精华内容
下载资源
问答
  • 目录:前言偏相关或复相关意义与用途分析方法:1、 样本相关系数矩阵、相关系数检验2、 复相关分析3、 决定系数 (RMSE的介绍)小结、前言:继上篇文章,继续探讨相关性分析,这次不再是两个变量,而是3个或者...

    目录:前言

    偏相关或复相关

    意义与用途

    分析方法:

    1、 样本相关系数矩阵、相关系数检验

    2、 复相关分析

    3、 决定系数

    equation?tex=R%5E2 (RMSE的介绍)

    小结

    一、前言:

    继上一篇文章,继续探讨相关性分析,这次不再是两个变量,而是3个或者以上的变量之间的相关关系分析。

    没读过上篇文章请先仔细阅读再过来,因为多变量本质上是基于双变量的TzeSing Kong:相关性分析(两变量)​zhuanlan.zhihu.comv2-e69227d959b35b12f69b363c678df786_180x120.jpg

    二、偏相关或复相关

    简单相关:研究两变量之间的关系

    偏相关或复相关:研究三个或者以上变量与的关系

    在这里仍然是选择最简单的线性相关来解释:

    三、意义与用途:

    有些情况下,我们只想了解两个变量之间是否有线性相关关系,并不想拟合建立它们的回归模型,也不需要区分自变量和因变量,这时可用相关性分析。

    四、分析方法:

    1、样本相关阵

    equation?tex=x_1%2Cx_2%2C%C2%B7%C2%B7%C2%B7%2Cx_n+ 来自正态总体

    equation?tex=N_p%28%5Cmu%2C%5Csigma%5E2%29 容量为

    equation?tex=n 的样本,其中每个样本

    equation?tex=x

    equation?tex=p 个观测

    分别计算两两样本之间的简单相关系数

    equation?tex=r_%7Bij%7D+ ,它们构成的矩阵就是:

    equation?tex=%5Cbegin%7Bbmatrix%7D+r_%7B11%7D+%26+r_%7B12%7D+%26...+%26+r_%7B1p%7D+%5C%5C+r_%7B21%7D+%26+r_%7B22%7D+%26+...+%26r_%7B2p%7D+%5C%5C+...%26...%26...%26...+%5C%5Cr_%7Bp1%7D%26r_%7Bp2%7D%26...%26r_%7Bpp%7D+%5Cend%7Bbmatrix%7D%5Cquad

    由于每个变量跟自己的相关系数就是

    equation?tex=1 ,即:

    equation?tex=%5Cbegin%7Bbmatrix%7D+1+%26+r_%7B12%7D+%26...+%26+r_%7B1p%7D+%5C%5C+r_%7B21%7D+%26+1+%26+...+%26r_%7B2p%7D+%5C%5C+...%26...%26...%26...+%5C%5Cr_%7Bp1%7D%26r_%7Bp2%7D%26...%261+%5Cend%7Bbmatrix%7D%5Cquad%3D%28r_%7Bij%7D%29_%7Bp%5Ctimes+p%7D

    其中,

    equation?tex=%28r_%7Bij%7D%29_%7Bp%5Ctimes+p%7D 就是两个变量的简单相关系数。

    equation?tex=r_%7Bij%7D%3D%5Cfrac%7B%5Csum_%7B%7D%5E%7B%7D%7B%28x-%5Cbar%7Bx%7D%29%28y-%5Cbar%7By%7D%29%7D%7D%7B%5Csqrt%7B%5Csum%7B%28x-%5Cbar%7Bx%7D%29%5E2%5Csum%7B%28y-%5Cbar%7By%7D%29%5E2%7D%7D%7D%7D

    例子:v2-c3cd33fcac270371c6d3c9d40a62f918_720w.jpg

    > X <- read.table("clipboard", header = T)

    > cor(X) # 相关系数矩阵

    y x1 x2 x3 x4

    y 1.0000000 0.9871498 0.9994718 0.9912053 0.6956619

    x1 0.9871498 1.0000000 0.9907018 0.9867664 0.7818066

    x2 0.9994718 0.9907018 1.0000000 0.9917094 0.7154297

    x3 0.9912053 0.9867664 0.9917094 1.0000000 0.7073820

    x4 0.6956619 0.7818066 0.7154297 0.7073820 1.0000000

    再看看矩阵散点图:

