精华内容
下载资源
问答
  • 回归方程有效性的检查

    千次阅读 2020-04-13 12:35:26
    检查回归方程的有效性 回归分析之前 1 对y进行正态分布的检验,如果y不服从正态分布,则需要进行变换。 2 通过相关性分析,判断x与y的相关性,如果不相关,则不需要纳入此x到方程中。 3 通过相关性...

    我梳理了一下,整理成下表给大家参考,也比较好记忆,回归之前六条,回归之后六条:

    检查回归方程的有效性
    回归分析之前1对y进行正态分布的检验,如果y不服从正态分布,则需要进行变换。
    2通过相关性分析,判断x与y的相关性,如果不相关,则不需要纳入此x到方程中。
    3通过相关性分析,判断x与x之间的相关性,相关的x不能出现在同一个方程中。
    4通过散点图,观察是否是直线关系。如果非直线相关,则进行变换。
    5通过箱线图识别x或y的离群点,这些离群点的发生是小概率事件,没有代表性应该删除。
    6通过散点图,识别趋势的离群点,这些离群点显著影响了总体趋势,可以删除,并非必须,具体情况具体分析。
    回归分析之后7F检验:确保整体方程有效。P<=0.05说明模型中至少有一个X对Y有显著的影响关系。
    8t检验:确保每个系数都有效。P<=0.05说明这个x对y有显著性影响关系。
    9残差分析:残差独立,残差服从正态分布,残差均值为0,等方差。
    10R-sq代表y的波动有多少比例能被x的波动描述。当x个数较多时,调整后的R-sq比R更为准确,调整后R-sq>=0.5拟和效果较好, 有实际使用价值。否则,没有实际使用价值,预测区间太宽。
    11离群点识别:有个别值对整个方程的趋势有显著影响,可以修正。这是对上边第6条的补充。
    12多重共线性检测:如果方差膨胀因子VIF>5,则认为存在多重共线性。这是对上边第3条的补充。

     

    展开全文
  • 一、瀑布模型 1.1什么是瀑布模型 1.2特点 1.3优缺点 1.4客户需求 二、快速原型模型 2.1什么是快速原型模型 2.2优缺点 2.3快速原型模型的思想产生、原理及运用方式 2.4类型 2.5开发步骤 三、增量模型 3.1...

    目录

    一、瀑布模型

    1.1什么是瀑布模型

    1.2特点

    1.3优缺点

    1.4客户需求

    二、快速原型模型

    2.1什么是快速原型模型

    2.2优缺点

    2.3快速原型模型的思想产生、原理及运用方式

    2.4类型

    2.5开发步骤

    三、增量模型

    3.1什么是增量模型

    3.2特点

    3.3优缺点

    3.4作用

    四、螺旋模型

    4.1什么是螺旋模型

    4.2特点

    4.3优缺点

    4.4限制条件


    一、瀑布模型

    1.1什么是瀑布模型

    1970年温斯顿.罗伊斯提出了著名的“瀑布模型”,直到80年代早期,它一直是唯一被广泛采用的软件开发模型

    瀑布模型将软件生命周期划分为制定计划、需求分析、软件设计、程序编写、软件测试运行维护等六个基本活动,并且规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级下落

    瀑布模型是最早出现的软件开发模型,在软件工程中占有重要的地位,它提供了软件开发的基本框架。其过程是从上一项活动接收该项活动的工作对象作为输入,利用这一输入实施该项活动应完成的内容给出该项活动的工作成果,并作为输出传给下一项活动

    从本质来讲,它是一个软件开发架构,开发过程是通过一系列阶段顺序展开的,从系统需求分析开始直到产品发布和维护,每个阶段都会产生循环反馈,因此,如果有信息未被覆盖或者发现了问题,那么最好 “返回”上一个阶段并进行适当的修改,开发进程从一个阶段“流动”到下一个阶段,这也是瀑布开发名称的由来

    对于经常变化的项目而言,瀑布模型毫无价值

    1.2特点

    1、阶段间具有顺序性和依赖性

    该阶段具有两重含义

    1. 必须等前一阶段的工作完成后,才能开始后一阶段的工作
    2. 前一阶段的输出文档就是后一阶段的输入文档,因此只有前一阶段的输出文档正确,后一阶段的工作才能获得正确的结果

    2、推迟实现的观点

    对于规模较大的软件项目来说,往往编码开始的越早,最终完成开发所需时间越长。因为前面阶段的工作没做或做的不扎实,过早地考虑进行程序实现,往往导致大量返工,有时甚至发生无法弥补的问题

    瀑布模型在编码之前设置了系统分析与系统设计的各个阶段,分析与设计阶段的基本任务规定,在这两个阶段主要考虑目标系统的逻辑模型,不涉及软件的物理实现

    清楚的区分逻辑设计与物理设计,尽可能推迟程序的物理实现,是按照瀑布模型开发软件的一条重要的指导思想

    3、质量保证的观点

    为了保证所开发的软件的质量,在瀑布模型的每一个阶段都应坚持两个重要做法

    1. 每个阶段都必须完成规定的文档,没有交出合格的文档就是没有完成该阶段的任务
    2. 每个阶段结束前都要对所完成的文档进行评审,以便尽早发现问题,改正错误

    传统的瀑布模型过于理想化,实际的瀑布模型是带"反馈环"的。如图所示(图中实线箭头表示开发过程,虚线箭头表示维护过程),当在后面阶段发现前面阶段的错误时,需要沿图中左侧的反馈线返回前面的阶段,修正前面阶段的产品后再回来继续完成后面阶段的任务

    瀑布模型是文档驱动的模型,遵守这个约束可使软件维护变得比较容易一些,从而显著降低软件预算

    1.3优缺点

    优点:

