精华内容
下载资源
问答
  • 收集的一下解释工具 1.正则解释工具 http://rick.measham.id.au/paste/explain.pl 2.c语言复杂指针表达式解释 英语->c语言 | c语言->英语 http://www.cdecl.org/

    收集的一下解释工具

    1.正则解释工具

    http://rick.measham.id.au/paste/explain.pl

    http://regex101.com


    2.c语言复杂指针表达式解释  英语->c语言  | c语言->英语

    http://www.cdecl.org/





    reference:

    http://ieng9.ucsd.edu/~cs30x/rt_lt.rule.html

    https://madalanarayana.wordpress.com/2014/01/19/cdecl-tool-in-linux/

    http://www.c4learn.com/c-programming/c-reading-complex-pointer-expression/

    展开全文
  • 复杂模型可解释性方法——LIME

    千次阅读 2019-10-17 22:15:33
    一、模型可解释性     近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习...

    一、模型可解释性

        近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习模型泛化性能很好时,我们可以通过交叉验证验证其准确性,并将其应用在生产环境中,但是很难去解释这个模型为什么会做出此种预测,是基于什么样的考虑?作为机器学习从业者很容易想清楚为什么有些模型存在性别歧视、种族歧视和民族仇恨言论(训练样本的问题),但是很多场景下我们需要向模型使用方作出解释,让其清楚模型为什么要做出此种预测,如模型替代医生判断病情,给出病人合理的解释至关重要,在商业场景中,模型为公司做出决策,需要给出令管理层信服的解释。另外,给出解释也可以帮助我们进一步改善模型,优化特征,提高泛化性。

        本文就LIME( Local Interpretable Model-Agnostic Explanations, LIME)方法如何解释黑盒模型作出简要的介绍和公式推导,介绍其优缺点,文末附上自己的一些简单思考

    二、 LIME

        LIME的主要思想是利用可解释性模型(如线性模型,决策树)局部近似目标黑盒模型的预测,此方法不深入模型内部,通过对输入进行轻微的扰动,探测黑盒模型的输出发生何种变化,根据这种变化在兴趣点(原始输入)训练一个可解释性模型。值得注意的是,可解释性模型是黑盒模型的局部近似,而不是全局近似,这也是其名字的由来。

        LIME的数学表示如下:

    $$explanation(x)=argmin{gin G}L(f,g,pix) Omega(g)$$

        对于实例$x$的解释模型$g$,我们通过最小化损失函数来比较模型$g$和原模型$f$的近似性,其中,$Omega (g)$代表了解释模型$g$的模型复杂度,$G$表示所有可能的解释模型(例如我们想用线性模型解释,则$G$表示所有的线性模型),$pi_{x}$ 定义了$x$的邻域。我们通过最小化$L$使得模型$f$变得可解释。其中,模型$g$,邻域范围大小,模型复杂度均需要定义。

        下面对于结构化数据类型,简要说明LIME的工作流程。

        对于结构化数据,首先确定可解释性模型,兴趣点x,邻域的范围。LIME首先在全局进行采样,然后对于所有采样点,选出兴趣点x的邻域,然后利用兴趣点的邻域范围拟合可解释性模型。如下图$^1$

    img

    其中,背景灰色为负例,背景蓝色为正例,黄色为兴趣点,小粒度黑色点为采样点,大粒度黑点为邻域范围,右下图为LIME的结果。

        LIME的优点我们很容易就可以看到,原理简单,适用范围广,可解释任何黑箱模型。但是在实际应用中,存在几个问题:

    • 需要确定邻域范围;邻域范围不同,得到的局部可解释性模型可能会有很大的差别,如下图

    img

        对于x=1.6,不同的邻域范围(0.1,0.75,2)对应的可解释性模型是完全不同的,甚至相悖。

    • 采样是全样本集采样,采样是利用高斯分布进行采样,忽略了特征之间的关系,这可能导致一些不大可能出现的样本点来解释模型。
    • 解释模型的复杂度需要提前定义。
    • 解释的不稳定性。利用相同参数相同方法进行的重复解释,得到的结果可能完全不同.$^5$

    三、总结

        模型可解释性作为目前机器学习领域研究的热门,LIME的成果是很有启发性的,通过对黑盒模型某局部点的无限次探测,拟合出一个局部可解释性的简单模型。但是其缺点同样明显,这些缺点也导致了LIME方法难以大规模应用。

        后续将介绍基于Shapley值的SHAP方法(现在在研读,就是有点看不懂。看懂了再写)

    参考链接:

    1. https://christophm.github.io/interpretable-ml-book/lime.html
    2. https://blog.csdn.net/a358463121/article/details/52313585
    3. https://cloud.tencent.com/developer/article/1096716
    4. 论文地址:https://arxiv.org/pdf/1602.04938v1.pdf
    5. Alvarez-Melis, David, and Tommi S. Jaakkola. “On the robustness of interpretability methods.” arXiv preprint arXiv:1806.08049 (2018).)