    > pairs(X, ...) # 多元数据散点图v2-61a5c0634204d0715edf11647f97174b_720w.jpg

    相关系数检验:

    > install.package('psych') # 先安装一个'psych'的包

    > library(psych)

    > corr.test(X)

    Call:corr.test(x = yX)

    Correlation matrix

    y x1 x2 x3 x4

    y 1.00 0.99 1.00 0.99 0.70

    x1 0.99 1.00 0.99 0.99 0.78

    x2 1.00 0.99 1.00 0.99 0.72

    x3 0.99 0.99 0.99 1.00 0.71

    x4 0.70 0.78 0.72 0.71 1.00

    Sample Size

    [1] 31

    Probability values (Entries above the diagonal are adjusted for multiple tests.)

    y x1 x2 x3 x4

    y 0 0 0 0 0

    x1 0 0 0 0 0

    x2 0 0 0 0 0

    x3 0 0 0 0 0

    x4 0 0 0 0 0

    To see confidence intervals of the correlations, print with the short=FALSE option

    上面矩阵是相关系数的

    equation?tex=t 值矩阵,下面矩阵是

    equation?tex=P 值矩阵

    可以看出

    equation?tex=y

    equation?tex=x_1%2C+x_2%2C+x_3%2C+x_4 的关系都十分密切

    相关系数

    equation?tex=r%3E0.8 且置信度

    equation?tex=P%3C0.001

    2、复相关分析

    实际分析中,一个变量(

    equation?tex=y )往往要受到多种变量(

    equation?tex=x_1+...+x_4 )的综合影响,

    所谓复相关,就是研究多个变量同时与某个变量的相关关系,

    度量复相关程度的指标是复相关系数

    多个变量同时与某个变量的相关关系不能直接测算,只能通过间接测算

    复相关系数的计算:

    设因变量

    equation?tex=y ,自变量为

    equation?tex=x_1%2Cx_2%2C%C2%B7%C2%B7%C2%B7%2Cx_p ,构造一个线性模型为:

    equation?tex=y%3Db_0%2Bb_1x_1%2C%2B...%2Bb_px_p%2B%5Cvarepsilon

    equation?tex=%5Chat%7By%7D+%3D+b_0%2Bb_1x_1%2B%C2%B7%C2%B7%C2%B7%2Bb_px_p

    equation?tex=y

    equation?tex=x_1%2Cx_2%2C%C2%B7%C2%B7%C2%B7%2Cx_p 作相关分析,就是对

    equation?tex=y

    equation?tex=%5Chat%7By%7D 做简单相关分析

    记:equation?tex=r_%7By%C2%B7x_1%C2%B7%C2%B7%C2%B7x_p%7D

    equation?tex=y

    equation?tex=x_1%2Cx_2%2C%C2%B7%C2%B7%C2%B7%2Cx_p 的复相关系数,

    equation?tex=r_%7By%C2%B7%5Chat%7By%7D%7D

    equation?tex=y

    equation?tex=%5Chat%7By%7D 的简单相关系数

    equation?tex=r_%7By%C2%B7x_1%C2%B7%C2%B7%C2%B7x_p%7D 的计算公式:

    equation?tex=R%3Dcorr%28y%2Cx_1%2C%C2%B7%C2%B7%C2%B7%2Cx_p%29%3Dcorr%28y%2C%5Chat%7By%7D%29%3D%5Cfrac%7Bcov%28y%2C%5Chat%7By%7D%29%7D%7B%5Csqrt%7Bvar%28y%29var%28%5Chat%7By%7D%29%7D%7D

    复相关系数常用于多元线性回归分析中,我们希望知道因变量与一组自变量之间的相关程度,即复相关,复相关系数反映了一个变量与另一组变量的密切程度。

    假设检验:

    与多元回归的方差分析一样,所以我留在下篇文章阐述回归分析与方差分析的时候会继续详细说明

    综上:

    equation?tex=R%3D%5Csqrt%7B%5Cfrac%7B%5Csum_%7B%7D%5E%7B%7D%7B%28%5Chat%7By_i%7D-%5Cbar%7By%7D%29%5E2%7D%7D%7B%5Csum%28y_i-%5Cbar%7By%7D%29%5E2%7D%7D%3D%5Cfrac%7BSSR%7D%7BSST%7D

    至于

    equation?tex=SSR

    equation?tex=SST 还有

    equation?tex=SSE 是什么?

