精华内容
下载资源
问答
  • 图像模式识别的方法

    万次阅读 2015-07-05 11:53:22
    图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是...

    图像模式识别

    1.1图像模式识别的方法

        图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。

    从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。


    1.1.1句法模式识别

        对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。

         句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。


    1.1.2统计模式识别

    统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。

    统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。


    1.1.2.1几种统计模式识别的方法

    统计模式识别根据采用方法的不同可以进行多种形式的分类:通过贝叶斯决策理论对条件密度已知的样本进行分类;对于类条件密度不明的情况,可根据训练样本的类别是否己知将分类问题分为监督学习和非监督学习两大类;监督学习和非监督学习又可根据是否通过参数决策分为参数估计和非参数估计。统计模式识别的另一种分类方法是根据决策界是否直接得到将其分为几何方法和基于概率密度的方法。几何方法经常直接从优化一定的代价函数构造决策界;而基于概率密度的方法要首先估计密度函数然后构造分类函数指定决策界。

    1、几何分类法

    1)模板匹配法

    它是模式识别中的一个最原始、最基本的方法,它将待识模式分别与各标准模板进行匹配,若某一模板与待识模式的绝大多数单元均相匹配,则称该模板与待识模式“匹配得好”,反之则称“匹配得不好”,并取匹配最好的作为识别结果。

    2)距离分类法

    距离是一种重要的相似性度量,通常认为空间中两点距离越近,表示实际上两样本越相似。大约有十余种作为相似性度量的距离函数,其中使用最广泛的是欧氏距离。它是使用最为广泛的方法,常用的有平均样本法、平均距离法、最近邻法和K-近邻法。

    3)线性判别函数

    和上述的方法不同,判决函数法是以判决边界的函数形式的假定为其特性的,而上述的方法都是以所考虑的分布的假定为其特性的。假如我们有理由相信一个线性判决边界取成:


    是合适的话,那么剩下的问题就是要确定它的权系数。权系数可通过感知器算法或最小平方误差算法来实现。但作为一条规则,应用此方法必须注意两点;第一就是方法的可适性问题,第二就是应用判决函数后的误差准则。

    4)非线性判别函数

    线性判决函数的特点是简单易行,实际应用中许多问题往往是非线性的,一种处理的办法将非线性函数转换为线性判决函数,所以又称为广义线性判决函数。另一种方法借助电场的概念,引入非线性的势函数,它经过训练后即可用来解决模式的分类问题。


    2  概率分类法

        几何分类法是以模式类几何可分为前提条件的,在某些分类问题中这种条件能得到满足,但这种条件并不经常能得到满足,模式的分布常常不是几何可分的,即在同一区域中可能出现不同的模式,这时,必须借助概率统计这一数学工具。可以说,概率分类法的基石是贝叶斯决策理论。

        设有R类样本,分别为w1, w2 , … , wR,若每类的先验概率为P(wii), i =  1,2 ,3,…R,对于一随机矢量X,每类的条件概率为(又称类概率密度)P(X/Wii),则根据Bayes公式,后验概率为:


    从后验概率出发,有Bayes法则: 



    1.1.2.2朴素贝叶斯分类器

    朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

    朴素贝叶斯分类的工作过程如下:

    (1)每个数据样本用一个n维特征向量表示,分别描述对n个属性A1,A2,…An样本的n个度量。

    (2)假定有m个类C1,C2,…Cm。给定一个未知的数据样本X(即没有类标号),分类法将预测X属于具有最高后验概率(条件X下)的类。即是说,朴素贝叶斯分类将未知的样本分配给类Ci,当且仅当


    这样,最大化。其最大的类Ci称为最大后验假定。根据贝叶斯定理


    (3)由于P(X)对于所有类为常数,只需要最大即可。如果类的先验概率未知,则通常假定这些类是等概率的,即P(C1)=P(C2)=…=P(Cm)。并据此只对最大化。否则,最大化。注意,类的先验概率可以用计算其中si是类Ci中的训练样本数,而s是训练样本总数。

    (4)给定具有许多属性的数据集,计算的开销可能非常大。为降低计算的开销,可以做类条件独立的朴素假定。给定样本的类标号,假定属性值相互条件独立,即在属性间,不存在依赖关系。这样,