    本文由飞剑客原创,如需转载,请联系私信联系知乎:@AndyChanCD

    展开全文
  • 复杂性思维第二版 一、复杂性科学

    万次阅读 2017-10-27 21:44:26
    一、复杂性科学 原文:Chapter 1 Complexity Science 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 这本书的论点是,复杂性科学是一种“新型科学”,我借鉴自 Stephen Wolfram。2002年,Wolfram ...

    一、复杂性科学

    原文:Chapter 1 Complexity Science

    译者:飞龙

    协议:CC BY-NC-SA 4.0

    自豪地采用谷歌翻译

    这本书的论点是,复杂性科学是一种“新型科学”,我借鉴自 Stephen Wolfram。

    2002年,Wolfram 发表了 “新科学”一文,在这里介绍了他和其他人在细胞自动机上的工作,并描述了一种用于计算系统研究的科学方法。在之后的章节中,我们会回顾 Wolfram,但是现在我打算将他的标题用于更广泛的东西。

    我认为复杂性是新的,不是因为它将科学工具应用到一个新的主题,而是因为它使用不同的工具,允许不同种类的工作,并最终改变了我们认为是“科学”的东西。

    为了证明差异,我将从经典科学的一个例子开始:假设有人问你为什么行星轨道是椭圆形的。你可以引用万有引力的牛顿定律,并用它来写出描述行星运动的微分方程。然后,你可以求解微分方程,并展示出解是椭圆。证明完毕!

    大多数人发现这种解释令人满意。它包括一个数学推导 - 所以它有一些严格的证明 - 它解释了具体的观察,椭圆轨道,通过诉诸一般的原则,引力。

    让我用另一种解释来对比一下。假设你搬到像底特律这样种族隔离的城市,你想知道为什么这样。如果你做一些研究,你可能会发现 Thomas Schelling 的一篇文章,称为“分离动态模型”,它提出了一个简单的种族隔离模型:

    这里是我对这个模型的描述:

    • 城市的谢林模型是一个单元格数组,每个单元格代表一个房子。这些房子被两种“智能体”占据,标有红色和蓝色,数量大致相等。大约10%的房子是空的。

    • 在任何时间点,智能体可能会高兴或不高兴,这取决于附近的其他智能体。在模型的一个版本中,如果智能体至少有两个邻居像自己一样,则智能体很高兴,如果邻居是一个或者零个,则智能体不高兴。

    • 这个模拟通过随机选择一个智能体来运行,并检查它是否快乐。如果是的话,没有任何反应 如果不是,智能体随机选择一个未占用的单元格并移动。

    如果你从一个完全未分离的模拟城市开始,并在短时间内运行该模型,类似的智能体会聚集到一起。随着时间的流逝,这些社区会增长和合并,直到存在少量的大型社区,大多数智能体都生活在均匀的社区中。

    模型中的分离程度令人惊讶,这是真实城市的分离的解释。也许底特律是分离的,因为人们不喜欢人数太多,并且如果他们的社区的组成使他们不开心,将会搬走。

    这个解释与行星运动的解释是一样的吗?许多人会说不是,但为什么?

    最明显的是,谢林模型是非常抽象的,也就是说不现实的。我们很容易假设,人比行星更复杂,但是当你想想看,行星就像人一样复杂(特别是拥有人的行星)。

    这两个系统都很复杂,而且这两个模型都是基于简化的;例如,在行星运动的模型中,我们包含了地球与太阳之间的力,并忽略行星之间的相互作用。

    重要的区别是,对于行星运动,我们可以展示,我们忽略的力小于我们包含的力,来捍卫我们的模型。并且我们可以扩展模型,来包含其他相互作用,并显示这种效果很小。对于谢林模型,它难以合理简化。

    更糟糕的是,谢林模型不符合任何物理规律,它只使用简单的计算,而不是数学推导。谢林模型不像经典科学,许多人发现它们不那么引人注目,至少一开始是这样。但是,我将尝试演示,这些模型做了大量的实用工作,包括预测,解释和设计。本书的目标之一是解释如何这样做。