    就由下篇文章阐述回归分析的时候会详细说明。TzeSing Kong:线性回归——描述变量间预测关系最简单的回归模型​zhuanlan.zhihu.comv2-ded72b64347f782cdb92e92d4fd6ee48_180x120.jpg

    3、决定系数

    equation?tex=R%5E2 (coefficient of determination)

    在复相关系数中,根号里面的比值

    equation?tex=%5Cfrac%7B%5Csum_%7B%7D%5E%7B%7D%7B%28%5Chat%7By_i%7D-%5Cbar%7By%7D%29%5E2%7D%7D%7B%5Csum%28y_i-%5Cbar%7By%7D%29%5E2%7D

    其实说明了回归平方和与总离差平方和的比值,反应了回归贡献的百分比

    把复相关系数两边平方一下就能得到决定系数

    equation?tex=R%5E2%3D%5Cfrac%7B%5Csum_%7B%7D%5E%7B%7D%7B%28%5Chat%7By_i%7D-%5Cbar%7By%7D%29%5E2%7D%7D%7B%5Csum%28y_i-%5Cbar%7By%7D%29%5E2%7D%3D1-%5Cfrac%7BSSE%7D%7BSST%7D%3D1-%5Cfrac%7B%5Csum_%7B%7D%5E%7B%7D%7B%28%5Chat%7By_i%7D-y_i%29%5E2%7D%7D%7B%5Csum%28y_i-%5Cbar%7By%7D%29%5E2%7D

    决定系数用于评价多元回归方程、变量选择、曲线回归方程拟合的好坏程度中,常常用到。

    【注意】equation?tex=R%5E2 是相关性的度量,并不是准确性的度量!!!

    equation?tex=R%5E2 依赖于

    equation?tex=y 的波动程度(样本方差),这会使得我们看待模型的好坏有着巨大影响,例如,假设测试集

    equation?tex=y 的方差是

    equation?tex=4.2 ,如果一个模型的

    equation?tex=RMSE%3D1

    equation?tex=R%5E2 大致为

    equation?tex=76%5C%25 ,但是另一个测试集

    equation?tex=y 的方差是

    equation?tex=3 (分母小了,

    equation?tex=R%5E2 小了),

    equation?tex=R%5E2 则变为

    equation?tex=67%5C%25 。变成了模型好坏取决于测试集的波动程度,所以这个十分不靠谱

    不明白上面的话,可以再看一个例子,如果我们建立了一个模型预测广州房价,如果测试集中广州房屋售价的波动范围较大——方差较大(40万-几千万),因为方差大,所以很可能导致

    equation?tex=R%5E2 也比较大(假设

    equation?tex=80%5C%25 ),但

    equation?tex=RMSE 可能十万,这对于广州房价预测来说是一个很糟糕的预测范围。

    具体用法,留在回归分析中详细阐述。TzeSing Kong:线性回归——描述变量间预测关系最简单的回归模型​zhuanlan.zhihu.comv2-ded72b64347f782cdb92e92d4fd6ee48_180x120.jpg

    在 线性回归 中的 3.4 决定系数

    # 先建立多元线性回归模型

    > fm = lm(y~x1+x2+x3+x4,data = X)

    计算多元线性回归模型决定系数

    > R2 = summary(fm)$r.sq

    > R2

    [1] 0.9997162

    计算复相关系数

    > R = sqrt(R2)

    > R

    [1] 0.9998581

    【补】

    什么是RMSE?

