精华内容
下载资源
问答
  • 复杂事件处理概念  复合事件是由史丹佛大学的David Luckham 与Brian Fraseca 所提出,David Luckham 与Brian Fraseca 于1990年提出复合事件架构,使用模式比对、事件的相互关系、事件间的聚合关系,目的从事件云...

    复杂事件处理概念

            复合事件是由史丹佛大学的David Luckham 与Brian Fraseca 所提出,David Luckham 与Brian Fraseca 于1990年提出复合事件架构,使用模式比对、事件的相互关系、事件间的聚合关系,目的从事件云(event cloud)中找出有意义的事件,使得IT 架构可以更能弹性使用事件驱动架构,并且能使企业更能快速的开发出更复杂的逻辑架构。

     复杂事件处理简介    

         这里基于本公司日志数据分析的一个产品,借助CEP复杂事件处理的概念进行设计。

          近年来,各大企业建立的安全防御线(即安全设备、监控设备等形成的安全防护线)中产生的日志数据大幅增加,这些安全防线都仅仅抵御来自某个方面的安全威胁,形成了一个个“安全防御孤岛”,无法产生协同效应,因此如何处理这些数据成为一个急需解决的问题,从这里引用复杂事件处理的概念,能够实时地从源源不断的海量数据中提取出感兴趣及更高层次的信息,出现了复杂事件处理系统,用户预先在系统中定义需要检测的复杂事件模式,具体的一种案例模式来说就是对日志数据进行以源ip、目的ip、类型等维度进行复杂的关联分析处理、包含去重、合并等对原始日志数据进行筛选、统计、关联分析出具有威胁的日志数据。

    复杂事件处理案例

    1、口令猜测威胁事件分析

    (1)特征提取

    通常我们常见的穷举法(或称暴力法)来破解用户的密码、或者植入特洛伊木马程序或病毒程序盗取客户信息,这里我就以穷举法进行特征提取:

    1)一般攻击者先得到该主机上的某个合法用户的帐号

    2)猜测密码,循环穷举验证是否登录成功

    3)一次次登录失败

    4)目的IP不等于0.0.0.0

    (2)分析事件重定义

    首先日志数据的分析过程:日志数据-归一化原始事件-复杂关联分析事件--威胁事件

    归一化原始事件:通过参数类型定义、正则匹配等,无论是口令穷举、登录失败统一重定义为口令猜测

    复杂关联分析事件:通过一定的关联规则:条件筛选、合并去重维度、时间窗、类型定义等

    威胁事件:通过威胁规则的复杂关联分析事件进行重定义,生成可以可视化、可追溯、可跟踪、可处置等威胁事件

    (3)平台展示并处置流程

    通过页面展示、权限、追溯等对威胁事件进行处置

    2、复杂持续攻击过程案例

    下面这个场景攻击方式,攻击者首先通过漏洞扫描工具找到系统漏洞(如:端口漏洞、Web漏洞),然后通过分析系统漏洞,制作系统密码、权限破解的工具进行暴力破解、sql注入等,获取密码、权限等,成功登陆系统或获取权限(SSH登陆成功),安装病毒程序或工具进行木马远程控制活动,获取机密文件、超权限操作等,最后传输机密文件、资料等给外网,得到资料。


    特征提取:

    1)  侦查:如端口漏洞扫描、Web漏洞扫描等;

    2)  定向攻击:口令穷举、口令猜测、Sql注入攻击等;

    3)  攻陷+入侵:口令猜测成功、系统登录成功等;

    4)  安装攻击工具:感染木马、病毒等;

    5)  恶意活动:远程控制、信息泄露、数据篡改、可疑文件传输等;


       
    展开全文
  • 伴随流式数据处理需求而产生的复杂事件处理技术,在处理具有多样性和流式特征数据方面性能表现突出,被广泛应用于复杂事件大数据处理系统中。针对复杂事件大数据处理系统测试需求,提出一种基于贝叶斯网络的复杂事件...
  • 海量数据处理技术

    2011-09-27 16:23:19
    笔者在实际工作中,有幸接触到海量的数据处理问题,海量数据是指数据量过大,数据格式复杂,数据中的随机情况多,不便于分类和处理的数据。对其进行处理是一项艰巨而复杂的任务,原因有以下几个方面: 1. 数据...

