精华内容
下载资源
问答
  • 1. 共轭复特征值 设AAA是n×nn\times nn×n的实矩阵, Ax‾=Aˉxˉ=Axˉ \overline{Ax}=\bar{A}\bar{x}=A\bar{x} Ax=Aˉxˉ=Axˉ 假设λ\lambdaλ是AAA的特征值,xxx为λ\lambdaλ对应的特征向量,则λˉ\bar{\...

    1. 共轭复特征值

    AAn×nn\times n的实矩阵,
    Ax=Aˉxˉ=Axˉ \overline{Ax}=\bar{A}\bar{x}=A\bar{x}
    假设λ\lambdaAA的特征值,xxλ\lambda对应的特征向量,则λˉ\bar{\lambda}同样是AA的特征值,而xˉ\bar{x}是对应的特征向量,
    Axˉ=Ax=λx=λˉxˉ A\bar{x}=\overline{Ax}=\overline{\lambda x}=\bar{\lambda}\bar{x}

    所以,当AAn×nn\times n的实矩阵,它的复特征值以共轭复数对出现。

    2. rotation-scaling matrix

    假如aa,bb为实数,且不同时为0,则将下面的矩阵称为rotation-scaling matrix
    A=[abba](1) A=\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \tag{1}
    则有,

    1. A可以写成下面的旋转+缩放形式,
      A=[abba]=[r00r][arbrbrar]=[r00r][cos(θ)sin(θ)sin(θ)cos(θ)](2) \begin{aligned} A&=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}\\ &=\begin{bmatrix} r &0 \\ 0 &r \\ \end{bmatrix} \begin{bmatrix} \frac{a}{r} & \frac{-b}{r}\\ \frac{b}{r}& \frac{a}{r} \end{bmatrix} \\ &=\begin{bmatrix} r &0 \\ 0 &r \\ \end{bmatrix} \begin{bmatrix} \cos(\theta)& -\sin(\theta)\\ \sin(\theta)& \cos(\theta) \end{bmatrix} \\ \end{aligned} \tag{2}
      其中,r=det(A)=a2+b2r=\sqrt{\det(A)}=\sqrt{a^2+b^2},则AA先旋转θ\theta,再倍乘rr

    AA的特征值为λ=a±ib\lambda=a\pm ib

    3. 矩阵的复特征值

    首先我们假定下面的记号,
    Re(a+bi)=aIm(a+bi)=bRe(x+yiz+wi)=(xz)Im(x+yiz+wi)=(yw)(3) \begin{aligned} Re(a + bi) = a \\ Im(a + bi) = b \\ \operatorname{Re}\left(\begin{array}{l} x+y i \\ z+w i \end{array}\right)=\left(\begin{array}{l} x \\ z \end{array}\right) \\ \operatorname{Im}\left(\begin{array}{l} x+y i \\ z+w i \end{array}\right)=\left(\begin{array}{l} y \\ w \end{array}\right) \end{aligned} \tag{3}

    这里首先讨论的矩阵是2×22\times2的实矩阵,且矩阵有复特征值λ\lambda,而与特征值相对应的特征向量为vv这时候有个很漂亮的结论A=CBC1A=CBC^{-1},其中
    C=(Re(v)Im(v)) and B=(Re(λ)Im(λ)Im(λ)Re(λ))(4)C=\left(\begin{array}{cc} | & | \\ \operatorname{Re}(v) & \operatorname{Im}(v) \\ | & | \end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc} \operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\ -\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda) \end{array}\right)\tag{4}
    其中BB矩阵为rotation-scaling matrix。

    为了证明矩阵AA的分解公式成立,我们首先证明CC是可逆的,即Re(v)\operatorname{Re}(v)Im(v)\operatorname{Im}(v)是线性无关的。用反证法,假设Re(v)\operatorname{Re}(v)Im(v)\operatorname{Im}(v)是线性相关的,则存在x,yx,y,使得,xRe(v)+yIm(v)=0x\operatorname{Re}(v)+y\operatorname{Im}(v)=0,则
    (y+ix)v=(y+ix)(Re(v)+iIm(v))=yRe(v)xIm(v)+(xRe(v)+yIm(v))i=yRe(v)xIm(v)(5) \begin{aligned} (y+i x) v &=(y+i x)(\operatorname{Re}(v)+i \operatorname{Im}(v)) \\ &=y \operatorname{Re}(v)-x \operatorname{Im}(v)+(x \operatorname{Re}(v)+y \operatorname{Im}(v)) i \\ &=y \operatorname{Re}(v)-x \operatorname{Im}(v) \end{aligned}\tag{5}
    (y+ix)v(y+i x) v依然是属于特征值λ\lambda的特征向量,而从式(5)可以得到(y+ix)v(y+i x) v是个实向量,而对于一个实矩阵的实特征向量对应的特征值一定是实的,但是和λ\lambda是复特征根矛盾,因此可证Re(v)\operatorname{Re}(v)Im(v)\operatorname{Im}(v)是线性无关的。

    此外,我们假设复特征值λ=a+bi\lambda=a+bi,同时对应的特征向量为v=(x+yiz+wi)v=\begin{pmatrix} x+yi \\ z+wi \end{pmatrix},则有,
    Av=λv=(a+bi)(x+yiz+wi)=((axby)+(ay+bx)i(azbw)+(aw+bz)i)=(axbyazbw)+i(ay+bxaw+bz)(6) \begin{aligned} A v=\lambda v &=(a+b i)\left(\begin{array}{c} x+y i \\ z+w i \end{array}\right) \\ &=\left(\begin{array}{c} (a x-b y)+(a y+b x) i \\ (a z-b w)+(a w+b z) i \end{array}\right) \\ &=\left(\begin{array}{c} a x-b y \\ a z-b w \end{array}\right)+i\left(\begin{array}{c} a y+b x \\ a w+b z \end{array}\right) \end{aligned}\tag{6}
    同时,
    A((xz)+i(yw))=A(xz)+iA(yw)=ARe(v)+iAIm(v)(7) A\left(\left(\begin{array}{l} x \\ z \end{array}\right)+i\left(\begin{array}{l} y \\ w \end{array}\right)\right)=A\left(\begin{array}{l} x \\ z \end{array}\right)+i A\left(\begin{array}{l} y \\ w \end{array}\right)=A \operatorname{Re}(v)+i A \operatorname{Im}(v)\tag{7}

    比较式(6)和(7),可以得到,
    ARe(v)=(axbyazbw)AIm(v)=(ay+bxaw+bz)(8)\operatorname{ARe}(v)=\left(\begin{array}{l} a x-b y \\ a z-b w \end{array}\right) \quad \operatorname{AIm}(v)=\left(\begin{array}{l} a y+b x \\ a w+b z \end{array}\right)\tag{8}

    接下来我们计算CBC1Re(v)C B C^{-1} \operatorname{Re}(v),和CBC1Im(v)C B C^{-1} \operatorname{Im}(v),由(4)式可以马上得到Ce1=Re(v)Ce_1=\operatorname{Re}(v),Ce2=Im(v)Ce_2=\operatorname{Im}(v)(自然基取对应的列),则有