    RMSE是回归问题的性能指标,衡量的是 预测值

    equation?tex=h%28x%5E%7B%28i%29%7D%29 与 真实值

    equation?tex=y%5E%7B%28i%29%7D 间的差距

    是测量预测误差的标准差

    equation?tex=RMSE%28X%2Ch%29%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bm%7D%5Csum_%7Bi%3D1%7D%5Em%28h%28x%5E%7B%28i%29%7D%29-y%5E%7B%28i%29%7D%29%5E2%7D

    举例子:RMSE 等于 50000,根据【

    equation?tex=3%5Csigma 准则】意味着:

    大约 68% 的预测值位于真实值的 50000元(

    equation?tex=1%5Csigma )以内,

    大约 95% 的预测值位于真实值的 100000元 (

    equation?tex=2%5Csigma )以内,

    大约 99.7% 的预测值位于真实值的 150000元内 (

    equation?tex=3%5Csigma )以内

    五、小结:

    可以看出多变量相关分析跟回归分析的关系很密切,多变量相关分析能为回归分析服务,因为要具有相关性才有做线性回归拟合的价值

    展开全文
  • 涉及到一个河流的水污染分析,其中污染物较,同时自变量也较(气象因素含温度和天气、污染企业数量及其位置、生活污染等)。需要考虑用什么模型来建模呢? 另外,污染物的数值之间,用相关性分析,貌似还有...
  • 1.分析多自变量对某一个因变量的显著性 在分析里找到,General linear model,然后选择Univariate, 分别把两个自变量TIssue and Speed 输入到Fixed Factor,然后设置Option里的描述,如果需要其他的设置可以自己添加 ...

    SPSS处理工具:SPSS25.0 准备好数据

    1.分析多自变量对某一个因变量的显著性

    在分析里找到,General linear model,然后选择Univariate, 分别把两个自变量TIssue and  Speed 输入到Fixed Factor,然后设置Option里的描述,如果需要其他的设置可以自己添加

    2.选择OK

    标黄的这几个是比较常用的指标。这里的数据可以说明TIssue is significant(p<0.05)

    3.同时为了更好的显示Description的具体不同的Tissue对应的平均值,可以在原来的Description使用

    4.可以得到相应的Description,通过复制到Excel进行数据的格式(如保留两位小数)

    5.然后可以作图或者做表

    完成最后的数据作图,后面分析

    参考:张文彤的SPSS基础或者高级教程

    另外一个更复杂的Mixed linear model ,我再研究研究来更好做分析。

     

    展开全文
  • 11种常见的多变量分析方法

    万次阅读 多人点赞 2018-10-09 09:31:06
    在社会科学研究中,主要的多变量分析方法包括变量方差分析(Multivariate analysis of variance,MANOVA)、主成分分析(Principal component analysis)、因子分析(Factor analysis)、典型相关(Canonical ...

    在社会科学研究中,主要的多变量分析方法包括多变量方差分析(Multivariate analysis of variance,MANOVA)、主成分分析(Principal component analysis)、因子分析(Factor analysis)、典型相关(Canonical correlation analysis)、聚类分析(Cluster analysis)、判别分析(Discriminant analysis)、多维量表分析(Multidimensional scaling),以及近来颇受瞩目的验证性因子分析(Confirmatory factor analysis )或线性结构模型(LISREL)与逻辑斯蒂回归分析等,以下简单说明这些方法的观念和适用时机。

     

    多变量方差分析

    MANOVA适用于同时探讨一个或多个自变量与两个以上因变量间因果关系的统计方法,依照研究者所操作自变量的个数,可以分为单因素(一个自变量)或多因素(两个以上自变量)MANOVA。进行多变量方差分析时,自变量必须是离散的定类或定序变量,而因变量则必须是定距以上层次的变量。

     

    主成分分析

    主成分分析的主要功能在分析多个变量间的相关,以建构变量间的总体性指标(overall indicators)。当研究者测量一群彼此间具有高度相关的变量,则在进行显著性检验钱,为避免变量数过多,造成解释上的复杂与困扰,常会先进行主成分分析,在尽量不丧失原有信息的前提下,抽取少数几个主成分,作为代表原来变量的总体性指标,达到资料缩减(data reduction)的功能。进行主成分分析时,并无自变量和因变量的区别,但是所有的变量都必须是定距以上层次变量。