    笔者在实际工作中,有幸接触到海量的数据处理问题,海量数据是指数据量过大,数据格式复杂,数据中的随机情况多,不便于分类和处理的数据。对其进行处理是一项艰巨而复杂的任务,原因有以下几个方面:


    1. 数据量过大。数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处 理;如果有上百条数据,也可以考虑;如果数据上到千万级别,甚至过亿,那就不是手工能解决的了,必须通过工具或者程序进行处理。而海量的数据中,什么情况 都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
    2. 软硬件要求高。系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据超过TB级,小型机是要考虑的,普通的服务器如果有好的方法也可以考虑,不过也必须加大CPU和内存。
    3. 要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人经验的总结。没有通用的处理方法,但有通用的原理和规则。


    那么处理海量数据有哪些经验和技巧呢?我把我所知道的罗列一下,以供大家参考:
    确定好的建模方法和处理方案。对海量数据的处理,明确切实可行的处理方法和流程最为关键。在建立处理模型时要充分考虑到海量数据数据量大、数据格式复杂的特点,建立好的处理模型。好的处理模型应该是处理中最快的,能够便于扩展,便于处理更大的数据量,便于实施等等。

    选用优秀的数据库工具。 现在的数据库工具厂家比较多,处理海量数据对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,像好的ETL工具和好的OLAP工具都十分必要, 例如Informatic、Eassbase等等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005只需要花费3小时。

    编写优良的程序代码。处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法、好的处理流程、好的效率、好的异常处理机制等等。

    对海量数据进行分区操作。 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志、索引存放于不同的分区下。

    建立广泛的索引。对海量的数据处理,对大表 建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时 要小心。笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索 引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

    提高硬件条件,加大CPU和内存。 对海量数据数据处理,必须考虑硬件条件,使用高配置服务器的。硬件条件包括加大内存,加入更多更强劲的CPU,加大硬盘空间等等。笔者在处理2TB数据 时,使用的是4个CPU,16GB内存,发现有时还会出现内存不足现象,需要进行其它方面的优化,如果这时没有足够的硬件条件做支撑,是万万不行的。

    建立缓存机制。当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好坏也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为10万条/Buffer,这对于这个级别的数据量是可行的。

    加大虚拟内存。 如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,后来采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个 4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。

    分批处理。 海量数据处理难是因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,处理后的数据再进行合并操作,这样逐个 击破,有利于小数据量的处理,不至于面对大数据量带来的问题。但这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般按天、月、年等 存储的数据,都可以采用先分后合的方法,对数据进行分开处理。
    使用临时表和中间表。数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为 零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,对于超海量的数据,如果大表处理不 了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃成一个胖子。

    优化查询SQL语句。 在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是 检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试 着对1亿行的数据使用游标,运行3个小时没有出结果,这时一定要改用程序处理了。

    使用文本格式进行处理。 对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的。原因 为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进 行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

    定制强大的清洗规则和出错处理机制。海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等等。在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。

    建立视图或者物化视图。视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根绳子吊着一根柱子的区别。

    避免使用32位服务器(极端情况)。目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的服务器,其中对位数的限制也十分重要。

    考虑操作系统问题。海量数据处理过程中,除了对数据库、处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制、临时空间的处理等问题都需要综合考虑。

    使用数据仓库和多维数据库存储。数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等等。

    使用采样数据,进行数据挖掘。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很大,大大提高了处理效 率和处理的成功率。一般采样时要注意数据的完整性,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误 差仅为千分之五,客户可以接受。
    还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
    海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。


    展开全文
  • 数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。...