    CBC1Re(v)=CBe1=C(ab)=aRe(v)bIm(v)=a(xz)b(yw)=(axbyazbw)=ARe(v)CBC1Im(v)=CBe2=C(ba)=bRe(v)+aIm(v)=b(xz)+a(yw)=(ay+bxaw+bz)=AIm(v)(9) \begin{aligned} C B C^{-1} \operatorname{Re}(v) &=C B e_{1}=C\left(\begin{array}{c} a \\ -b \end{array}\right)=a \operatorname{Re}(v)-b \operatorname{Im}(v) \\ &=a\left(\begin{array}{l} x \\ z \end{array}\right)-b\left(\begin{array}{l} y \\ w \end{array}\right)=\left(\begin{array}{l} a x-b y \\ a z-b w \end{array}\right)=A \operatorname{Re}(v) \\ C B C^{-1} \operatorname{Im}(v) &=C B e_{2}=C\left(\begin{array}{l} b \\ a \end{array}\right)=b \operatorname{Re}(v)+a \operatorname{Im}(v) \\ &=b\left(\begin{array}{l} x \\ z \end{array}\right)+a\left(\begin{array}{l} y \\ w \end{array}\right)=\left(\begin{array}{c} a y+b x \\ a w+b z \end{array}\right)=A \operatorname{Im}(v) \end{aligned}\tag{9}
    因为Re(v)\operatorname{Re}(v)Im(v)\operatorname{Im}(v)的线性无关的,可以组成R2\mathbb{R}^2的基,对于任意的向量www=cRe(v)+dIm(v)w=c\operatorname{Re}(v)+d\operatorname{Im}(v),则有,
    Aw=A(cRe(v)+dIm(v))=cARe(v)+dAIm(v)=cCBC1Re(v)+dCBC1Im(v)=CBC1(cRe(v)+dIm(v))=CBC1w(10) \begin{aligned} A w &=A(\operatorname{cRe}(v)+d \operatorname{Im}(v)) \\ &=\operatorname{cARe}(v)+d A \operatorname{Im}(v) \\ &=c C B C^{-1} \operatorname{Re}(v)+d C B C^{-1} \operatorname{Im}(v) \\ &=C B C^{-1}(c \operatorname{Re}(v)+d \operatorname{Im}(v)) \\ &=C B C^{-1} w \end{aligned}\tag{10}

    因此A=CBC1A=C B C^{-1}
    对于AA的带有rotation-scaling matrix的分解,我们可以这么理解,AA中含有旋转和比例变换,矩阵CC提供了变量代换,如x=Cux=CuAA的作用相当于先将xx代换为uu,然后在CC所形成的基下利用BB矩阵进行旋转和缩放,旋转产生一个椭圆,然后将uu再变量代换回xx。注意,旋转是在CC所形成的基下,即顺着Re(v)\operatorname{Re}(v)Im(v)\operatorname{Im}(v)所形成的基旋转

    对于n×nn\times n矩阵,都有类似上述2×22\times 2矩阵的分解形式,下面以3×33\times 3为列,如果矩阵AA有一个实的特征值λ2\lambda_{2},一个复特征值λ1\lambda_{1},则λ1\overline{\lambda_{1}}为另外一个复特征值,λ2\lambda_{2}对应的实特征向量为v2v_2λ1\lambda_{1}对应的复特征向量为v1v_1,将AA分解为A=CBC1A=C B C^{-1},
    C=(Re(v1)Im(v1)v2)B=(Re(λ1)Im(λ1)0Im(λ1)Re(λ1)000λ2)(11) C=\left(\begin{array}{ccc} | & | & | \\ \operatorname{Re}\left(v_{1}\right) & \operatorname{Im}\left(v_{1}\right) & v_{2} \\ | & | & | \end{array}\right) \quad B=\left(\begin{array}{ccc} \operatorname{Re}\left(\lambda_{1}\right) & \operatorname{Im}\left(\lambda_{1}\right) & 0 \\ -\operatorname{Im}\left(\lambda_{1}\right) & \operatorname{Re}\left(\lambda_{1}\right) & 0 \\ \hline 0 & 0 & \lambda_{2} \end{array}\right)\tag{11}
    对于上述矩阵AA,在R3\mathbb{R}^{3}中存在某个平面AA对平面的作用是旋转和缩放,该平面在AA的作用下是不变的。
    举一个例子,例如,
    A=[0.80.600.60.80001.07] A=\begin{bmatrix} 0.8 & -0.6 & 0 \\ 0.6 & 0.8 & 0 \\ 0 & 0 & 1.07 \end{bmatrix}
    上述矩阵AA与式(11)中的矩阵形式相同,如下图所示,对于x1x2x_1x_2平面(第三坐标为0)的任一向量w0w_0AA旋转到该平面的另外一个位置上,不在该平面的任一向量x0x_0的第三坐标乘1.07。下图显示了w0=(2,0,0)w_0=(2,0,0)x0=(2,0,1)x_0=(2,0,1)AA作用的迭代结果,w0w_0x1x2x_1x_2平面旋转,而x0x_0乘1.07后在旋转的同时也在盘旋上升

    展开全文
  • hermit矩阵求特征值

    2011-03-07 10:01:23
    该程序求解了hermit矩阵的特征值和特征向量
  • 雅可比法用于对称矩阵,QR用于非对称...QR分解法求特征向量及其特征值c++程序源于feitian_feiwu的资源,本资源增加了复特征值对应的特征向量计算。 vs2013下调试通过,复特征向量不唯一,程序里提供了在线验证网址,
  • Hermite矩阵求特征值和特征向量的问题转化为求解实对称阵的特征值和特征向量
  • 利用QR方法求解一般实矩阵的特征值的方法,包括求解得到的复数特征值
  • 特征值特征值的几何意义

    千次阅读 2019-04-29 23:05:44
    写的很好,收藏用,转载自:https://blog.csdn.net/qq_36653505/article/details/82025971
    展开全文
  • 矩阵特征值

    2019-10-07 22:58:18
    ...如何理解矩阵特征值? 想要理解特征值,首先要理解矩阵相似。什么是矩阵相似呢?从定义角度就是:存在可逆矩阵P...
     参考:https://www.zhihu.com/question/21874816


    想要理解特征值,首先要理解矩阵相似。什么是矩阵相似呢?从定义角度就是:存在可逆矩阵P满足B=P^{-1} AP则我们说A和B是相似的。让我们来回顾一下之前得出的重要结论:对于同一个线性空间,可以用两组不同的基[\alpha ]和基[\beta ]来描述,他们之间的过渡关系是这样的:[\beta ]=[\alpha ]P,而对应坐标之间的过渡关系是这样的:x_{2}=P^{-1}x_{1}。其中P是可逆矩阵,可逆的意义是我们能变换过去也要能变换回来,这一点很重要。


    我们知道,对于一个线性变换,只要你选定一组基,那么就可以用一个矩阵T1来描述这个线性变换。换一组基,就得到另一个不同的矩阵T2(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系)。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。具体来说,有一个线性变换x_{1}\rightarrow y_{1},我们选择基[\alpha ]来描述,对应矩阵是T_{1} ;同样的道理,我们选择基[\beta ]来描述x_{2}\rightarrow y_{2},,对应矩阵是T_{2} ;我们知道基[\alpha ]和基[\beta ]是有联系的,那么他们之间的变换T_{1}T_{2} 有没有联系呢?