     

    因子分析

    因子分析与主成分分析常被研究者混用,因为二者的功能都是通过对变量间的相关分析,以达到简化数据功能。但不同的是,主成分分析是在找出变量间最佳线性组合(linear combination)的主成分,以说明变量间最多的变异量;至于因子分析,则在于找出变量间共同的潜在结构(latent structure)或因子,以估计每一个变量在各因子上的负荷量(loading)。进行因子分析时,并无自变量和因变量的区分,但是所有变量都必须是定距以上层次变量。

     

    典型相关

    典型相关可视为积差相关或多元回归分析的扩展,主要功能在分析两个变量间的相关。进行多元回归分析的目的,是在分析一个或多个自变量与一个因变量间的关系,而典型相关中因变量也可以是多个;也就是说,典型相关的目的在于通过计算得到两个变量线性组合的加权系数。以使(maximum)两个变量间的相关达到最大化。进行典型相关时,并无自变量和因变量的区分,但是所有变量都必须是定距以上层次变量。

     

    5 聚类分析

    聚类分析的主要功能在进行分类(classification),当研究者有观测值时,常会根据观测值的相似性或差异性进行分类,以形成几个性质不同的类别,简化解释的工作。也就是说,聚类分析根据对变量进行测量的观察值进行分类,以达到组内同质、组间异值的目的。其次,聚类分析完成后,通常可以进行判别分析,以识别分类的效度。当然,在某些时候也可以对变量进行分类(此功能类似因子分析,因此多采用因子分析解决问题)。进行聚类分析时,并无自变量和因变量的区分,但是所有变量都必须是定距以上层次变量。

     

    判别分析

    判别分析是多变量分析中应用相当广泛的统计方法,它可以用来对样本进行分类的工作;也可以用来了解不同类别样本在某些变量上的差异情形;同时也可以根据不同类别的样本在某些变量的实际表现,用来预测新的样本属于某一类别的概率。因此,在行为科学中,常见的研究者单独使用判别分析,建立判别函数(discriminant function),以对新样本进行预测;或是多变量方差分析的检验值达到显著性水平后,比较不同组别样本在因变量平均数的差异情形;或是聚类分析后,检验聚类分析的正确性。进行判别分析时,自变量是定距以上层次变量,至于因变量通常是离散变量。

     

    多维量表分析

    多维量表分析基本上也是一种分类的统计方法,他在市场上普遍被应用。当研究者想要解释一群受试者(例如消费者)对一组客体(例如商品)在某些变量上相似性的测量中所包含的信息,此时多维量表分析就是一个相当适用的方法。研究者只要将这一组客体在变量上的测量值转化成多维度的几何表征,就能够将这些客体有效地显示在这个几何空间中,达到分类的目的,同时也可以进一步解释这些几何表征所代表的潜在结构或意义。进行多维量表分析时,并无自变量和因变量的区分,同时变量可以是等距以上变量,也可以是定类或定序变量。

     

    线性结构方程

    线性结构方程是一个相当具有变通与弹性的统计方法,随着研究者对变量间关系界定的差异,LISREL的常见名称包括协方差结构分析,潜变量分析、线性结构模型或验证性因子分析。LISREL可视为多元回归分析与因子分析两个方法论的整合模型,让研究者可以探讨变量间的线性关系(回归分析),并对可测量显变量与不可测量的潜变量见(因子分析)的因果模型作假设检验。

     

    逻辑斯蒂回归分析

    逻辑斯蒂回归可视为传统多元回归分析的一个特列。它和多元回归分析一样,都具有解释自变量与因变量之间的关系,并可进行预测。所不同的是在进行多元回归分析时,包括自变量与因变量都必须是定距以上层次变量;但在进行逻辑斯蒂回归分析时,自变量仍是定距以上层次变量,因变量则是二分的定类变量或多分定类变量或定序变量。

     