    1.1 范式转变

    当我向人们介绍这本书时,别人经常问我,这种新型科学是不是一种范式转变。我不这么认为,并且这里是解释。

    Thomas Kuhn 在 1962 年的“科学革命结构 ”中介绍了“范式转变”一词。它是指科学史上的一个过程,其中一个领域的基本假设改变,或者一个理论被另一个理论取代。他列举了哥白尼革命,燃烧的氧气模型取代了燃素说,以及相对论的出现。

    复杂性科学的发展不是取代旧的模型,而是(在我看来)标准模型的逐渐转变,它们是各种种类的可接受的模型。

    例如,经典模型倾向于以定律为基础,以方程式的形式表示,并通过数学推导求解。复杂性不足的模型通常是基于规则的,表示为计算,而不是由分析来模拟。

    不是每个人都认为这些模型令人满意。例如,在 Sync 中,Steven Strogatz 写道了他的萤火虫自发同步模型。他展示了一个演示该现象的仿真,但是写道:

    对于其它随机的初始条件和其他数量的振荡器,我重复模拟了几十次。每次都会同步 […] 现在的挑战是证明它。只有可靠的证明才能演示,同步是不可避免的,这种方式计算机都做不到;最好的证明就是澄清为什么它是不可避免的。

    Strogatz 是一位数学家,所以他对证明的热情是可以理解的,但他的证明并不能解决这个现象中最有趣的部分。为了证明“同步是不可避免的”,Strogatz 做了几个简化的假设,特别是每个萤火虫可以看到所有其他的萤火虫。

    在我看来,解释整个萤火虫族群为何可以同步,尽管事实上他们不能看到彼此,是更有趣的事情。这种全局行为,如何从局部交互中产生,是第(?)章的主题。这些现象的解释通常使用基于智能体的模型,它探索(以难以或不可能使用数学分析或的方式)允许或阻止同步的条件。

    我是一名计算机科学家,所以我对计算模型的热情可能并不奇怪。我不是说 Strogatz 是错误的,而是人们对于提出什么问题,和用什么工具来回答他们,有不同的看法。这些意见基于价值判断,所以没有理由能够达成一致。

    然而,科学家们对于哪些模型是好的科学,其他哪些是边缘科学,伪科学,或者是非科学,已经有了很大的共识。

    我声称,这是本书的核心论点,即这种共识是基于时间变化的标准,复杂性科学的出现反映了这些标准的逐渐转变。

    1.2 科学模型的轴线

    我将经典模型描述为基于物理定律,以方程式表示,并通过数学分析求解的模型;相反,复杂系统的模型通常基于简单的规则并以计算实现。

    我们可以将这一趋势看作是沿着两个轴线的转变:

    基于方程式 → 基于 模拟

    分析 → 计算

    这种新的科学方式在其他几个方面是不同的。我在这里介绍他们,所以你知道即将会发生什么,但是在你看到本书后面的例子之前,有一些可能没有任何意义。

    连续 → 离散

    经典模型倾向于基于连续数学,如微积分;复杂系统的模型通常基于离散数学,包括图和细胞自动机。

    线性 → 非线性

    经典模型通常是线性的,或者使用非线性系统的线性近似; 复杂性科学对非线性模型更为友好。一个例子是混沌理论。

    混沌理论在这本书中没有涉及,但是你可以在 http://en.wikipedia.org/wiki/Chaos 上阅读它。

    确定性 → 随机

    经典模型通常是确定性的,这可能反映了底层哲学的确定性,它在第(?)章中讨论。复杂模型往往具有随机性。

    抽象 → 具体

    在经典模型中,行星是质点,飞机是无摩擦的,牛是球形的(见 http://en.wikipedia.org/wiki/Spherical_cow)。像这样的简化通常对于分析是必要的,但是计算模型可能更加现实。

    译者注:真空中的球形鸡

    一,二 → 很多

    在天体力学中,两体问题可以通过分析求解;而三体问题不能。经典模型通常限于少量相互作用的元素,复杂性科学作用于较大的复合体(这是名称的来源)。

    单一 → 复合

    在经典模型中,元素往往是可互换的;复杂模型更经常包含异质性。

    这些是概括性的,所以我们不应该过于认真地对待它们。而我并不意味着弃用经典科学。更复杂的模型不一定更好;实际上通常更糟。

    此外,我并不是说这些变化是突然的或完全的。相反,它们向着被认为是可接受的,值得尊重的工作的前沿逐渐迁移。过去被怀疑的工具现在很普遍,一些被广泛接受的模型现在受到审查。