    概率…可以由训练样本估值,其中

    (a)如果Ak是分类属性,则,其中sik是在属性Ak上具有值xk的类Ci的样本数,而si是Ci中的训练样本数。

    (b)如果Ak是连续值属性,则通常假定该属性服从高斯分布,因而,


    其中,给定类Ci的训练样本属性Ak的值,是属性Ak的高斯密度函数,而分别为平均值和标准差。

    (5)为对未知样本X分类,对每个类Ci,计算。样本X被指派到类Ci,当且仅当


    换言之,X被指派到其最大的类Ci

    整个朴素贝叶斯分类分为三个阶段:

        第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。

        第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。

        第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。

     

    半朴素贝叶斯分类模型(SNBC)

    为了突破朴素贝叶斯分类器的独立性假设条件的限制,除了上述“提升”等方法之外,还可以通过改变其结构假设的方式来达到目的,为此有人提出了半朴素贝叶斯分类(SNBG Semi-NaiveBayesian classifier)的构想。

    半朴素贝叶斯分类模型对朴素贝叶斯分类模型的结构进行了扩展,其目的是为了突破朴素贝叶斯分类模型特征属性间独立性假设限制,提高分类性能。目前半朴素贝叶斯分类模型学习的关键是如何有效组合特片属性。条件互信息度量半朴素贝叶斯分类学习算法可以解决目前一此学习算法中存在的效率小高及部分组合意义不大的问题。SNBC的结构比NBC紧凑,在SNBC的模型构建过程中,依照一定的标准将关联程度较大的基本属性(即NBC中的特征属性)合并在一起构成“组合属性”(也称之为“大属性”)。逻辑上,SNBC中的组合属性与NBC中的基本属性没有根本性差别,SNBC的各个组合属性之间也是相对于类别属性相互独立的。图是SNBC的模型示意图。

    这类模型通过将依赖性强的基本属性结合在一起构建新的模型,这样可以部分屏蔽NBC中独立性假设对分类的负面作用。但从名称可以看出,SNBC依然属于朴素贝叶斯分类的范畴。这是因为除了结构上的差别之外,计算推导过程与NBC无异。


    1.1.2.3图像金字塔

    图像金字塔是以多分辨率来解释图像的一种结构。1987年,在一种全新而有效的信号处理与分析方法,即多分辨率理论中,小波首次作为分析基础出现了。多分辨率理论将多种学科的技术有效地统一在一起,如信号处理的子带编码、数字语音识别的积分镜像过滤以及金字塔图像处理。正如其名字所表达的,多分辨率理论与多种分辨率下的信号(或图像)表示和分析有关。其优势很明显,某种分辨率下无法发现的特性在另一种分辨率下将很容易被发现。

    图像金字塔是结合降采样操作和平滑操作的一种图像表示方式。它的一个很大的好处是,自下而上每一层的像素数都不断减少,这会大大减少计算量;而缺点是自下而上金字塔的量化变得越来越粗糙,而且速度很快。

    高斯金字塔里有两个概念:组(Octave)和层(Level或Interval),每组里有若干层。高斯金字塔的构造是这样的,第一组的第一层为原图像,然后将图像做一次高斯平滑(高斯卷积、高斯模糊),高斯平滑里有一个参数σ,然后将σ乘一个比例系数k作为新的平滑因子来平滑第一组第二层得到第三层。重复若干次,得到L层他们分别对应的平滑参数为:0,σ,kσ,k2σ,……。然后将最后一幅图像做比例因此为2的降采样得到第二组的第一层,然后对第二组的第一层做参数是σ的高斯平滑,对第二层做kσ的平滑得到第三层,以此类推。每组对应的平滑因子是一样的,这样反复形成了O组L层,组建成高斯金字塔。

    2.1.3模糊模式识别

        模糊模式识别的理论基础是20世纪60年代诞生的模糊数学,它根据人对事物识别的思维逻辑,结合人类大脑识别事物的特点,将计算机中常用的二值逻辑转向连续逻辑。在图像识别领域应用时该方法可以简化图像识别系统,并具有实用、可靠等特点。