    10 对数线性方程

    在基本统计学中,当研究者面对探讨两个定类或定序变量间关系的研究问题时,都是以卡方检验来进行假设检验。当问题的性质是探讨两个定类变量间是否独立或是关联强度时,是以卡方独立性检验来进行假设检验。进行卡方独立性检验时,研究者必须将样本在两个定类变量上的反应,建立二维列联表(contingency table),以进一步根据列联表中各单元格(cell)的次数反应,进行显著性检验。但当研究者面对三个或三个以上的定类变量时,所建立的多元列联表间变量关联的分析,卡方独立性检验将无法解决这样的问题,此时适合的方法就是对数线性模型。利用对数线性模型来解决多元列联表的问题的目的,主要就在于探讨构成列联表的多个定类变量间的关系,进而在精简原则下构建拟合的解释模型,并根据所建立的模型估计单元格参数值,以了解各变量效果对单元格次数的影响。

     

    11 Logit对数线性模型

    在对数线性模型中,多个定类变量间是互为因果的关系(即相关关系),并无自变量与因变量的区分,研究目的在于探讨变量间的关联强度和性质。但有时研究者会面临变量间有自变量和因变量的区分的情境。在基本统计学中,当研究者面对的问题性质是两个定类变量间有自变量和因变量的区别,目的在于探讨两个变量间的因果关系时,多是以卡方齐性检验来进行假设检验。但自变量个数在两个以上时,卡方齐性检验就不再适用,而必须改用logit对数线性模型方法来对数据进行分析。Logit对数线性模型的功能与多元回归分析相当类似,都可以用来探讨与解释因变量与自变量间的关系,但不同的是,多元回归分析的变量都是定距以上层次变量,通常以最小二乘法进行模型估计与检验;logit对数线性模型的变量都是定类变量,通常以最大似然估计法进行模型估计与检验。

     

    ·END·

    转载自:http://www.360doc.com/content/18/0309/10/52857582_735589820.shtml

    展开全文
  • 分析方法:Bootstrap抽样,秩和检验,秩变换方法,cox回归 字段包括:性别,年龄,萎缩程度,胃粘膜细胞肠化生程度 基本思路:控制变量法,首先排除性别,年龄,萎缩程度,胃粘膜细胞肠化生程度的影响; 探索性...

    本案例是IBM SPSS数据分析与挖掘实战案例精粹----第七章的学习记录

    案例背景或目标:激素水平是否在对照组和实验组之间存在差异

    分析方法:Bootstrap抽样,秩和检验,秩变换方法,cox回归

    字段包括:性别,年龄,萎缩程度,胃粘膜细胞肠化生程度

    基本思路:控制变量法,首先排除性别,年龄,萎缩程度,胃粘膜细胞肠化生程度的影响;

    探索性数据分析:观察样本量,样本的分布,是否存在偏态分不等;

    样本分布:分析-表

      性别萎缩肠化年龄分组
      轻度中度重度轻度中度重度青年组中年组老年组
      CountCountCountCountCountCountCountCountCountCountCountCount
    组别试验组2512141671012132151210
    对照组20110000000101110

    查看激素水平分布:图形--图表构建程序

     

     激素水平呈明显的正偏态分布,必须考虑假设检验方法对数据的分布要求;

    采用Bootstrap抽样进行分析:常用经典统计学的分析方法,无一例外的需要对变量的分布进行假定,然后才能进行相应的计算;ootstrap抽样的基本思想是在全部样本未知的情况下,借助部分样本的有放回多次抽样,构建某个估计的置信区间,抽象地说,通过样本得到的估计并没有榨干样本中的信息,bootstrap利用重采样,把剩余价值发挥在构建置信区间上。

    bootstrap抽样方法:分析--比较均值--均值--因变量列表(激素水平),自变量列表(组别,性别,年龄),选项--中位数--加入“单元格统计量”,bootstrap子对话框中“执行bootstrap”

     可以观察各个统计量95%区间差异,对某因素的影响进行分析;中位数并不重叠,可能存在统计学差异(初步分析);可以采用采用秩和检验进行更精确的分析:

    对因变量变量变换后的建模分析:

    常见的变量变换方法:1,对数转换;2,平方根转换;3,平方根正弦转换sin(开方);4:平方转化;5,倒数转换;6,Box-Cox变换;

    对于正偏态分布,一般常用的是对数变换:分析----描述统计----P-P图(数据符合指定分布时,P-P图中各点近似呈一条直线。)