    例如,当 Appel 和 Haken 在 1976 年证明了四色定理时,他们使用电脑列举了 1,936 个特殊情况,在某种意义上说,这些特例是其证明的前提。当时很多数学家没有把这个定理当成真正的证明。现在计算机辅助证明是常见的,一般(但并非普遍)是可接受的。

    相反,大量的经济分析基于人类行为的模型,称为“经济人”,或者一个有逼格的词:“Homo economicus”。基于这种模型的研究数十年间受到高度重视,特别是如果涉及到数学技巧的话。最近,这种模型受到怀疑,而包含不完整信息和有限理性的模型是热门话题。

    1.3 一种新的的模型

    复杂模型通常适用于不同的目的和解释:

    预测 → 解释

    谢林的分离模型可能揭示了一个复杂的社会现象,但对预测没有用。另一方面,一个简单的天体力学模型可以预测日食,在未来几年内可以精确到秒。

    现实主义 → 工具主义

    经典模型依赖于现实主义的解释;例如,大多数人接受电子是存在的真实事物。工具主义一种观点,即使他们假设的实体不存在,模型也可以有用。乔治·皮特写道:“所有模型都是错误的,但有些是有用的。”它可能是工具主义的座右铭。

    简化论 → 整体论

    简化论是一种观点,通过理解其组件来解释系统的行为。例如,元素的周期表是简化论的胜利,因为它用原子中的简单电子模型来解释元素的化学行为。整体论认为,系统层面出现的一些现象不存在于组件层面,不能在组件层面上解释。

    我们在第(?)章会回到解释模型,第(?)章会回到工具主义,第(?)章会回到整体论。

    1.4 一种新的工程

    我一直在科学背景下谈论复杂系统,但复杂性也是工程中的变化和社会系统的组织的一个原因和影响:

    中心化(集权) → 去中心化(放权)

    中心化系统在概念上简单并易于分析,但去中心化系统可能更加强大。例如,万维网中的客户端向中心化服务器发送请求;如果服务器关闭,则这个服务不可用。在对等网络中,每个节点都是客户端和服务器。要取消服务,你必须删除每个 节点。

    隔离 → 互动

    在经典工程中,大型系统的复杂性通过隔离组件和最小化相互作用进行管理。这仍然是一个重要的工程原理;然而,廉价计算能力的普及,使得组件之间复杂交互的系统的设计变得越来越可行。

    一对多 → 多对多

    在许多通信系统中,广播服务正在由一些服务扩展,有时是替换。这些服务允许用户彼此通信,并创建,共享和修改内容。

    自上而下 → 自下而上

    在社会,政治和经济系统方面,许多通常是集中组织的活动现在都是草根运动。即使是分层结构的典范,军队,指挥和控制的也开始下放。

    分析 → 计算

    在经典工程中,可行的设计空间受到我们分析能力的限制。例如,设计艾菲尔铁塔成为了可能,因为 Gustave Eiffel 开发了新颖的分析技术,特别是用于处理风压负载。现在,用于计算机辅助设计和分析的工具,可以构建几乎可以想象的任何东西。弗兰克·盖里(Frank Gehry)的毕尔包古根汉美术馆(Guggenheim Museum Bilbao)是我最喜欢的例子。

    设计 → 搜索

    工程有时被描述为,在可行的设计空间中寻找解决方案。越来越多的搜索过程可以自动化。例如,遗传算法在大型设计空间中探索,并发现人类工程师不会想像(或喜欢)的解决方案。最终的遗传算法,演变,不可避免地生成违反人类工程规则的设计。

    1.5 一种新的思维

    我们现在正在深入一个领域,但是我所假设的,科学建模中的标准转变,有关 20 世纪中逻辑和认识论的发展。

    亚里士多德逻辑 → 多值逻辑

    在传统逻辑中,任何命题都是真或假。这个系统适用于类似数学的证明,但对于许多现实世界的应用而言是失败的(以一种戏剧化的方式)。替代方案包括多值逻辑,模糊逻辑和其他旨在处理不确定性(indeterminacy),模糊性和不确定性(uncertainty)的系统。Bart Kosko 在《模糊思维》(Fuzzy Thinking)中讨论了一些这种系统。

    频率论的概率 → 贝叶斯主义

    贝叶斯概率已经存在了几个世纪,但直到最近才被广泛使用,这是由于廉价计算能力变得可用,以及概率性声明中勉强接受了主观性。莎朗·贝尔奇·麦格雷恩(Sharon Bertsch McGrayne)在《不会死亡的理论》(The Theory That Would Not Die)中介绍了这一历史。