    当然有,T_{1}T_{2} 就是相似的关系,具体的请看下图:

    <img src="https://pic1.zhimg.com/6cf43eca0f26cb1752f8fbf2633b699c_b.jpg" data-rawwidth="721" data-rawheight="449" class="origin_image zh-lightbox-thumb" width="721" data-original="https://pic1.zhimg.com/6cf43eca0f26cb1752f8fbf2633b699c_r.jpg">

    没错,所谓相似矩阵,就是同一个线性变换的不同基的描述矩阵。这就是相似变换的几何意义。


    这个发现太重要了。原来一族相似矩阵都是同一个线性变换的描述啊!难怪这么重要!工科研究生课程中有矩阵论、矩阵分析等课程,其中讲了各种各样的相似变换,比如什么相似标准型,对角化之类的内容,都要求变换以后得到的那个矩阵与先前的那个矩阵式相似的,为什么这么要求?因为只有这样要求,才能保证变换前后的两个矩阵是描述同一个线性变换的。就像信号处理(积分变换)中将信号(函数)进行拉氏变换,在复数域处理完了之后又进行拉式反变换,回到实数域一样。信号处理中是主要是为了将复杂的卷积运算变成乘法运算。其实这样的变换还有好多,有兴趣可以看积分变换的教材。


    为什么这样做呢?矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个线性变换。至于什么样的矩阵是“美”的,什么样的是“丑”的,我们说对角阵是美的。在线性代数中,我们会看到,如果把复杂的矩阵变换成对角矩阵,作用完了之后再变换回来,这种转换很有用处,比如求解矩阵的n次幂!而学了矩阵论之后你会发现,矩阵的n次幂是工程中非常常见的运算。这里顺便说一句,将矩阵对角化在控制工程和机械振动领域具有将复杂方程解耦的妙用!总而言之,相似变换是为了简化计算!


    从另一个角度理解矩阵就是:矩阵主对角线上的元素表示自身和自身的关系,其他位置的元素aij表示i位置和j位置元素之间的相互关系。那么好,特征值问题其实就是选取了一组很好的基,就把矩阵 i位置和j位置元素之间的相互关系消除了。而且因为是相似变换,并没有改变矩阵本身的特性。因此矩阵对角化才如此的重要!


    特征向量的引入是为了选取一组很好的基。空间中因为有了矩阵,才有了坐标的优劣。对角化的过程,实质上就是找特征向量的过程。如果一个矩阵在复数域不能对角化,我们还有办法把它化成比较优美的形式——Jordan标准型。高等代数理论已经证明:一个方阵在复数域一定可以化成Jordan标准型。这一点有兴趣的同学可以看一下高等代数后或者矩阵论。


    经过上面的分析相信你已经可以得出如下结论了:坐标有优劣,于是我们选取特征向量作为基底,那么一个线性变换最核心的部分就被揭露出来——当矩阵表示线性变换时,特征值就是变换的本质!特征值的几何意义前面的答主已经用很多图解释过了,接下来我们分析一下特征值的物理意义:特征值英文名eigen value。“特征”一词译自德语的eigen,由希尔伯特在1904年首先在这个意义下使用(赫尔曼·冯·亥姆霍兹在更早的时候也在类似意义下使用过这一概念)。eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”—这强调了特征值对于定义特定的变换上是很重要的。它还有好多名字,比如谱,本征值。为什么会有这么多名字呢?


    原因就在于他们应用的领域不同,中国人为了区分,给特不同的名字。你看英文文献就会发现,他们的名字都是同一个。当然,特征值的思想不仅仅局限于线性代数,它还延伸到其他领域。在数学物理方程的研究领域,我们就把特征值称为本征值。如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的本征值。


    前面我们讨论特征值问题面对的都是有限维度的特征向量,下面我们来看看特征值对应的特征向量都是无限维函数的例子。这时候的特征向量我们称为特征函数,或者本证函数。这还要从你熟悉的微分方程说起。方程本质是一种约束,微分方程就是在世界上各种各样的函数中,约束出一类函数。对于一阶微分方程

    \frac{dy}{dt} =\lambda y

    我们发现如果我将变量y用括号[]包围起来,微分运算的结构和线性代数中特征值特征向量的结构,即\frac{d}{dt}[ y]=\lambda yT[y] =\lambda y竟是如此相似。这就是一个求解特征向量的问题啊!只不过“特征向量”变成函数!我们知道只有e^{\lambda t}满足这个式子。这里出现了神奇的数e,一杯开水放在室内,它温度的下降是指数形式的;听说过放射性元素的原子核发生衰变么?随着放射的不断进行,放射强度将按指数曲线下降;化学反应的进程也可以用指数函数描述……类似的现象还有好多。


    为什么选择指数函数而不选择其他函数,因为指数函数是特征函数。为什么指数函数是特征?我们从线性代数的特征向量的角度来解释。这已经很明显了e^{\lambda t}就是“特征向量”。于是,很自然的将线性代数的理论应用到线性微分方程中。那么指数函数就是微分方程(实际物理系统)的特征向量。用特征向量作为基表示的矩阵最为简洁。就像你把一个方阵经过相似对角化变换,耦合的矩阵就变成不耦合的对角阵一样。在机械振动里面所说的模态空间也是同样的道理。如果你恰巧学过振动分析一类的课程,也可以来和我交流。


    同理,用特征函数解的方程也是最简洁的,不信你用级数的方法解方程,你会发现方程的解有无穷多项。解一些其他方程的时候(比如贝塞尔方程)我们目前没有找到特征函数,于是退而求其次才选择级数求解,至少级数具有完备性。实数的特征值代表能量的耗散或者扩散,比如空间中热量的传导、化学反应的扩散、放射性元素的衰变等。虚数的特征值(对应三角函数)代表能量的无损耗交换,比如空间中的电磁波传递、振动信号的动能势能等。复数的特征值代表既有交换又有耗散的过程,实际过程一般都是这样的。复特征值在电路领域以及振动领域将发挥重要的作用,可以说,没有复数,就没有现代的电气化时代!


    对于二阶微分方程方程,它的解都是指数形式或者复指数形式。可以通过欧拉公式将其写成三角函数的形式。复特征值体现最多的地方是在二阶系统,别小看这个方程,整本自动控制原理都在讲它,整个振动分析课程也在讲它、还有好多课程的基础都是以这个微分方程为基础,这里我就不详细说了,有兴趣可以学习先关课程。说了这么多只是想向你传达一个思想,就是复指数函数式系统的特征向量!