    将字段进行转换后,使用:

    1)分析----一般线性模型----单变量

    2)将Injisu选入“因变量”列表框

    3)将组别,性别选入“固定因子”列表框,年龄选入“协变量”列表框

    4)“模型”子对话框,将组别,性别,年龄的主效应选入“模型”列表框

    5)“选项”子对话框,选择“残差图”和“缺乏拟合优度检验”

    6)确定。

    上图,总模型p值为0.003,说明整个模型对injisu的预测是有统计学意义的(变量之间相关的),分项来看,只有组别具有统计学意义;

    秩变换分析:

    当变量转换无法解决问题时,可以使用秩变换:转换----个案排序-----将激素水平放入“变量”列表框;

    将字段进行转换后,使用:

    1)分析----一般线性模型----单变量

    2)将Rjisu选入“因变量”列表框

    3)将组别,性别选入“固定因子”列表框,年龄选入“协变量”列表框

    4)“模型”子对话框,将组别,性别,年龄的主效应选入“模型”列表框

    5)“选项”子对话框,选择“残差图”和“缺乏拟合优度检验”

    6)确定。

    利用Cox模型进行分析:秩变换分析会损失一些信息,除了非参数方法外,还可以利用生存分析中的COX回归模型进行分析

    总结:性别,年龄对激素水平未发现有影响,试验组和对照组之间的激素水平存在明显差异;对于同一个统计问题,可以使用多种模型进行解决,没有正确的模型,只有更加适合的模型;当结论不一样时,应根据模型的特点以及真实情况,判断那种情况更接近真实;也可以使用投票策略进行确定(类似与随机森林,选择多数模型结果)

    展开全文
  • 前言:之前的文章(高维数据中特征筛选方法的思考总结——单变量分析筛选法)中,对单变量分析筛选变量进行了初步考量,本文将进一步总结变量分析筛选法。...多变量分析方法根据建模特点可以分为线性降维和非...
  • 文章目录1、变量的声明1.1、标准格式1.2、简短格式1.3、批量格式2、变量的初始化2.1、标准格式2.2、编译器推导类型的格式2.3、声明并初始化3、多个变量同时赋值4、匿名变量(没有名字的变量)5、变量的作用域5.1、...
  • 例子: 头文件:state.h 源文件:state.cpp 其它源文件:t1.cpp t2.cpp t3.cpp, 这些源文件都包含头文件state.h。...需要定义一个全局变量供这些源文件中使用:方法如下 1、在 state.h声明全局变量: extern ...
  • 基于相关性分析和主成分分析变量筛选方法 https://www.zybuluo.com/notmylove/note/1508052 主成分分析法指标筛选 既然在课程专题四中讲到主成分分析法,那么这里再进一步介绍主成分分析法,概括起来说,...
  • 衡量预测变量/自变量重要性

    千次阅读 2020-03-31 14:45:53
    、响应变量为数值型,预测变量为数值型 1.1 Pearson相关系数 衡量线性关系 1.2 Spearman相关系数 变量之间近线性或者曲线相关 不适用于变量间的复杂关系 1.3 loess局部加权回归 非线性关系 采取系列...
  • A1 正交假定:误差项矩阵与X中每一个x向量都不相关 高斯-马尔科夫定理:若满足A1和A2假定,则采用最小二乘法得到回归参数估计是最佳线性无偏估计 方程估计值b1和b2可以看做偏回归系数,也是相应自变量对y的一种偏...
  • 线程操作同一个变量