    客观 → 主观

    启蒙运动和现代主义哲学,建立在对客观真理的信仰上。也就是说,独立于持有他们的人的真理。20 世纪的发展,包括量子力学,哥德尔不完备定理和库恩的科学史研究,都引起了人们对“看似不可避免的主观性”的关注,甚至在“自然科学”和数学中。丽贝卡·戈德斯坦(Rebecca Goldstein)介绍了Gödel对不完备性的证明的历史背景。

    物理定律 → 理论 → 模型

    有些人区分了定律,理论和模型,但我认为这是一回事。使用“定律”的人很有可能认为,它在客观上是真实的,不可改变的;使用“理论”的人承认它可以修改;而“模型”承认它是基于简化和近似的。

    一些被称为“物理定律”的概念是真正的定义;实际上,其他的只是模型的断言,它很好预测或解释了系统的行为。我们在第(?)章中会回到屋里定律的本质。

    确定性 → 不确定性

    确定性是一个观点,所有事件都是由之前事件导致,不可避免。不确定性的形式包括随机性,概率因果和基本不确定性。我们在第(?)章再回到这个主题。

    这些趋势并不普遍或完整,但核心观点正沿着这些轴线转变。作为证据,考虑对托马斯·库恩(Thomas Kuhn)的《科学革命的结构》(The Structure of Scientific Revolutions)的反应 ,公布后受到谴责,现在被认为几乎毫无争议。

    这些趋势是复杂性科学的因和果。例如,高度抽象的模型现在更容易接受,因为人们预期,每个系统都应该有一个独特的,正确的模型。相反,复杂系统的发展挑战了确定性,和物理定律的相关概念。

    本章概述了本书中出现的主题,但在看到示例之前,并不是全部都是有意义的。当你读到本书的最后,你可能会发现,再次阅读本章会有帮助。

    展开全文
  • 复杂网络的研究

    千次阅读 2018-11-04 21:53:53
    1. 复杂网络定义 : 复杂网络概念最开始的时候是相对于规则网络和随机网络提出来的,即介于规则网络和随机网络之间的网络都可以称之为复杂网络。—狭义的复杂网络 从广义上说,任何网络都可以称之为复杂网络,...

    1. 复杂网络定义


    复杂网络概念最开始的时候是相对于规则网络和随机网络提出来的,即介于规则网络和随机网络之间的网络都可以称之为复杂网络。—狭义的复杂网络
    从广义上说,任何网络都可以称之为复杂网络,即使是规则网络和随机网络,也是复杂网络的特例。

    2. 复杂网络研究意义


    复杂网络理论可以应用于保护许多现实系统的正常运行。也就是开展复杂网络稳定性研究,对于一些技术网络的设计和基础设施网络的保护同样具有重要的意义,也可以有效地防止黑客侵入互联网,并组织病毒在万维网上传播蔓延。
    在医疗方面直接针对集散节点(即那些与很多人具有连接关系的人)采取措施接种疫苗,可以达到和好效果。
    在经济管理领域,利用复杂网络了解公司,产业和经济之间的连接方式,有助于监控和预防大规模的经济衰退。

    3. 复杂网络基本参数


    1. 平均最短路径长度:任意两节点之间的距离的平均值。
    2. 聚集系数: 一般与平均最短路径一起提出,因为它们俩是“小世界”效应的两个重要性质。用来刻画两个朋友之间互为朋友的概率。
    3. 度分布: 网络中一个随机选择的节点度为k的概率
    有向图分为出度和入度
    无向网络度分布
    4. 介数:在研究之初,没有介数的概念,在网络节点和边的重要性上的研究和对于网络中社区的划分的研究,提出介数概念。**节点的介数被定义为网络中所有的最短路径中经过该点的数目的比例。**介数反映了相应的节点或者边在整个网络中的作用和影响力,具有很强的现实意义。

    4. 复杂网络的经典模型

    1. 规则网络模型:

      1. 全局耦合网络:任意两个节点都有边直接相连
      2. 最近邻耦合网络 :每个节点只和它周围的邻居相连
      3. 星型耦合网络:只有一个中心节点,其余的N-1个节点与这个中心节点相连接。
    2. 随机模型: 典型例子ER随机模型 研究的课题为:当概率p为多大时,随机模型就会产生一些特殊的性质。