    数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。

    大数据处理的关键技术及应用

    一、大数据采集技术

    数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

     


    在这里还是要推荐下我自己建的大数据学习交流群:199427210,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。
     

    大数据采集一般分为:

    1)大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

    2)基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

    二、大数据预处理技术

    完成对已接收数据的辨析、抽取、清洗等操作。

    1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

    2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

    三、大数据存储及管理技术

    大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

    开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

    开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

    四、大数据分析及挖掘技术

    大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

    数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

    数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

    机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

    展开全文
  • 全书共7章,主要内容包括相控阵雷达技术数据处理概述、线性系统的最优估计、非线性滤波、机动目标数据处理专题研究、复杂环境目标跟踪的数据处理、相控阵雷达工作方式调度的专题研究,以及相控阵雷达数据处理的...
  • 近几年,云计算产业飞速发展,大数据处理技术也在不断成熟。与此同时,国内移动互联网市场规模不断扩大,用户数量已经超过5亿,并带来了海量的移动互联网流量数据。在此背景下,如何基于云计算大数据处理技术来承载海量...
  • spark 2.4 对复杂数据处理类型引入了 29 个内嵌函数,文档参考 https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html,里面包含一些 higher-order 函数,就跟scala 里面的 map filter ...

    转自微信公众号: spark技术分享

    spark 2.4 对复杂数据处理类型引入了 29 个内嵌函数,文档参考 https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html,里面包含一些 higher-order 函数,就跟scala 里面的 map filter reduce 一样,让你在sql中也可以享受函数式编程的快感。

     

    我们都知道,在spark2.4 之前,处理复杂数据类型是一件比较痛苦的事情,有两种比较恶心的处理方式

     

    •  使用 explod 表达式把嵌套数据类型平展开,应用你自己的处理逻辑,再用 collect_list 表达式在拼凑起来,

    • 自定义一个 udf 函数处理多层嵌套的数据类型

     

     

    在 spark2.4 之后,你就轻松了,可以使用多种内嵌函数处理复杂类型,对 array 或者 map类型的列处理起来很easy, 如果满足不了你的需求,你可以直接在sql中写lambda 表达式,怎么用,怎么爽。

     

     

    1 匿名lambda函数使用姿势

     

    下面举个例子说明下:

     

    假如我们有这样一个 dataframe, 有两列,vals 列是个数组,我们的需求是对数组中的多个元素都 +1

    spark 2.4 之前的写法是:

    这样会有几个问题, 如果有两个 id 为1的行,平展开在组合后的结果就只有一行了,这就错了,而且带着 group by 肯定就涉及到 shuffle 操作了,性能会下降,而且shuffle 操作不保证数据元素的顺序,有可能数组元素顺序就变了。

     

    另外一种写法是自定义一个UDF:

    这种用法正确性倒是没有问题, 但是会损失性能,下文中会进行详细分析。

    如果我们使用 spark2.4 提供的  higher-order 函数, 里面定义一个匿名lambda函数,就轻松了:.

    这个 transform 函数会遍历数组,然后应用你定义的匿名lambda函数,是不是很简单。

     

    下面我举个复杂一些的例子:

    如果我们想对数组中的每个元素都加上同一行的key,sql可以写成这样:

    如果你需要处理多层嵌套的数据类型,比如我们例子中的nested_values,没关系,你直接写一个两层的匿名lambda函数 就可以了:

    2 性能好在哪里

     

    有人就问了,这种在 sql 中写 匿名lambda函数 就是轻便了一些,和 自定义一个 udf 到底有什么差距,其实我今天就是想重点探讨一下这个问题

    其实两者的差距就在于直接写lambda函数不需要序列化和反序列化, udf 需要,你想呀,如果对每条数据都要进行序列化和反序列化, 对于海量数据,性能必定有很大的损失。

     

    对于 tansform 处理一个数组,spark2.4 内部会创建一个 tansform 类型的表达式节点

    这个节点对数组的处理流程如下,需要注意的是,spark 会使用 encoder 把加载的数据,或者jvm对象转换为一种内部的数组字节格式 InternalRow,这种不同于java 序列化,虽然都是把对象转换为字节数组,但是表达式生成的代码可以直接操作字节数组,而不需要反序列化,这种字节数组格式大大提高了处理时间效率和空间效率。

    arrayTransform 表达式会遍历数组,然后应用你定义的匿名lamdba 函数,最后更新相应的元素。

     