    如果将二阶微分方程转化成状态空间\frac{dx}{dt} =Ax的形式(具体转化方法见现代控制理论,很简单的)

    。则一个二阶线性微分方程就变成一个微分方程组的形式这时就出现了矩阵A,矩阵可以用来描述一个系统:如果是振动问题,矩阵A的特征值是虚数,对应系统的固有频率,也就是我们常说的,特征值代表振动的谱。如果含有耗散过程,特征值是负实数,对应指数衰减;特征值是正实数,对应指数发散过程,这时是不稳定的,说明系统极容易崩溃,如何抑制这种发散就是控制科学研究的内容。


    提到振动的谱,突然想到了这个经典的例子:美国数学家斯特让(G..Strang)在其经典教材《线性代数及其应用》中这样介绍了特征值作为频率的物理意义,他说:"大概最简单的例子(我从不相信其真实性,虽然据说1831年有一桥梁毁于此因)是一对士兵通过桥梁的例子。传统上,他们要停止齐步前进而要散步通过。这个理由是因为他们可能以等于桥的特征值之一的频率齐步行进,从而将发生共振。就像孩子的秋千那样,你一旦注意到一个秋千的频率,和此频率相配,你就使频率荡得更高。一个工程师总是试图使他的桥梁或他的火箭的自然频率远离风的频率或液体燃料的频率;而在另一种极端情况,一个证券经纪人则尽毕生精力于努力到达市场的自然频率线。特征值是几乎任何一个动力系统的最重要的特征。"

    <img src="https://pic2.zhimg.com/0a02c56afda30b25d653ae4e24629d5d_b.jpg" data-rawwidth="395" data-rawheight="216" class="content_image" width="395">

    对于一个线性系统,总可以把高阶的方程转化成一个方程组描述,这被称为状态空间描述。因此,他们之间是等价的。特征值还有好多用处,原因不在特征值本身,而在于特征值问题和你的物理现象有着某种一致的对应关系。学习特征值问题告诉你一种解决问题的方法:寻找事物的特征,然后特征分解。


    最后声明一下, 本文是在整理孟岩老师的《理解矩阵》和任广千、胡翠芳老师的《线性代数的几何意义》基础上形成的,只是出于一种对数学的爱好!有兴趣的读者建议阅读原文。也欢迎下载《神奇的矩阵》和《神奇的矩阵第二季》了解更多有关线性代数和矩阵的知识。

    41581 条评论
    分享
    收藏感谢
    收起

    补充:答主现在用到的多数是对称矩阵或酉矩阵的情况,有思维定势了,写了半天才发现主要讲的是对称矩阵,这答案就当科普用了。特征值在很多领域应该都有自己的用途,它的物理意义到了本科高年级或者研究生阶段涉及到具体问题的时候就容易理解了,刚学线性代数的话,确实抽象。

    ——————————————————以下为正文——————————————————

    从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在每个基上的投影长度。
    特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。

    应用到最优化中,意思就是对于R的二次型,自变量在这个方向上变化的时候,对函数值的影响最大,也就是该方向上的方向导数最大。
    应用到数据挖掘中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大。

    ——————————————————举两个栗子——————————————————

    应用1 二次型最优化问题

    二次型y=x^{T} Rx,其中R是已知的二阶矩阵,R=[1,0.5;0.5,1],x是二维列向量,x=[x1;x2],求y的最小值。

    求解很简单,讲一下这个问题与特征值的关系。
    对R特征分解,特征向量是[-0.7071;0.7071]和[0.7071;0.7071],对应的特征值分别是0.5和1.5。
    然后把y的等高线图画一下
    <img src="https://pic4.zhimg.com/7274a04a7a947640122b225967a8385b_b.jpg" data-rawwidth="561" data-rawheight="420" class="origin_image zh-lightbox-thumb" width="561" data-original="https://pic4.zhimg.com/7274a04a7a947640122b225967a8385b_r.jpg">从图中看,函数值变化最快的方向,也就是曲面最陡峭的方向,归一化以后是[0.7071;0.7071],嗯哼,这恰好是矩阵R的一个特征值,而且它对应的特征向量是最大的。因为这个问题是二阶的,只有两个特征向量,所以另一个特征向量方向就是曲面最平滑的方向。这一点在分析最优化算法收敛性能的时候需要用到。

    从图中看,函数值变化最快的方向,也就是曲面最陡峭的方向,归一化以后是[0.7071;0.7071],嗯哼,这恰好是矩阵R的一个特征值,而且它对应的特征向量是最大的。因为这个问题是二阶的,只有两个特征向量,所以另一个特征向量方向就是曲面最平滑的方向。这一点在分析最优化算法收敛性能的时候需要用到。
    二阶问题比较直观,当R阶数升高时,也是一样的道理。

    应用2 数据降维

    兴趣不大的可以跳过问题,直接看后面降维方法。
    机器学习中的分类问题,给出178个葡萄酒样本,每个样本含有13个参数,比如酒精度、酸度、镁含量等,这些样本属于3个不同种类的葡萄酒。任务是提取3种葡萄酒的特征,以便下一次给出一个新的葡萄酒样本的时候,能根据已有数据判断出新样本是哪一种葡萄酒。
    问题详细描述:UCI Machine Learning Repository: Wine Data Set
    训练样本数据:archive.ics.uci.edu/ml/

    原数据有13维,但这之中含有冗余,减少数据量最直接的方法就是降维。
    做法:把数据集赋给一个178行13列的矩阵R,减掉均值并归一化,它的协方差矩阵C=R^{T}R,C是13行13列的矩阵,对C进行特征分解,对角化C=UDU^{T},其中U是特征向量组成的矩阵,D是特征之组成的对角矩阵,并按由大到小排列。然后,另R' =RU,就实现了数据集在特征向量这组正交基上的投影。嗯,重点来了,R’中的数据列是按照对应特征值的大小排列的,后面的列对应小特征值,去掉以后对整个数据集的影响比较小。比如,现在我们直接去掉后面的7列,只保留前6列,就完成了降维。这个降维方法叫PCA(Principal Component Analysis)。
    下面看结果:
    <img src="https://pic2.zhimg.com/1c59933649aa655b14d648300fd2c559_b.jpg" data-rawwidth="562" data-rawheight="413" class="origin_image zh-lightbox-thumb" width="562" data-original="https://pic2.zhimg.com/1c59933649aa655b14d648300fd2c559_r.jpg">这是不降维时候的分类错误率。这是不降维时候的分类错误率。<img src="https://pic2.zhimg.com/30b87d38961b880fca2fea790bf5f515_b.jpg" data-rawwidth="552" data-rawheight="408" class="origin_image zh-lightbox-thumb" width="552" data-original="https://pic2.zhimg.com/30b87d38961b880fca2fea790bf5f515_r.jpg">

    这是降维以后的分类错误率。

    结论:降维以后分类错误率与不降维的方法相差无几,但需要处理的数据量减小了一半(不降维需要处理13维,降维后只需要处理6维)。
    1073114 条评论
    分享
    收藏感谢
    收起

    特征值不仅仅是数学上的一个定义或是工具,特征值是有具体含义的,是完全看得见摸得着的。

    1. 比如说一个三维矩阵,理解成线性变换,作用在一个球体上:

    三个特征值决定了 对球体在三个维度上的拉伸/压缩,把球体塑造成一个橄榄球;

    剩下的部分决定了这个橄榄球在三维空间里面怎么旋转。


    2. 对于一个微分方程:

    <img src="https://pic1.zhimg.com/059f6f160cb805012c8266eccc575b10_b.jpg" data-rawwidth="230" data-rawheight="102" class="content_image" width="230">

    将系数提取出来

    <img src="https://pic1.zhimg.com/8a2685d051d47c7be0f0d062dee5eca4_b.jpg" data-rawwidth="187" data-rawheight="83" class="content_image" width="187">

    对角化:

    <img src="https://pic4.zhimg.com/d4438e57b29d86ccbe5acd8136ea5227_b.jpg" data-rawwidth="240" data-rawheight="90" class="content_image" width="240">

    其中

    <img src="https://pic1.zhimg.com/0ea72d53419fda40c8c4e08522eb0c20_b.jpg" data-rawwidth="228" data-rawheight="73" class="content_image" width="228">

