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
    5. 并行计算 非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。

     

    三、蚁群算法

     

    各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

    下面是本算法的一些说明:

    1. 范围 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
    2. 环境 蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
    3. 觅食规则 在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
    4. 移动规则 每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住刚才走过了哪些点,如果发现要走的下一点已经在之前走过了,它就会尽量避开。
    5. 避障规则 如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
    6. 信息素规则 每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。

     

    根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。

     

    以上是算法学习过程中所引用的一些理论上的知识,有关应用请参看具体应用部分。

    展开全文
  • 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这篇文章非常知名,...
  • 经典算法研究系列 八 再谈启发式搜索算法
  • 启发式搜索A*算法

    2015-07-15 11:06:00
    A* 寻路算法  (2011-02-15 10:53:11) 转载▼ 标签:  游戏 分类: 算法 概述 虽然掌握了 A* 算法的人认为它容易,但是对于初学者来说, A* 算法还是很复杂的。 搜索区域(The ...
  • 启发式搜索(例如遗传算法,蚁群算法,蜂群,鱼群,粒子群,模拟退火等)等优化算法 。 (例如用蚁群算法解决TSP等路径规题:...
  • A*寻路 曼哈顿启发式算法

    千次阅读 2011-10-17 00:40:04
    译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这篇文章非常
  • 2.2 拣货路径启发式规则 5 2.3 拣货路径智能优化算法 5 3. 拣货路径决策支持算法 5 3.1 配送中心拣货基本运作流程分析 5 3.2 拣货单拣货路径优化算法设计 6 3.2.1 优化计算假设和前期处理 6 3.2.2 模拟退火算法进行...
  • 点击“Python编程与实战”,选择“置顶公众号”第一时间获取 Python 技术干货!新智元报道 来源:Github,编辑:元子【导读】Github上超过7.9万星标:最全算法及P...
  • 作者·黄崇远『数据虫巢』全文共13000字题图ssyer.com“仅适合有志于学习一点算法的数据开发或者数据分析,以及对于算法感兴趣的新手朋友们,又或者一些刚毕业或者即将毕业想进入数据...
  • 文章目录 1 与单目标优化的区别 2 多目标优化问题的处理 3 多目标优化的性能评估 1 与单目标优化的区别 与单目标优化不同,MOCOP(多目标组合优化问题)的解不唯一,而是由...参考书籍《大数据元启发式算法教程
  • 内含附有详细代码注释的进化算法(遗传算法、差分进化算法、免疫算法)、群智能算法(蚁群算法、粒子群算法)、禁忌搜索算法、模拟退火算法、神经网络算法的MATLAB实现。以及用以上算法进行TSP问题、背包问题、函数...
  • 精选的各种AFL叉子和AFL启发式模糊器的清单,以及带有AFL-fuzzing教程的详细等效的学术论文 专案 由 American Fuzzy lop是AFL模糊器的原始版本和第一个版本,它是一种免费的,面向安全性的模糊器,它采用遗传算法...
  • 代码参考于:A*算法(解决八数码问题) #include<bits/stdc++.h> #define maxn 1010 //用于设置OPEN表和COLSE表(顺序表)结点的个数 #define N 3 //4 typedef struct node { //八数码结构体 int a[N][N];...
  • 算法视频教程 视频讲座 小波分析 遗传算法 渐进式遗传组卷算法 神经网络 粒子群优化 规则库推理 模糊数学入门 启发式搜索 A*算法 博弈树 alpha-beta剪枝算法 贪心 分治 算法引论PCA主成分分析 聚类算法 等等 做这套...
  • 通过前面几篇文章的学习,我们的四子棋程序已经有了框架、搜索几大部分,但是还有着不少问题,我们的程序只能迭代很有限的步骤,导致棋力低下,在这一篇我们将通过启发式搜索极大的优化搜索效率。一、原因我们之前的...
  • 最大流算法

    2012-08-13 22:00:01
    很好的网络流最大流算法教程
  • 热烈推荐: A*算法 (启发式搜索的入门篇,必看)转载 (2005-10-8 21:56)在搜索式算法中,A*算法算是个分水岭。因为它引入了启发式估价函数,从“瞎搜”转化到了“有目标的搜索”。学会了A*算法,在搜索算法...
  • 算法】A*启发式搜索(初探)

    千次阅读 2018-03-14 17:14:46
    译者序 很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。这篇文章非常知名,...
  • 《生产系统仿真应用教程PlantSimulation》周金平Johnson算法代码写错了的源代码: is i,j,m,n,y : integer; do y := Jobs.ydim; m := 1; n := y; for i:=1 to y loop if Jobs[7,i]<=Jobs[8,i] then -- Ä...
  • 1 禁忌搜索算法简介 1.1 引言 一个问题的求解过程就是搜索,它是人工智能的一个基本问题,而人工智能在各应用领域中被广泛地使用。现在搜索技术渗透在各种人工智能系统中,可以说没有哪一种人工智能的应用不用搜索...
  • Algorithm之PrA:PrA之nLP非线性规划算法+Matlab 优化...操作图文教程 PrA之nLP非线性规划算法 (1)、编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (2)、编写M文件fun2.m定...
  • 作为AI课的预习笔记,搜索了下启发式搜索 A*算法的一些经典资料,整理到下面,这个算法很有意思,有时间自己实现一下。[1] 一个老外写的A*算法实例解说,写的非常翔实易懂,这是一个中文翻译版 ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,890
精华内容 2,756
关键字:

启发式算法教程