    下面我们来看下 udf 方式的处理方式:

    看到没有,中间处理过程中,需要先把catalyst类型(也就是  InternalRow 格式) 格式转换为 scala 类型, 然后应用自定义函数,然后再转回去,多了一次序列化和反序列化的性能损耗,所以如果在海量数据下,这种性能损失还是很大的。

     

    展开全文
  • 这些工程师和分析师常常被描述为“谨慎”、“有技术”。但实际上这些形容词是什么意思?您怎么做才能赢得这些标志? 为了回答这些问题,我将Google公司的经验整理进一篇文档,并得意地将他简单命名为“好的数据分析”...
  • 全书共分四部分(26章),前三部分详细讲解各类数学运算与分析方法,第四部分重点讲解如何应用数学方法进行动态复杂系统分析与大数据处理。其中,第一部分讨论数学、矩阵分析和概率论的主要数据计算方法及结果可视化...
  • 农业银行以国产数据库GBase 8a为基础的国内最大的金融大数据平台采用混搭融合架构、双活数据仓库、超大规模数据库集群这些先进技术全部应用其中。56是生产环境,现在实现了56环境的双活!5.2PB数据量、236个节点、...
  • 数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。...
  • 复杂事件处理技术 (CEP)提供了一种创新的方法,从实时的事件数据中攫取智慧。作为一个应用开发平台,它提供了高级工具来定义事件如何被处理和分析。作为一个事件驱动架构 (EDA)引擎,它提供了获取、聚合、关联与分析...
  • 数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。...
  • 南车青岛四方机车车辆股份有限公司技术工程部山东 青岛266000 摘要:目的为了实现动车组数字化调试线中复杂数据的快速接收与有效分析方法本文提出了一种基于知识库的数据融合分析方法通过对车辆采集信息的结构化与...
  • 应用系统内部的数据一个大型应用系统内部可能涉及多个数据源,这些数据源包括文件系统、数据库系统,他们之间的数据格式复杂且异构,同时系统不同功能模块之间所采用的数据模型也可能存在差异。在数据交换过程中将...
  • 文章旨在借助DSP技术设计一款满足实际需求的导航计算机数据处理系统,并通过部分检测结果证实所设计系统的可行性。文中在阐述DSP系统结构及优势基础上,设计该系统软件和硬件,详细介绍通信模块、GPS模块、电源模块...
  • 越来越多的应用涉及大数据,这些大数据的属性,包括数量、速度、多样性等都引发了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。...
  • 1. 引 言图是计算机科学中最常用的一类抽象数据结构, 在结构和语义方面比线性表和树更为复杂, 更具有一般性表示能力。 现实世界中的许多应用场景...虽然图的应用和处理技术已经发展了很长时间, 理论也日趋完善, 但
  • 数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。...
  • 本文结合煤田三维地震勘探过程中所遇到的复杂地表条件,通过试验对比选择良好的激发、接收条件,应用非线性观测系统等技术措施,来保证野外地震记录的质量,取得了高品质的野外地震记录,为地震数据处理与解释奠定...
  • 我们在上一篇文章中给大家介绍了大数据处理的两个关键技术,分别是大数据的采集技术以及大数据的预处理技术。在这篇文章中我们会给大家介绍大数据存储及管理以及大数据的展现和应用技术,希望这篇文章能够给大家带来...
  • FFT (Fast Fourier Transform, 快速傅里叶变换) 是离散傅里叶变换的快速算法,也是数字信号处理技术中经常会提到的一个概念。用快速傅里叶变换能将时域的数字信号转换为频域信号,转换为频域信号后我们可以很方便地...
  • 根据矿山地下空区激光扫描方面的工程运用,结合Geomagic、3DMINE等软件,针对空区测量及后期点云数据处理中的各种问题,总结了空区扫描的操作处理方法,制定了针对复杂空区现场测量的方案,并且提出了一套比较简洁、高效...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,078
精华内容 2,431
关键字:

复杂数据处理技术