        模式识别是一门边缘学科,它和许多技术学科有着密切的联系,它本身就是人工智能的重要组成部分,因此,从本质上来说,模式识别所要讨论的核心问题,就是如何使机器能模拟人脑的思维方法,来对客观事物进行有效的识别和分类。一方面现有的广为运用的统计模式识别方法与人脑进行模式识别相比,其差别还很大,另一方面待识别的客观事物又往往具有不同程度的模糊性。

        不少学者试图运用模糊数学的方法来解决模式识别问题,形成一个专门的研究领域----模糊模式识别(Fuzzy Pattern Recognition)。比较成熟的理论和方法有最大来属原则、基于模糊等价关系的模式分类、基于模糊相似关系的模式分类和模糊聚类,其中模糊聚类方法的研究和应用尤为成功和广泛。目前,模糊模式识别方法已广泛应用图形识别、染色体和白血球识别、图象目标的形状分析、手写体文字识别等,但其中也遇到不少困难,其中一个典型的例子就是隶属函数的确定往往带有经验色彩。

        应用模糊方法进行图像识别的关键是确定某一类别的隶属函数,而各类的统计指标则要由样本像元的灰度值和样本像元的隶属函数的值即隶属度共同决定。隶属度表示对象隶属某一类的程度。

     

    1.1.4神经网络模式识别

        神经网络的研究始于20世纪40年代,上世纪80年代开始在各国广泛兴起,神经网络模式识别源于对动物神经系统的研究,通过采用硬件或软件的方法,建立了许多以大量处理单元为结点,各单元通过一定的模式实现互联的拓扑网络。该网络通过一定的机制,能够模仿人的神经系统的结构和功能。

    神经网络是一种全新的模式识别技术,它具有以下几个方面的特点:

    (1)神经网络具有分布式存储信息的特点。

    (2)神经元能够独立运算和处理收到的信息,即系统能够并行处理输入的信息。

    (3)具有自组织、自学习的能力。

     



    展开全文
  • 图像模式识别 (二)

    千次阅读 2007-04-24 16:04:00
    图像识别图像识别的四个主要步骤: 图像预处理 图象分割

    图像识别

    图像识别的四个主要步骤:

    图像预处理

    图象分割

    图像特征提取

    图象分类

    图像输入

    图像处理

    图像识别

    像元图像

    图像预处理

    滤去干扰,噪声等。如图像信息微弱,还要进行增强处理,几何调整,着色校正等。

    图象分割

    从图像中定位,分离出不同的待识别物体。这一过程输入的是整幅图像,输出是像元图像。

    图像特征抽取

    提到需要特征并对某些参数进行计算,测量,根据结果进行分类。

    图像分类

    根据撮特征值,利用模式识别方法进行分类,确定相关信息。

     

     

    三、图像数据结构与图像文件格式:

    在计算机中,按照颜色和灰度的多少可以将图像争为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。目前,大多数图像处理软件都支持这四种类型的图像。

    (1) 二值图像:

    一幅二值图像的二维矩阵仅由01两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有01两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

    (2) 灰度图像:

    灰度图像矩阵元素的取值范围通常为[0255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[01]0代表黑色,1代表白色,01之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

    (3) 索引图像:

    索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0255],则MAP矩阵的大小为2563,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为2563,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。

    (4) RGB彩色图像:

    RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由RGB三个分量来表示,MN分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的RGB三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。

                                           

     

    数字化图像数据有两种存储方式[6]:位图存储(Bitmap)和矢量存储(Vector)
    我们平常是以图像分辨率(即象素点)和颜色数来描述数字图象的。例如一张分辨率为640*480,16位色的数字图片,就由2^16=65536种颜色的307200(=640*480)个素点组成。