    由于

    <img src="https://pic1.zhimg.com/0588de5107d6dd2331ae8c223616233c_b.jpg" data-rawwidth="221" data-rawheight="49" class="content_image" width="221">

    定义

    <img src="https://pic3.zhimg.com/0ea3ae6ed484e1c2b1a943044d9c8676_b.jpg" data-rawwidth="102" data-rawheight="23" class="content_image" width="102">

    于是有

    <img src="https://pic4.zhimg.com/a6e4c0e1755c7259ad10df312362c7ef_b.jpg" data-rawwidth="110" data-rawheight="25" class="content_image" width="110">

    因此y的变化率与特征值息息相关:

    <img src="https://pic2.zhimg.com/28211481cc93355c212a40f0c4fce039_b.jpg" data-rawwidth="210" data-rawheight="75" class="content_image" width="210">

    再将y由Q变换回x,我们就能得出x在不同时间的值。x的增长速度就是特征值λ,Q用来把x旋转成y。

    13512 条评论
    分享
    收藏感谢
    收起

    各位知友在点赞同之前请看一下评论区。这个例子有待讨论。

    -----------
    我举一个直观一点的例子吧...我也喜欢数学的直观之美。

    我们知道,一张图像的像素(如:320 x 320)到了计算机里面事实上就是320x320的矩阵,每一个元素都代表这个像素点的颜色..

    如果我们把基于特征值的应用,如PCA、向量奇异值分解SVD这种东西放到图像处理上,大概就可以提供一个看得到的、直观的感受。关于SVD的文章可以参考LeftNotEasy的文章:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用


    简单的说,SVD的效果就是..用一个规模更小的矩阵去近似原矩阵...
    A_{m\times n} \approx U_{m\times r} \Sigma_{r\times r} V_{r\times n}
    这里A就是代表图像的原矩阵..其中的\Sigma_{r\times r}尤其值得关注,它是由A的特征值从大到小放到对角线上的..也就是说,我们可以选择其中的某些具有“代表性”的特征值去近似原矩阵!

    左边的是原始图片
    <img src="https://pic3.zhimg.com/58a5bda06fd38662cd0868efdc9e91a2_b.jpg" data-rawwidth="510" data-rawheight="384" class="origin_image zh-lightbox-thumb" width="510" data-original="https://pic3.zhimg.com/58a5bda06fd38662cd0868efdc9e91a2_r.jpg">当我把特征值的数量减少几个的时候...后面的图像变“模糊”了..当我把特征值的数量减少几个的时候...后面的图像变“模糊”了..
    <img src="https://pic3.zhimg.com/c9a2b470aec764ea8564c07f038ab46a_b.jpg" data-rawwidth="510" data-rawheight="384" class="origin_image zh-lightbox-thumb" width="510" data-original="https://pic3.zhimg.com/c9a2b470aec764ea8564c07f038ab46a_r.jpg">同样地...同样地...
    <img src="https://pic4.zhimg.com/d99db09dade1a9b7bb41b9190535d22f_b.jpg" data-rawwidth="510" data-rawheight="384" class="origin_image zh-lightbox-thumb" width="510" data-original="https://pic4.zhimg.com/d99db09dade1a9b7bb41b9190535d22f_r.jpg">
    关键的地方来了!如果我们只看到这里的模糊..而没有看到计算机(或者说数学)对于人脸的描述,那就太可惜了...我们看到,不论如何模糊,脸部的关键部位(我们人类认为的关键部位)——五官并没有变化太多...这能否说:数学揭示了世界的奥秘?
    19733 条评论
    分享
    收藏感谢
    收起
    前面的回答比较专业化,而且好像没说特征值是虚数的情况,并不是只有特征向量的伸缩。作为工科线代水平,我说下自己的理解。
    矩阵特征值是对特征向量进行伸缩和旋转程度的度量,实数是只进行伸缩,虚数是只进行旋转,复数就是有伸缩有旋转。其实最重要的是特征向量,从它的定义可以看出来,特征向量是在矩阵变换下只进行“规则”变换的向量,这个“规则”就是特征值。推荐教材linear algebra and its application
    7216 条评论
    分享
    收藏感谢
    特徵向量反映了線性變換的方向,在這幾個方向上線性變換只導致伸縮,沒有旋轉;特徵值反映線性變換在這幾個方向上導致的伸縮的大小。
    282 条评论
    分享
    收藏感谢

    定义很抽象我也一直搞不懂,但是最近开始在图像处理方面具体应用的时候就清晰很多了,用学渣的语言沟通一下吧我们。

    抛开学术研究不谈,其实根本不会,特征值eigenvalue和特征向量eigenvector的一大应用是用于大量数据的降维


    比如拿淘宝举个例子,每个淘宝店铺有N个统计数据:商品类型,日销量周销量月销量、好评率中评差评率……全淘宝有M家店铺,那么服务器需要记录的数据就是M*N的矩阵;

    这是一个很大的数据,实际上我们可以通过求这个矩阵的特征向量和对应的特征值来重新表示这个M*N的矩阵:
    我们可以用周销量来误差不大的表示日销量和月销量(除以七和乘以四),这个时候周销量就可以当作一个特征向量,它能够表示每个店铺销量这个空间方向的主要能量(也就是数据),这样我们就简略的把一个35维的向量简化成四维的(30个日销量加4个周销量加1个月销量);
    同理我们也可以把好评率中评率差评率用一个好评率来表示(剩余的百分比默认为差评率),这样的降维大致上也能反映一个店铺的诚信度;
    这样通过不断的降维我们可以提取到某系列数据最主要的几个特征向量(对应特征值最大的),这些向量反映了这个矩阵空间最主要的能量分布,所以我们可以用这几个特征向量来表示整个空间,实现空间的降维。

    这个方法叫做Principle Components Analysis,有兴趣的同学可以wiki一下。

    学渣飘过了
    5717 条评论
    分享
    收藏感谢

    作为一个线性代数考60+的学渣,我是这么直观地理解的:

    Ax = \lambda x 把式子中的A看作一个线性变换,那么这个定义式就表示对于 向量x而言,经过A变换之后该向量的方向没有变化(可能会反向),而只是长度变化了(乘以 \lambda)。

    也就是对于变换A来说,存在一些“不变”的量(比如特征向量x的方向),我想,“特征”的含义就是“不变”

    而特征值\lambda,如你所见,就是变换 A 在特征方向上的伸展系数吧(乱诹了个名词 :P)。

    嗯,觉得维基其实讲的就挺好的:zh.wikipedia.org/wiki/%
    454 条评论
    分享
    收藏感谢

    如果把矩阵理解为空间变换的参数,那特征值和特征向量可这样理解:

    现在将x(m*1)向量按照A(m*m)矩阵进行空间变换,A矩阵的特征向量为a1,a2,a3,...,am,特征值为b1,b2,b3,...,bm。
    可以把a1,a2,a3,...,am想象成m维坐标系下的m根柱子,每根柱子都相当于一个有刻度的轨道,上边有一个支点,空间系在这m个支点上,并且会因为支点的变化而变化。支点变化导致空间变化,空间变化导致空间中的向量变化。这个空间中的所有向量,都会随着任何支点的变化而变化,被拉伸旋转。