    3. “小世界”模型: “小世界”模型起源于,首先建立一个低维的网络结构,然后增加或移动一些边,以生成较低密度的“捷径”,他们将网络中较远的部分连接起来。WS模型构造出来的网络具有:较高的平均聚类系数和较低的最短路径长度

    4. “无尺度”网络:又可以称之为网络生长模型,反映了复杂网络的另一特性,网络的节点度分布函数具有幂律形式。在“无尺度”模型中,节点和边按照一定的方式被加入到网络中,网络以某种方式进行生长。
      **

    5. 小结

    1. 较小的平均最短路径长度以及较大的聚集系数是复杂网络“小世界”特性的体现,它集中反映了现实网络环境下高集聚性和短连接距离的特点;度分布服从幂律分布体现了复杂网络的“无尺度”特性,即网络的平均度不能反应网络中度的大致分布情况,现实中的“长尾”分布和“二八定律”反映的就是这一特性;介数在一定程度上反映了网络中单个节点和边的重要性。

    你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

    新的改变

    我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

    1. 全新的界面设计 ,将会带来全新的写作体验;
    2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
    3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
    4. 全新的 KaTeX数学公式 语法;
    5. 增加了支持甘特图的mermaid语法1 功能;
    6. 增加了 多屏幕编辑 Markdown文章功能;
    7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
    8. 增加了 检查列表 功能。

    功能快捷键

    撤销:Ctrl/Command + Z
    重做:Ctrl/Command + Y
    加粗:Ctrl/Command + B
    斜体:Ctrl/Command + I
    标题:Ctrl/Command + Shift + H
    无序列表:Ctrl/Command + Shift + U
    有序列表:Ctrl/Command + Shift + O
    检查列表:Ctrl/Command + Shift + C
    插入代码:Ctrl/Command + Shift + K
    插入链接:Ctrl/Command + Shift + L
    插入图片:Ctrl/Command + Shift + G

    合理的创建标题,有助于目录的生成

    直接输入1次#,并按下space后,将生成1级标题。
    输入2次#,并按下space后,将生成2级标题。
    以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

    如何改变文本的样式

    强调文本 强调文本

    加粗文本 加粗文本

    标记文本

    删除文本

    引用文本

    H2O is是液体。

    210 运算结果是 1024.

    插入链接与图片

    链接: link.

    图片: Alt

    带尺寸的图片: Alt

    当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

    如何插入一段漂亮的代码片

    博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

    // An highlighted block
    var foo = 'bar';
    

    生成一个适合你的列表

    • 项目
      • 项目
        • 项目
    1. 项目1
    2. 项目2
    3. 项目3
    • 计划任务
    • 完成任务

    创建一个表格

    一个简单的表格是这么创建的:

    项目 Value
    电脑 $1600
    手机 $12
    导管 $1

    设定内容居中、居左、居右

    使用:---------:居中
    使用:----------居左
    使用----------:居右

    第一列 第二列 第三列
    第一列文本居中 第二列文本居右 第三列文本居左

    SmartyPants

    SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

    TYPE ASCII HTML
    Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
    Quotes "Isn't this fun?" “Isn’t this fun?”
    Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

    创建一个自定义列表

    Markdown
    Text-to-HTML conversion tool
    Authors
    John
    Luke

    如何创建一个注脚

    一个具有注脚的文本。2

    注释也是必不可少的

    Markdown将文本转换为 HTML

    KaTeX数学公式

    您可以使用渲染LaTeX数学表达式 KaTeX:

    Gamma公式展示 Γ(n)=(n1)!nN\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N 是通过欧拉积分

    Γ(z)=0tz1etdt . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.

    你可以找到更多关于的信息 LaTeX 数学表达式here.

    新的甘特图功能,丰富你的文章

    Mon 06Mon 13Mon 20已完成 进行中 计划一 计划二 现有任务Adding GANTT diagram functionality to mermaid
    • 关于 甘特图 语法,参考 这儿,

    UML 图表

    可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

    张三李四王五你好!李四, 最近怎么样?你最近怎么样,王五?我很好,谢谢!我很好,谢谢!李四想了很长时间,文字太长了不适合放在一行.打量着王五...很好... 王五, 你怎么样?张三李四王五

    这将产生一个流程图。:

    链接
    长方形
    圆角长方形
    菱形
    • 关于 Mermaid 语法,参考 这儿,

    FLowchart流程图

    我们依旧会支持flowchart的流程图:

    Created with Raphaël 2.2.0开始我的操作确认?结束yesno
    • 关于 Flowchart流程图 语法,参考 这儿.