      位图图像:位图方式是将图像的每一个象素点转换为一个数据,当图像是单色(只有黑白二色)时,8个象素点的数据就占据一个字节(一个字节就是8个二进制数,1个二进制数存放象素点);16色的图像每两个象素点用一个字节存储;256色图像每一个象素点用一个字节存储。这样就能够精确地描述各种不同颜色模式的图像图面。位图图像弥补了矢量式图像的缺陷,它能够制作出色彩和色调变化丰富的图像,可以逼真地表现自然界的景象,同时也可以很容易地在不同软件之间交换文件,这就是位图图像的优点;而其缺点则是它无法制作真正的3D图像,并且图像缩放和旋转时会产生失真的现象,同时文件较大,对内存和硬盘空间容量的需求也较高。位图方式就是将图像的每一像素点转换为一个数据。如果用1位数据来记录,那么它只能代表2种颜色(21=2);如果以8位来记录,便可以表现出256种颜色或色调(28=256),因此使用的位元素越多所能表现的色彩也越多。通常我们使用的颜色有16色、256色、增强16位和真彩色24位。一般所说的真彩色是指24(28×28×28)的位图存储模式适合于内容复杂的图像和真实照片。但随着分辨率以及颜色数的提高,图像所占用的磁盘空间也就相当大;另外由于在放大图像的过程中,其图像势必要变得模糊而失真,放大后的图像像素点实际上变成了像素方格 用数码相机和扫描仪获取的图像都属于位图。

    矢量图像:矢量图像存储的是图像信息的轮廓部分,而不是图像的每一个象素点。例如,一个圆形图案只要存储圆心的坐标位置和半径长度,以及圆的边线和半径长度,以及圆的边线和内部的颜色即可。该存储方式的缺点是经常耗费大量的时间做一些复杂的分析演算工作,图像的显示速度较慢;但图像缩放不会失真;图像的存储空间也要小得多。所以,矢量图比较适合存储各种图表和工程设计图。

     
    展开全文
  • 模式识别及其在图像处理中的应用》 1、模式识别基本框架 一般认为,模式识别是通过具体的事物进行观测所得到的具有时间、空间分布的信息,模式所属的类别或同一类中模式的总体成为模式类,其中个别具体的模式...

    《模式识别及其在图像处理中的应用》

    1、模式识别基本框架

    一般认为,模式识别是通过具体的事物进行观测所得到的具有时间、空间分布的信息,模式所属的类别或同一类中模式的总体成为模式类,其中个别具体的模式往往成为样本。

    样本——预处理——特征选择和提取——分类器设计&&分类结果

    【由上述分析可知,模式识别本身就是将特征空间映射为选择空间,将多维特征降维以减小复杂度,增加鲁棒性】

    2、特征提取和选择

    特征提取是指通过映射的方法用低维空间来表示样本的过程,特征提取后样本的可分性应该更好。常用方法:主元分析(PCA)、线性判别分析、核函数主元分析(Kernel PCA)、独立主元分析(ICA)、自组织映射(SOM)

    特征提取后的各个特征的物理意义有时不是很明确,往往很难看出各个特征对分类器的影响,有的甚至有副作用。因此要在这些特征中选择一部分,这就是特征选择。

    为了判断提取和选择的特征对分类的有效性,人们提出各种衡量特征分类性能的判据。最直接最有效的盘踞是计算分类器错误概率,但很难实现。最简单的判据是用于可用性判据的类内类间距离判据。

    【由上述分析可知,提取和选择对算法性能有决定性的作用,具体操作上既可以通过有监督学习、也可以无监督的聚类分析;除此之外,判断标准很重要,只有有了判断标准,才能够对选择的算法进行衡量和改进,这是反馈】

    3、模式识别的主要方法及其在图像处理中的应用

    1)     统计决策法

    以概率论和数理统计为基础,包括参数法和非参数法。参数法以Bayes决策准则为指导,其中最小错误率和最小风险贝叶斯决策是最常用的决策方法。参数估计方法在样本数据趋于无穷大时渐进理论,然而实际条件往往达不到。在样本数量有限的时候,往往根据样本直接设计分类器,这就是非参数方法。这类方法物理意义直观,但所得的结果和错误率往往没有直接联系。所设计的分类器不能保证最优。比较典型的有线性分类器、最近邻方法、K均值聚类发。