    在原始空间的情况下,每根柱子的支点都在刻度1上。现在要对向量b按照A矩阵进行空间变换,则每根柱子上的支点按照b1,b2,b3,...,bm进行伸缩,空间随之伸缩。而随着空间在不同维度上不同量的伸缩,向量b也随之被伸缩旋转。

    特征向量决定了空间变化时,空间伸缩的不同方向,特征值决定伸缩的程度。方向和特征值相配合,使空间中的任何向量都发生了该矩阵所代表的空间变化。
    1添加评论
    分享
    收藏感谢

    推荐一种看法吧,粗略描述如下:

    把矩阵看成线性变换,找特征值就是找这个线性变换下的不变自空间。

    然后一些好的矩阵、线性变换,就可以分成好多个简单的变换了。
    不好的矩阵也可以作进一步处理,也能分解。

    将复杂的东西变成很多简单的东西,这是数学很美的一点。

    很多应用也是基于这样的直观。
    有时间再补充一些细节吧。
    41 条评论
    分享
    收藏感谢

    什么是方阵?方阵就是n维线性空间上的线性变换。那么我们总要考虑最简单的情况:什么是一维的线性变换呢?就是简单的常数倍拉伸
    A: x -> ax

    在高维的时候,线性变换A的结构可能很复杂,但它总会保持某些一维子空间不变。在这些子空间上它的限制就是一个一维线性变换,这个变换的拉伸常数就是A在这个子空间上的特征值。
    11添加评论
    分享
    收藏感谢

    看了大部分的回答,基本都没有回答出为什么要求特征值。

    特征值和特征向量是为了研究向量在经过线性变换后的方向不变性而提出的,一个空间里的元素通过线性变换到另一个相同维数的空间,那么会有某些向量的方向在变换前后不会改变,方向不变但是这些向量的范数可能会改变,我这里说的都是实数空间的向量。

    定义x'=Ax,定义x为原始空间中的向量,x'为变换后空间的向量,简单起见令An阶方阵且特征值\lambda_{1}, \lambda_{2}, \cdot \cdot \cdot ,\lambda_{n}互不相同,对应的特征向量P_{1},P_{2},\cdot \cdot \cdot ,  P_{n}线性无关。那么原始空间中的任何一个向量都可以由A的特征向量表示,既x=k_{1}P_{1}+k_{2}P_{2}+\cdot \cdot \cdot +k_{n}P_{n}那么在变换到另一个空间时Ax=\lambda_{1}k_{1}P_{1}+\lambda_{2}k_{2}P_{2}+\cdot \cdot \cdot +\lambda_{n}k_{n}P_{n},这就求完了!

    好,下面再说更深层次的含义。

    在不同的领域特征值的大小与特征向量的方向所表示的含义也不同,但是从数学定义上来看,每一个原始空间中的向量都要变换到新空间中,所以他们之间的差异也会随之变化,但是为了保持相对位置,每个方向变换的幅度要随着向量的分散程度进行调整。

    你们体会一下拖拽图片使之放大缩小的感觉。

    如果A为样本的协方差矩阵,特征值的大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大,换句话说这个方向上的元素更分散。
    204 条评论
    分享
    收藏感谢
    就去让你给我接个人,她有很多特征,我会挑几个特典型如长发超级大美女、身材高挑皮肤好。。。其中特征值就是多高,多美,特征向量就是这些分类。。因为不需要给你所有信息,只要几个典型也不会让你找错人,所以能给你降维。
    如果你要找女友,只要几个典型如美,高之类的,估计你很快就能在100人中就能找到你心仪的,所以能寻优
    32添加评论
    分享
    收藏感谢

    /* 多图预警 */
    用特征向量作为基,线性变换会很简单,仅仅是伸缩变换,而特征值就是伸缩的大小。
    各位已经说的很清楚了,我就发几张用mathematica做的图吧。

    这里只给出一些“可视化”的2D线性变换。
    \mathbb{R}^{2}平面当中的一个向量(x,y)经过一个线性变换(乘上一个矩阵)之后变成了另一个\mathbb{R}^{2}的向量(x',y'),把它的起点接在(x,y),就可以表示线性变换的特性。再画出一组特征向量,我们就有下图:
    <img src="https://pic3.zhimg.com/77e42baa0d26fbfa31a364a59d97c09a_b.jpg" data-rawwidth="746" data-rawheight="746" class="origin_image zh-lightbox-thumb" width="746" data-original="https://pic3.zhimg.com/77e42baa0d26fbfa31a364a59d97c09a_r.jpg">

    颜色越深冷,代表向量长度越小。
    可以看出特征向量所在的直线上的向量经过变换之后方向不变,这意味着一个向量的分量是各自独立的,这对于我们分析矩阵、线性变换就方便了很多。


    (绿色箭头是矩阵的行向量,红色是特征向量)
    <img src="https://pic4.zhimg.com/4af4920e24c36091ca5d821ac03b68a3_b.jpg" data-rawwidth="643" data-rawheight="302" class="origin_image zh-lightbox-thumb" width="643" data-original="https://pic4.zhimg.com/4af4920e24c36091ca5d821ac03b68a3_r.jpg"><img src="https://pic3.zhimg.com/337980b9707cd3668eee3dbfe39e2a42_b.jpg" data-rawwidth="528" data-rawheight="302" class="origin_image zh-lightbox-thumb" width="528" data-original="https://pic3.zhimg.com/337980b9707cd3668eee3dbfe39e2a42_r.jpg">
    只有一个特征值-1的情况:
    <img src="https://pic1.zhimg.com/3b7cd76570f4fd6b0490806baacaec28_b.jpg" data-rawwidth="528" data-rawheight="302" class="origin_image zh-lightbox-thumb" width="528" data-original="https://pic1.zhimg.com/3b7cd76570f4fd6b0490806baacaec28_r.jpg">
    <img src="https://pic4.zhimg.com/309df13a20128f0c73f1fdc050ff8887_b.jpg" data-rawwidth="528" data-rawheight="302" class="origin_image zh-lightbox-thumb" width="528" data-original="https://pic4.zhimg.com/309df13a20128f0c73f1fdc050ff8887_r.jpg">
    特征值是虚数的反对称矩阵:
    <img src="https://pic1.zhimg.com/57d08d51668ba13a83a99ccba39447ec_b.jpg" data-rawwidth="787" data-rawheight="182" class="origin_image zh-lightbox-thumb" width="787" data-original="https://pic1.zhimg.com/57d08d51668ba13a83a99ccba39447ec_r.jpg">其实做的是动图,可惜知乎不支持动图。其实做的是动图,可惜知乎不支持动图。
    494 条评论
    分享
    收藏感谢
    收起
    站在线性变换的角度来看矩阵的话。
    矩阵(线性变换)作用在一个向量上无非是将该向量伸缩(包括反向伸缩)与旋转。
    忽略复杂的旋转变换,只考虑各个方向(特征方向)伸缩的比例,所提取出的最有用,最关键的信息就是特征值了。
    268 条评论
    分享
    收藏感谢
    特征向量可以看作坐标向量,特征值就是矩阵在该坐标方向上的分量大小值,特征分析相当于提取矩阵的信息出来吧。较大的特征值对应的特征向量就较为重要,矩阵降维就用的提取主特征向量思想。
    149 条评论
    分享
    收藏感谢

    从相似变换开始讲吧。
    A=PNP-1
    如果我们取N是对角阵,那主对角线上的三个数就是三个特征值,而P矩阵就是特征向量的排列。
    随便给一个向量x,有
    Ax=PNP-1x