    导出与导入

    导出

    如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

    导入

    如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
    继续你的创作。


    1. mermaid语法说明 ↩︎

    2. 注脚的解释 ↩︎

    展开全文
  • 基于数据驱动设计复杂页面

    千次阅读 多人点赞 2018-09-01 15:10:23
    最近公司启动了一个新的版本,我负责的一个的模块中有一个很复杂的新建的页面,表格里嵌套表格,三层数据,数据级联,组件较多.交互复杂, 下面是我做的一个简略图,为了保密我已将需求细节隐藏.(PS:没有table组件的墨刀,...
  • 复杂事件处理探险

    千次阅读 2017-05-09 10:33:29
    对于人类来讲回答这种问题很简单 - 这是因为我们人类的大脑能够很好地对事件的识别和解释进行适配。但是在技术的世界里,复杂事件处理 (Complex Event Processing,CEP) 仍然是一个具备挑战的新兴领域。事件是什么?...
  • 软件固有的复杂

    千次阅读 2012-08-22 16:34:37
    软件固有的复杂性 ...Brooks曾指出:“爱因斯坦认为自然界必定存在着简单的解释,因为上帝不是反复无常或随心所欲的。软件工程师没有这样的信仰来提供安慰。许多必须控制的复杂性是随心所欲的复杂性。” 定
  • 复杂网络概述

    千次阅读 2017-11-28 09:47:46
    复杂网络概述 1研究背景 通信网络、电力网络、生物网络、和社会网络等分别是通信科学、电力科学、生命科学、和社会学等不同学科的研究对象,而复杂网络理论所要研究的则是各种看上去互不相同的复杂网络之间的共性...
  • 复杂网络概括

    千次阅读 2014-09-11 17:20:18
    参考 复杂网络概述 1研究背景 通信网络、电力网络、生物网络、和社会网络等分别是通信科学、电力科学、生命科学、和社会学等不同学科的研究对象,...复杂网络之所以复杂,不仅在于网络规模的巨大,网络结构的复杂,而且
  • 解释器模式

    千次阅读 2019-09-25 20:28:33
    解释器模式(Interpreter Pattern)提供了评估语言的语法或表达式的方式,它属于行为型模式。这种模式实现了一个表达式接口,该接口解释一个特定的上下文。这种模式被用在 SQL 解析、符号处理引擎等。 介绍 意图:...
  • 复杂网络介绍(一)

    万次阅读 多人点赞 2018-10-11 15:21:05
    复杂网络 1.定义: ...2.名词解释: 1)节点:由于复杂网络是复杂系统的抽象,因此复杂网络中的节点对应为复杂系统中的一个个实体。 2)边:边是复杂网络中节点与节点之间的关系,即对应复...
  • java解析复杂json数据

    万次阅读 热门讨论 2018-10-27 18:15:56
    java如何解析复杂的json数据 关于json处理的包有好几个,比如jackson、Gson、Fastjson。Gson是谷歌做的,功能强大;Fastjson是阿里巴巴做的,性能更快。具体用哪个,开心就好。我这里两个都没用,用的是java的一个...
  • 本文是11月17日大数据杂谈群分享的内容。...大家好,我来自天云大数据公司,我叫马敬涛,主要从事数据科学应用方面的工作。今天我给大家分享的主题是...复杂网络概念及价值在开始之前,我先澄清一个概念,那就是“复杂网络
  • 复杂网络简单理解

    万次阅读 多人点赞 2017-11-28 09:42:18
    通俗易懂的复杂网络 1 什么是复杂网络 1.1 直观理解 什么是复杂网络?对普通人而言,在媒体上看到复杂网络,首先想到的是互联网,实际上网络已经成为Internet的代名词,确实Internet从只有几个结点的简单的网络,...
  • 1.1构造复杂网络 1.2计算spatio-structural differential efficiency 1.3计算PageRank 1.4建立测试节点的临时边 1.5计算测试节点对每一类的重要性 1.6预测测试节点的类标 2、代码示例 0、简介 数据分类是一...
  • 复杂网络分析以及networkx学习

    万次阅读 2017-05-06 11:51:46
    原文地址:陈关荣老师整理的复杂网络的资源作者:zhengw789 http://www.ee.cityu.edu.hk/~gchen/ComplexNetworks.htm http://mrvar.fdv.uni-lj.si/sola/info4/programe.htm 原文地址:NetworkX的...
  • C语言复杂声明