    缺点:缺少结构信息。

    2)     结构模式分析

    利用模式的结构描述与句法描述之间的相似性对模式进行分类,每个模式由它的各个子部分(称为子模式或者模式基元)的组合来表示。对模式的识别常以句法分析的方式进行,即依据给定的一组句法规则来剖析模式的结构。当模式中的每一个基元被分辨出来后,识别过程就可通过执行语法分析来实现。

    3)     模糊模式识别

    将非此即彼的0,1判断更改为隶属度函数。模糊模式识别的关键在隶属度函数的建立,目前的主要方法有模糊统计、模糊分布法、二元对比排序法、相对比较法和专家评分法。

    4)     人工神经网络模式识别

    定义:用软件或者硬件的方法,建立许多以大量处理单元为结点,处理单元实现(加权值的)互联的拓扑网络,进行模拟。

    主要特点:信息处理的并行性、自组织和自适应性、具有很强的学习能力和联想功能以及容错性能。

    4、模式识别的新进展及其在图像处理中的应用

    1)     支持向量机

    2)     仿生模式识别

    【这是篇2004年的论文,并且文章是综述,所以对SVM和仿生模式讲得不是很清楚,接下来找些SVM的论文研究研究】

     

    《模式识别方法概论》

    【这是篇2012年的文章,讲的内容很多与上面的文章有重复,所以不再每小节摘录,只摘录感觉写得好的地方】

    1、为提高识别结果的可靠性,往往需要加入知识库(规则)以对可能产生的错误进行修正,或者引入限制条件大大缩小待识别特征在模型库的搜索空间。

    2、SVM基本思想:先在样本空间或特征空间,构造出最优超平面,使得超平面与不同类样本之间的距离最大,从而达到最大的泛化能力。



    展开全文
  • 图像识别、模式识别调研报告

    千次阅读 2018-09-29 16:02:37
    三个数据集是三个层次:MNIST数据集是灰度图像,不考虑结构信息,实现简单,精度很高;SIFAR-10数据集升级到RGB图像,考虑结构信息,用卷积神经网络实现分类;flower数据集是对一种植物的不同类别进行分类,难度更大...

    整理资料看到了去年这时候写的关于图像识别的调研报告,测试了三种不同层次的图像,跑出了结果,可以作为一个参考数据,搬到CSDN上面,希望对大家有帮助。
    以下内容都是去年写的。


    目前读完了tensorflow的官方文档,理解并跑通了三个数据集的代码。三个数据集是三个层次:MNIST数据集是灰度图像,不考虑结构信息,实现简单,精度很高;SIFAR-10数据集升级到RGB图像,考虑结构信息,用卷积神经网络实现分类;flower数据集是对一种植物的不同类别进行分类,难度更大一点,用四层卷积神经网络实现,由于目前的设备局限,达到的精度还不够理想。
    计划下一步要做的是在多GPU上面训练,优化模型,达到更高的精度。
    再实现图片中的多实物识别,并标记准确率。

    一.测试结果

    1.MNIST数据集的分类

    MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片:它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。
    在这里插入图片描述
    图像在计算机中是一堆按顺序排列的数字,数值为0到255。0表示最暗,255表示最亮。你可以把这堆数字用一个长长的向量来表示。然而这样会失去平面结构的信息。
    这个是入门级的神经网络,不考虑结构信息可以使用简单的神经网络算法实现高准确率的识别,准确率达到99.2%,运算时间只有几分钟。

    2.CIFAR-10 数据集的分类

    上面提到的MNIST数据集是只有黑白颜色的灰度图,而更普遍的图片表达方式是RGB颜色模型,即红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光。
    CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别:飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。
    在CPU上面训练,精度目前只达到65%左右。
    据官方文档,在一个GPU上经过几个小时的训练后,该模型最高可以达到86%的精度。

    3.flower数据集分类

    Flower数据集是五种不同的花卉图片文件,分别在五个文件夹存放五种花卉的图片。
    处理过程:将所有的图片resize成100*100,读取图片时将图片依据文件夹名称分别标记为0、1、2、3、4。前80%为训练集,后20%为验证集。然后设计一个四层的卷积神经网络,实现模型训练验证,目前一次循环要几分钟,循环20次达到的精度不到70%。