    万次阅读 2019-03-13 15:52:37
    在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行线程并发处理的时候就可以万事大吉。 Java语言是支持线程的,为了解决线程并发的问题,在语言内部引入了 ...
  • 多重对应分析在超过两个以上定类变量时有时候非常有效,当然首先我们要理解并思考,如果只有三个或有限的几个变量完全可以通过数据变换和交互表变量重组可以转换成两个定类变量,这时候就可以用简单对应分析了。...
  • 前言我们在分析两组变量之间的相关性时,比如X=[X1,X2,...,Xm]X=[X_1,X_2,...,X_m]和Y=[Y1,Y2,...,Yn]Y=[Y_1,Y_2,...,Y_n],最原始的方法就是直接计算X和Y的协方差矩阵,矩阵...这种分析方法只考虑了cijc_ij变量XiX_i和Y
  • 、两个变量之间的关联性分析 1.两个变量均为连续型变量 1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析 2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析   2.两...
  • 由于《An Introduction to Statistical Learning with R》书中的方法书中的方法都是一些比较基础的方法,在做模拟实验以及真实超高维数据时,会出现很局限性。因此本文后半部分介绍了课本上未提及到的一些方法。...
  • Stata连享会   计量专题 || 精品课程 || 简书推文 || 公众号合集   连享会计量方法专题……,https://gitee.com/arlionn/Course ...那么,此时,该用何种模型来分析比较合适呢? 分类变量可...
  • 多元线性回归哑变量设置方法

    千次阅读 2021-04-14 23:53:13
    多元线性回归是研究一个连续型变量和其他多个变量间线性关系的统计学分析方法,如果在自变量中存在分类变量,如果直接将分类变量和连续性变量统一纳入模型进行分析是有问题的,尤其是无序分类资料,即使进入了模型,...
  • 傅伯杰院士发表nature文章关于黄河中游输沙变化影响因素分析方法分析。文章名称为“Reduced sedimenttransport in the Yellow River due to anthropogenic changes”。 为了研究输沙量的相对变化率S的影响因素,...
  • 如果一个因变量共受到个因素的影响,建模时选取了所有的因素,则为全模型;若只选了其中p个因素建模,则成为选模型。  (1)全模型 其参数估值为:  (2)选模型 其参数估值为: 自变量选择的影响包括: 当...
  • Oracle变量定义的方法

    千次阅读 2018-05-07 14:25:54
    1、define(即host变量)Host变量主要作用是起到一个替代变量的作用,是主机环境可以和oracle进行交互的一个媒介。 通过define定义host变量的时候必须指定变量名和变量的值,如果变量名已经存在于host变量中,则自动...
  • 成员变量和成员方法是范围最大的定义,提到成员变量就可以理解成你所定义在一个类体中的各类变量的统称,成员方法亦如是。java类的成员变量包括实例变量和类变量,成员方法包括实例方法和类方法。 那么,什么是实例...
  • 关于 字符串中的单引号, 在sql存储过程中的传输总结在存储过程中或者sql查询分析器中,字符串中的单引号必须采用2个单引号来转义,... 存储过程中,提取逗号分割的多个变量,采用replace的方法,效率高,SET @sqlStr = UPDA
  • python回归问题数据处理问题--自变量

    千次阅读 2016-10-19 20:42:01
    用各种回归模型进行建模之前最重要的就是处理数据,今天我想对机票价格和时间进行建模,自变量是时间。我用了list放时间数据,同样用list放价格数据。看下时间数据的数据格式: 然后进行fitclf=linear_model....
  • 七种回归分析方法 经 典

    千次阅读 2020-09-30 12:00:00
    什么是回归分析?回归分析种预测性的建模技术,它研究的是变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾...
  • 线程本地变量ThreadLocal

    万次阅读 2017-10-31 17:47:39
    PS:关于线程共享变量ThreadLocal变量值的共享可以使用public static 变量的形式,所有的线程都可以使用同一个public static变量。如果想实现每一个线程都有自己的共享变量,如何实现?JDK中提供了类ThreadLocal...
  • Hellow大家好,我又来了,在上篇文章我们了解了使用jmeter在一个线程组中进行http的接口测试,但是往往我们接到一个性能测试任务需要对某一个接口进行压测时不需要每一次请求都取登录(这样会影响测试结果),那么...
  • 10统计分析方法

    万次阅读 2018-06-01 15:42:14
    其次,当你想准确地评估一种分析方法的效果时,你得知道其运行的好或者多么不好;第三,这是一个令人兴奋的研究领域,在科学、业界和金融领域有重要的应用。最后,统计学习也是一名现代数据科学家的重要素养。1)...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 656,768
精华内容 262,707
关键字:

一个自变量多个因变量的分析方法