    千次阅读 2010-05-23 21:31:00
    《C专家编程》第三章介绍了如何分析复杂的声明,讲的非常不错。对于作者介绍的分析复杂声明的方法,我没有完全掌握,不过,我有我自己的一套方法来解析复杂的声明,正所谓条条大道通罗马,只要结果一样,必须在乎...
  • Android基础入门教程——4.5.2 Intent之复杂数据的传递 本节引言: 1.Intent传递简单数据 2.Intent传递数组 3.Intent传递集合 1)List<基本数据类型或String> 2)List 3)Map,或更复杂的 4.Intent传递对象 1)将对象...
  • 关于钱学森定义复杂网络一事的探究

    千次阅读 多人点赞 2018-11-11 21:27:41
    由于本人从事与复杂网络有关的研究,多次在网上看到有关“钱学森给出复杂网络的定义”这样内容的文章,甚至百度百科也是这么介绍的。 百度百科-复杂网络 钱学森给出了复杂网络的一个较严格的定义:具有自组织、...
  • 复杂性研究面临的难题

    千次阅读 2018-01-02 00:00:00
    在《朗文当代英语词典》中,形容词complex被解释为:(1)难于理解、解释或处理,不清楚或不简单; (2)由许多密切相关的部分所组成的;(3)(词或句子)由主要部分和其余部分组成的。日常用语的“复杂”词义实际涉及两...
  • JAVA设计模式--解释器模式

    万次阅读 2017-02-25 14:51:01
    目录 一、什么是解释器模式 ...给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。 所谓“语言”,指的是使用规定格式和文法的一类字符组合。 ...
  • C复杂声明

    千次阅读 2010-06-04 15:02:00
    C语言所有复杂的指针声明,都是由各种声明嵌套构成的。如何解读复杂指针声明呢?右左法则是一个既著名又常用的方法。不过,右左法则其实并不是C标准里面的内容,它是从C标准的声明规定中归纳出来的方法。C标准的声明...
  • 复杂网络笔记-R语言

    万次阅读 2016-08-25 14:21:58
    最近学习了下复杂网络相关的东西,总结了部分基础的理论,与使用R语言igraph包,总结如下,还需要继续深入,目前只学了皮毛。
  • 一个复杂的json例子

    千次阅读 2018-08-09 21:54:17
    本文只展示json层级复杂性 ,不作报文解释,伸手党请绕路! { "status": 0, "message": "", "data": { "search_data": [ { "elements": [ { ...
  • 娓娓道来复杂网络

    千次阅读 2014-09-14 22:46:23
    通俗易懂的复杂网络 1 什么事复杂网络 1.1 直观理解 什么是复杂网络?对普通人而言,在媒体上看到复杂网络,首先想到的是互联网,实际上网络已经成为Internet的代名词,确实Internet从只有几个结点的简单的网络,...
  • C++为何那么复杂

    千次阅读 2017-05-23 16:05:20
    NN个秋, 最近做项目要用到boost, 发现自己跟不上趟了, 好多C++的新特性又要去掌握, 感觉C++真的好复杂. 感觉C是那么直观和顺畅; 郁闷之下, 在网上搜”为什么C++越来越复杂”, 发现了下面的文章, 哈哈, 转载一下. ...
  • 笔记:复杂网络的关键技术及应用

    千次阅读 2016-12-05 12:41:34
    1.复杂网络与图 复杂网络与图是同一种事物,由节点和连边构成。图是数学领域的研究内容,“图论”的算法是普适性的,侧重于理论。复杂网络侧重于工程,是将“图论”的理论带入到现实的生活生产中,结合图算法理论、...
  • 本来是想在基于豆瓣电影数据进行相关的数据分析项目 中进行相关解释说明的,仔细想了下,刚好拿出来,对hive的三个复杂数据类型做一个总结性的学习 关于Hive的一些其他数据类型使用参考:...
  • 复杂json转MAP对象

    千次阅读 2017-04-12 21:44:57
    普通json对象或者字符串转换map或者实体就不说了,这里主要提供复杂json 转map的方法,直接上java代码了: public class JsonUtils { /** *类描述:复杂json字符串转换为Map,包含数组时value为List。 */ ...
  • 使用easypoi导出复杂表头excel

    千次阅读 2019-06-02 23:01:48
    自定义模板将每一个单元表格数据都是一个map,根据key找到对应的行,如果对应的表头是单一表头,value就是数据,如果是复杂表头,则value可以是List,根据key确定复杂表头对应的子行。 具体的数据结构如下: [ { ....

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 717,759
精华内容 287,103
关键字:

复杂怎么解释