    二.图像识别原理

    卷积神经网络就是让权重在不同位置共享的神经网络。
    卷积神经网络大致就是covolutional layer, pooling layer, ReLu layer, fully-connected layer的组合,例如下图所示的结构。
    在这里插入图片描述

    局部连接

    在卷积神经网络中,我们先选择一个局部区域,用这个局部区域去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的一个节点上。

    空间共享

    当filter扫到其他位置计算输出节点yi,时,w1,w2,w3,w4,包括b0是共用的。

    输出空间表达

    图片不用向量去表示是为了保留图片平面结构的信息。 同样的,卷积后的输出若用上图的排列方式则丢失了平面结构信息。 所以我们依然用矩阵的方式排列它们,就得到了下图所展示的连接。

    Depth维的处理

    图片的普遍表达方式是下图这样有3个channels的RGB颜色模型。
    在这里插入图片描述

    Zero padding

    4x4的图片被2x2的filter卷积后变成了3x3的图片,每次卷积后都会小一圈的话,经过若干层后岂不是变的越来越小? Zero padding就可以在这时帮助控制Feature Map的输出尺寸,同时避免了边缘信息被一步步舍弃的问题。

    形状、概念抓取

    卷积的每个filter可以探测特定的形状。又由于Feature Map保持了抓取后的空间结构。若将探测到细小图形的Feature Map作为新的输入再次卷积后,则可以由此探测到“更大”的形状概念。

    多filters

    每个filter可以抓取探测特定的形状的存在。

    非线性

    和前馈神经网络一样,经过线性组合和偏移后,会加入非线性增强模型的拟合能力。

    输出尺寸控制

    现在我们知道了一个卷积层的输出也是一个长方体。 要考虑这个输出长方体的(width, height, depth)由哪些因素决定和控制。

    矩阵乘法执行卷积

    如果按常规以扫描的方式一步步计算局部节点和filter的权重的点乘,则不能高效的利用GPU的并行能力。 所以更普遍的方法是用两个大矩阵的乘法来一次性囊括所有计算。

    Max pooling

    整个图片被不重叠的分割成若干个同样大小的小块(pooling size)。每个小块内只取最大的数字,再舍弃其他节点后,保持原有的平面结构得出output。

    全连接层

    当抓取到足以用来识别图片的特征后,接下来的就是如何进行分类。 全连接层(也叫前馈层)就可以用来将最后的输出映射到线性可分空间。 通常卷积网络的最后会将末端得到的长方体平摊(flatten)成一个长长的向量,并送入全连接层配合输出层进行分类。

    展开全文
  • 如通过聚类将一个图像进行分割(分割就是把图像分割成若干有意义的区域的处理技术,这些区域互不交叠,每个区域内部的某种特性或相同或相近,而不同区域间有明显差异)。 聚类准则  一般有俩种方法来最为聚类优劣的...
  • 本文作者介绍了梯度下降算法,通过可微编程实现寻找一种最佳的图像抖动模式,详细介绍了其中的五个步骤,并通过结果展示了图像效果。读懂本文,需要有一定的高等数学知识。
  • 模式识别--图像识别技术的核心

    千次阅读 2011-05-17 14:53:00
    该项技术主要涉及数字信号处理和模式识别两个方面的,数字信号处理是模式识别的前提和铺垫,模式识别是图像识别的实质性阶段。  广义地说,存在于时间和空间中可观察的事物,如果我们可以区别它们是否相同或...
  • 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器...
  • 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器...
  • <br />傅立叶模式认为,人脑长时记忆存储的是图像形状的傅立叶转换模式,而不是图像形状的原形。傅立叶变换的实质是将视网膜得到的图像的密度矩阵分解成一定频率上的信号。也就是说,把在真实世界看到的图像...
  • 图像分析则着重于构造图像的描述方法,更多地是用符号表示各种图像,而不是图像本身进行运算,并利用各种有关知识进行推理 图像理解: 图像理解(image understanding,IU)就是对图像的语义理解。它是以图像为...
  • 图像增强

    万次阅读 多人点赞 2018-07-11 13:30:59
    但,工业环境复杂,导致常常得到的目标图像不是非常理想。我们还需要利用图像增强技术,对图像进行进一步处理,以得到更好的特征和视觉效果。 图像增强:  一般的图像增强方法根据增强处理过程所在的空间不同,...
  • 数字图像处理的企业有哪些?