    左边我们都知道是线性变换,而右边怎么看呢?
    首先我们看P-1x
    P的每一个列向量都是一个特征向量,也就是说P构成线性空间的一组基。那么P逆x即将x变换为特征向量为基表示的坐标。
    为便于直观理解,特殊的,如果P为单位正交阵(即几个特征向量互相垂直且模长为1),那么P逆等于P转置,即P逆是特征向量排列出来的,每一行元素其实是一个特征向量。由于特征向量无所谓尺度,我们把它的模长归一化一下。
    这样,P逆x相当于把每一个特征向量与x做内积。由于特征向量模长为1,内积得到的实际上是x在特征向量上的投影长度。整体而言,这一步得到的是x向量在特征向量坐标系下面的坐标值。
    再乘中间的对角矩阵N,实际上是把刚才得到的新坐标在每一个特征向量上放大或者缩小特征值倍。
    最后一步,再乘P,相当于把坐标还原到原来的坐标系下面。

    所以说,
    矩阵代表一个线性变换(在某几个方向放大或者缩小)。
    特征向量代表这个线性变换的几个方向。
    特征值代表放大或者缩小的倍数。
    以上。
    私以为这样理解是直观的。

    (这个答案已经和三个月前的回答很不一样了,当初啥都不懂强答的,后来学了点图像的知识理解深刻了以后重新回答了一下。)
    99 条评论
    分享
    收藏感谢

    找了几天, 这个视频(7分钟)是我见过讲解最为直观的, 强烈推荐.
    源视频在youtube上: youtube.com/watch?
    为了让国内的童鞋也可以看到, 我把它上传到youku了:
    introduction to Eigenvalues and Eigenvectors

    另外, 这个简单的网页也挺好的: File:Eigenvectors.gif

    不过真的是上面那个视频让我对特征值和特征向量真正有一个直观的认识. youtube上两万多收看, 两百多点up, 没有点down的.
    95 条评论
    分享
    收藏感谢
    假设有一个向量x(特征向量)和矩阵A,Ax的过程相当于矩阵A对向量x做各种 方向上的伸缩变换,变换后的向量为y。而存在特征值t(常数),即说明x通过各种变换得到的y正好与x在一个方向上,只有长度上的变化,中间相差的倍数则为t。Ax=tx
    84 条评论
    分享
    收藏感谢

    仅考虑非奇异矩阵。

    以3阶非奇异矩阵{A}为例,设它的3个特征值(多重特征值就重复写)分别为 \lambda_1,\lambda_2,\lambda_3, 对应的特征向量分别为X_1,X_2X_3,则X_1 X_2 X_3线性无关。

    此时任一向量X可表示为X_1 X_2 X_3的线性组合,设X=aX_1+bX_2+cX_3,则有

    AX=A(aX_1+bX_2+cX_3)=aAX_1+bAX_2+cAX_3=a\lambda_1X_1+b\lambda_2X_2+c\lambda_3X_3=\lambda_1(aX_1)+\lambda_2(bX_2)+\lambda_3(cX_3)

    正好是XA的各特征向量上分量乘以特征值之和。
    81 条评论
    分享
    收藏感谢
    更多
    人中的路
    人中的路
    计算机硕士编辑话题经验
    使用匿名身份回答
     
    写回答...
     
    相关 Live 推荐
    数分入门:极限与实数理论
    谈谈微积分的学习方法
    线性代数入门:从方程到映射
    从几何学看数学之美
    如何学好本科数学?

    转载于:https://www.cnblogs.com/hd-chenwei/p/6807978.html

    展开全文
  • 复数矩阵的特征值分解,使用了GSL科学计算函数库,使得特征值分解时间大大减少。
  • 特征值和特征向量

    千次阅读 2017-01-28 22:49:29
    特征值和特征向量

    从数学上看,如果向量v与变换A满足 Av=λv

    则称向量v是变换A的一个特征向量,λ是相应的特征值。其中是将变换作用于v得到的向量。这一等式被称作“特征值方程”。

    特征值和特征向量的几何和物理意义

    摘自《线性代数的几何意义》

    我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

    实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。

        注意:常有教科书说特征向量是在矩阵变换下不改变方向的向量,实际上当特征值小于零时,矩阵就会把特征向量完全反方向改变,当然特征向量还是特征向量。我赞同特征向量不改变方向的说法:特征向量永远不改变方向,改变的只是特征值(方向反转特征值为负值了)。这有点类似地说冬天深圳的室外“温度是10℃,哈尔滨室外的“温度”是-30℃(称温度而不温);也类似说无人飞机在海拔“高度”100米处飞行而核潜艇在海拔“高度”-50米(称高度而不高)处游弋一样。

    关于特征值和特征向量,这里请注意两个亮点。这两个亮点一个是线性不变量的含义,二个是振动的谱含义。

    特征向量是线性不变量

    所谓特征向量概念的亮点之一是不变量,这里叫线性不变量。因为我们常讲,线性变换啊线性变换,不就是把一根线(向量)变成另一根线(向量),线的变化的地方大多是方向和长度一块变。而一种名叫“特征向量”的向量特殊,在矩阵作用下不变方向只变长度。不变方向的特性就被称为线性不变量。

    如果有读者坚持认为负方向的特征向量就是改变了向量的方向的想法的话,你不妨这样看线性不变量:特征向量的不变性是他们变成了与其自身共线的向量,他们所在的直线在线性变换下保持不变;特征向量和他的变换后的向量们在同一根直线上,变换后的向量们或伸长或缩短,或反向伸长或反向缩短,甚至变成零向量(特征值为零时),如下图。

     (补正:有网友说不变量实际是特征空间的不变性,特征值再怎么变也不会离开特征空间,这个说法应是正解,因为这同时解释了复数矩阵,大赞。2016.12.25)

     
    特征值是振动的谱

    除了线性不变量,另外一个亮点是关于振动方面的。戏说在朝代宋的时候,我国就与发现矩阵特征值理论的机会擦肩而过。话说没有出息的秦少游在往池塘里扔了一颗小石头后,刚得到一句“投石冲开水底天”的泡妞诗对之后,就猴急猴急地去洞房了,全然没有想到水波中隐含着矩阵的特征值及特征向量的科学大道理。大概地说,水面附近的任一点水珠在原处上下振动(实际上在做近似圆周运动),并没有随着波浪向外圈移动,同时这些上下振动的水珠的幅度在渐渐变小,直至趋于平静。在由某块有着特定质量和形状的石头被以某种角度和速度投入某个面积和深度特定的水池中所决定的某个矩阵中,纹波荡漾中水珠的渐变过程中其特征值起着决定性的作用,它决定着水珠振动的频率和幅度减弱的衰退率。

    在理解关于振动的特征值和特征向量的过程中,需要加入复向量和复矩阵的概念,因为在实际应用中,实向量和实矩阵是干不了多少事的。机械振动和电振动有频谱,振动的某个频率具有某个幅度;那么矩阵也有矩阵的谱,矩阵的谱就是矩阵特征值的概念,是矩阵所固有的特性,所有的特征值形成了矩阵的一个频谱,每个特征值是矩阵的一个“谐振频点”。

    美国数学家斯特让(G..Strang)在其经典教材《线性代数及其应用》中这样介绍了特征值作为频率的物理意义,他说:

    大概最简单的例子(我从不相信其真实性,虽然据说1831年有一桥梁毁于此因)是一对士兵通过桥梁的例子。传统上,他们要停止齐步前进而要散步通过。这个理由是因为他们可能以等于桥的特征值之一的频率齐步行进,从而将发生共振。就像孩子的秋千那样,你一旦注意到一个秋千的频率,和此频率相配,你就使频率荡得更高。一个工程师总是试图使他的桥梁或他的火箭的自然频率远离风的频率或液体燃料的频率;而在另一种极端情况,一个证券经纪人则尽毕生精力于努力到达市场的自然频率线。特征值是几乎任何一个动力系统的最重要的特征。

    其实,这个矩阵之所以能形成“频率的谱”,就是因为矩阵在特征向量所指的方向上具有对向量产生恒定的变换作用:增强(或减弱)特征向量的作用。进一步的,如果矩阵持续地叠代作用于向量,那么特征向量的就会凸现出来。

    比如,一个物理系统,其特性可以被一个矩阵所描述,那么这个系统的物理特性就可以被这个矩阵的特征值所决定,各种不同的信号(向量)进入这个系统中后,系统输出的信号(向量)就会发生相位滞后、放大、缩小等各种纷乱的变化。但只有特征信号(特征向量)被稳定的发生放大(或缩小)的变化。如果把系统的输出端口接入输入端口,那么只有特征信号(特征向量)第二次被放大(或缩小)了,其他的信号如滞后的可能滞后也可能超前同时缩小,放大的可能被继续放大也可能被缩小同时滞后,缩小的可能被继续缩小也可能被放大同时滞后等。经过N次的循环后,显然,乱七八糟的大量的向量群众们终不能成气候,只有特征向量们,心往一处想,劲往一处使,要么成功出人头地,要么失败杀身成仁。因此我们就可以因此在时间域上观察输出,就会得到一个或几个超级明显的特征信号出来(特征向量)。

    弄过电路的哥们早看出了俺的含沙射影:切!绕什么绕,你说的不就是振荡器的原理嘛,振荡信号(电压、电流)构成了特征向量,特征值是1,振荡信号的频率是…

    是是是,就是振荡器的原理。其实振荡器原理是可以用矩阵的幂来解释的。这个编辑器不好用,矩阵分析和细节这里就忽略了。

     。。。。。。

     《线性代数的几何意义》一书已出版,主要在淘宝天猫和亚马逊等网上书店有售。

     

    FUCk,相见很晚,如果大学期间遇到这样的文章,线代必须90分以上!!!!


    参考:http://blog.163.com/renguangqian@126/blog/static/1624014002011711114526759/

     

    展开全文
  • 特征值与特征向量 我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩...
  • 矩阵的特征值和特征向量

    千次阅读 2017-02-14 11:07:37
    特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值...
  • 如何理解特征值为复数的情况

    万次阅读 多人点赞 2019-10-03 13:49:58
    如何理解特征值为复数的情况 特征值与特征向量 特征值可定义为,若有Ax=λxAx=\lambda xAx=λx,则称xxx为AAA的特征向量,λ\lambdaλ为相应的特征值。这时我们可以发现,如果λλλ是实数,那么矩阵AAA对向量xxx的...
  • 矩阵的特征值和特征向量的定义、求法和几何意义
  • 矩阵的特征值分解

    千次阅读 2020-07-06 11:22:43
    特征值分解 物理意义: 矩阵可以表示一种变换; 特征向量表示矩阵变换的方向; 特征值表示矩阵变换在对应特征向量方向上的变换速度; 特征值与特征向量 如下一个二维向量,这个二维空间的基向量是; 将向量左...
  • 特征值与特征向量

    万次阅读 2018-05-21 13:21:58
    1. 什么是特征值?在数学上,特别是线性代数中,对于一个给定的矩阵,它的特征向量(eigenvector,也译固有向量或本征向量) 经过这个线性变换[1]之后,得到的新向量仍然与原来的 保持在同一条直线上,但其长度或...
  • 特征向量与特征值(Eigenvectors and Eigenvalues) 特征值和特征向量——在矩阵的数值计算中不可或缺的一环,但大多数人仅满足于套用公式 f(λ)=∣λE−A∣f(\lambda)=\mid \lambda E-A\midf(λ)=∣λE−A∣ 止步于...
  • 特征函数以及特征值定义: 证明指数信号是LTI系统的特征函数 简单运用上述性质 序言 指数信号有相比于其他信号优良的性质,这使得其在数字信号处理以及信号与系统中(统称为信号处理)具有不一般的低位,...
  • 深入理解矩阵的特征值和特征向量

    万次阅读 2019-09-16 16:29:40
    原 【数学基础】矩阵的特征向量、特征值及其含义 ...
  • 特征值和特征向量(一)

    千次阅读 2017-05-07 16:41:16
    作者:阿狸 ...想要理解特征值,首先要理解矩阵相似。什么是矩阵相似呢?从定义角度就是:存在可逆矩阵P满足B=则我们说A和B是相似的。让我们来回顾一下之前得出的重要结论:对于同一个线性空间,
  • 对称矩阵的特征值与特征向量

    万次阅读 2018-08-20 21:23:15
    1, 特征值是实数 2,特征向量是两两正交的   一个对称矩阵A可以进行如下分解: A=QQ的转置   对于对称矩阵来说,有一个性质:主元的符号与特征值得符号是相同的。即正主元的个数等于正的特征值的个数。  ...
  • 特征值和特征矩阵的意义和应用

    千次阅读 2017-03-06 20:35:25
    矩阵特征值是高等数学的重要内容,在很多领域都有广泛应用,尤其在科学研究与工程设计的计算工程之中,灵活运用矩阵特征值能够使很多复杂问题简化.单纯的求解矩阵特征值是一件比较容易的事,但将特征值应用到其它领域就...
  • 前言:为什么不直接求特征值而是去估计特征值? 当我们遇到的不是书本上的3阶或4阶矩阵,而是高阶矩阵时(如图像中的256×256),我们再使用特征方程det⁡(λI−A)=0\det(\lambda I -A)=0det(λI−A)=0来求特征值就...
  • 如何理解矩阵特征值

    万次阅读 2016-05-19 12:31:15
    李浩 ,FPA蓝色 / EE。...特征值在很多领域应该都有自己的用途,它的物理意义到了本科高年级或者研究生阶段涉及到具体问题的时候就容易理解了,刚学线性代数的话,确实抽象。 ——————————————————
  • 当Ak基本收敛到为上三角矩阵时,迭代完成,此时主对角元素就是特征值。 特别地:当A是对称阵的时候,Ak是对角阵Λ,Q=Qk-1Qk-2…Q1就是其正交特征向量矩,有QTAQ=Ak=Λ,即A正交对角化与Ak。 如何理解?我们看下图...
  • 关于矩阵运算的各种数值算法,包括实()矩阵求逆,对称正定矩阵与托伯利兹矩阵的求逆,线性方程组的常用解法,矩阵的各种分解方法,特征向量与特征值的求解等等。
  • 伴随矩阵的特征值

    2014-04-16 21:36:00
    设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2. \eex$$ 参考解答见[物理学与PDEs]第5章习题9 伴随矩阵的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 20,069
精华内容 8,027
关键字:

复特征值