    千次阅读 2012-06-15 08:23:03
    就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势...目前的模式识别,大部分也都是图像模式识别。在实际应用场合,
  • 关于图像特征提取

    万次阅读 多人点赞 2010-01-17 19:30:00
    网上发现一篇不错的文章,是关于图像特征提取的,给自己做的项目有点类似,发出来供大家参考。 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像...
  • ESP32-CAM在STA模式下通过WIFI向电脑/手机传输图像

    万次阅读 多人点赞 2019-05-12 17:49:34
    主要就是配置摄像头型号,串口,wifi名称和密码,因为ESP32的wifi模块既可以作为AP(模块自己开热点),也可以作为STA(连别人热点),或者既做AP又做STA,默认的是STA模式,也就是如果想要得到他的输出图像,我们的...
  • 视觉,图像模式领域一般都不讨论影响因子IF这个概念,因为实在是太特么低了,顶级的TPAMI也才在4到6之间波动,而生物、化学相关的专业随便一个期刊的IF都是十几二十几。H-index是个不错的指标,而且可以和会议一起...
  • 图像拼接

    千次阅读 2018-12-08 17:15:01
    文章目录图像拼接过程的三个过程图像的预处理图像预处理图像的投影模型平面投影模式球面投影模式立方体投影模型柱面投影模型图像去噪图像的增强图像配准图像配准的原理及概念图像配准算法基于空间域像素灰度值的方法...
  • 图像处理:图像灰度化

    万次阅读 多人点赞 2019-06-18 16:42:06
    灰度图像上每个像素的颜色值又称为灰度,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。所谓灰度值是指色彩的浓淡程度,灰度直方图是指一幅数字图像中,对应每一个灰度值统计出具有该灰度值的象...
  • 图像卷积

    千次阅读 2018-11-14 16:07:10
    这几天在进行其它运算时突然发觉自己对于卷积的概念和运算有一些陌生,重新复习...图像卷积操作(convolution),或称为核操作(kernel),是进行图像处理的一种常用手段, 图像卷积操作的目的是利用像素点和其邻...
  • 查看图片的模式 from PIL import Image img = Image.open('xxx.gif') print(img.mode) 对于一般的 gif 图片,你会得到输出 "P"。 其他输出有"1-二值图",“L-灰度图”,“RGB-三原色”"RGBA-三原色+透明度alpha"等...
  • CV/PR:模式识别与图像处理笔试题

    千次阅读 2015-03-23 09:35:03
    人工智能与模式识别的研究已有多年,但似乎公认的观点认为它仍然非常困难。试 对你所熟悉的任一方向(如指纹识别、人像识别、语音识别、字符识别、自然语言理解等 )的发展状况进行描述。并设想如果你将从事该方向的...
  •  LBP(Local Binary Pattern,局部二值模式)是一种描述图像局部纹理的特征算子,该算子是由T.Ojala等人于1994年首次提出来的,后来经过改进,可用于图像特征分析,该算子具有旋转不变性和灰度不变性等显著的优点。...
  • 图像特征提取

    万次阅读 多人点赞 2017-01-03 16:38:12
    从本节开始, 我们将逐步从数字图像处理向图像识别过渡。 严格地说, 图像特征提取属于图像分析的范畴, 是数字图像处理的高级阶段, 同时也是图像识别的开始。本文主要包括以下内容 ...局部二进制模式(LBP, LocaJ
  • 图像滤波

    千次阅读 2018-06-11 11:21:54
    抽出对象的特征作为图像识别的特征模式 为适应图像处理的要求,消除图像数字化时混入的噪声 平滑处理 平滑滤波,顾名思义,消除噪音,模糊处理,使图片的画面看起来跳度不是很大,是低频增强的空间滤波技术,一般...
  • 图像分辨率

    千次阅读 2014-05-18 17:36:41
    关于图像分辨率,一直跟视频分辨率分辨

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 183,110
精华内容 73,244
关键字:

哪些不是图像模式