    • 项目提供了按阶段划分的检查点
    • 当前一阶段完成后,您只需要去关注后续阶段
    • 可在迭代模型中应用瀑布模型

    缺点:

    • 不适合需求模糊或需求经常变动的系统
    • 由于开销的逐步升级问题,它不希望存在早期阶段的反馈
    • 在一个系统完成以前,它无法预测一个新系统引入一个机构的影响
    • 用户可能需要较长等待时间来获得一个可供使用的系统,也许会给用户的信任程度带来影响和打击
    • 最终产品往往反映用户的初始需求而不是最终需求

    1.4客户需求

    对项目而言,是否使用这一模型主要取决于是否能理解客户的需求以及在项目的进程中这些需求的变化程度;对于经常变化的项目而言,瀑布模型毫无价值,可以考虑其他的架构来进行项目管理,比如螺旋模型

    瀑布模型强调文档的作用,并要求每个阶段都要仔细验证。但是,这种模型的线性过程太理想化,已不再适合现代的软件开发模式,几乎被业界抛弃,其主要问题在于:

    1. 各个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量
    2. 由于开发模型是线性的,用户只有等到整个过程的末期才能见到开发成果,从而增加了开发的风险
    3. 早期的错误可能要等到开发后期的测试阶段才能发现,进而带来严重的后果

    按照瀑布模型的阶段划分,软件测试可以分为单元测试集成测试系统测试

     

    二、快速原型模型

    2.1什么是快速原型模型

    快速原型是快速建立起来的可以在计算机上运行的程序,它所能完成的功能往往是最终产品能完成的功能的一个子集

    快速原型模型是增量模型的另一种形式,在开发真实系统之前,迅速建造一个可以运行的软件原型 ,以便理解和澄清问题,在该原型的基础上,逐渐完成整个系统的开发工作

    它允许在需求分析阶段对软件的需求进行初步而非完全的分析和定义,快速设计开发出软件系统的原型,该原型向用户展示待开发软件的全部或部分功能和性能;用户对该原型进行测试评定,给出具体改进意见以丰富细化软件需求;开发人员据此对软件进行修改完善,直至用户满意认可之后,进行软件的完整实现及测试、维护

    2.2优缺点

    优点

    • 克服瀑布模型的缺点,减少由于软件需求不明确带来的开发风险
    • 适合预先不能确切定义需求的软件系统的开发

    缺点

    • 所选用的开发技术和工具不一定符合主流的发展;快速建立起来的系统结构加上连续的修改可能会导致产品质量低下
    • 使用前提是要有一个展示性的产品原型,一定程度上可能会限制开发人员的创新

    2.3快速原型模型的思想产生、原理及运用方式

    1、思想产生

    在需求分析阶段得到完全、一致、准确、合理的需求说明十分困难

    获得一组基本需求说明后,就快速地使其“实现”,通过原型反馈,加深对系统的理解满足用户基本要求,使用户在试用后对需求说明进行补充和精确化,从而获得合理完整、现实可行的需求说明

    再把快速原型思想用到软件开发的其他阶段,向软件开发的全过程扩展

    先用相对少的成本,较短的周期开发一个简单的、但可以运行的系统原型向用户演示或让用户试用,以便及早澄清并检验一些主要设计策略,在此基础上再开发实际的软件系统

    2、原理

    利用原型辅助软件开发

    经过简单快速分析快速实现一个原型,用户与开发者在试用原型过程中加强通信与反馈,通过反复评价和改进原型,减少误解,弥补漏洞,最终提高软件质量

    3、运用方式

    由于运用原型的目的和方式不同,在使用原型时也采取不同的策略

    • 抛弃策略:将原型用于开发过程的某个阶段,促使该阶段的开发结果更加完整、准确、一致、可靠,该阶段结束后,原型随之作废。探索型和实验型就是采用此策略的
    • 附加策略:将原型用于开发的全过程,原型由最基本的核心开始,逐步增加新的功能和新的需求,反复修改反复扩充,最后发展为用户满意的最终系统,演化型快速原型就是采用此策略

    采用何种形式、何种策略运用快速原型主要取决于软件项目的特点、可供支持的原型开发工具和技术等,根据实际情况的特点决定

    2.4类型

    在软件开发中,原型是软件的一个早期可运行的版本,它反映最终系统的部分重要特性

    探索型

    这种原型目的是要弄清对目标系统的要求,确定所希望的特性,并探讨多种方案的可行性

    实验型

    这种原型用于大规模开发和实现之前,考核方案是否合适,规格说明是否可靠

    进化型

    这种原型的目的不在于改进规格说明,而是将系统建造得易于变化,在改进原型的过程中,逐步将原型进化成最终系统

    2.5开发步骤

    1、快速分析

    在分析人员与用户密切配合下,迅速确定系统的基本需求,根据原型需要体现的特征描述基本需求以满足开发原型的需要

    2、构造原型

    在快速分析的基础上,根据基本需求说明尽快实现一个可行的系统

    要求具有强有力的软件工具的支持,并忽略最终系统在某些细节上的要求,主要考虑原型系统能够充分反映所要评价的特性

    3、运行原型

    发现问题,消除误解,开发者与用户充分协调

    4、评价原型

    在运行的基础上,考核评价原型的特性,分析运行效果是否满足用户的愿望,纠正过去交互中的误解与分析中的错误,增添新的要求,并满足因环境变化或用户的新想法引起的系统要求变动,提出全面的修改意见

    5、修改

    根据评价原型的活动结果进行修改

    若原型未满足需求说明的要求,说明对需求说明存在不一致的理解或实现方案不够合理,根据明确的要求迅速修改原型

    快速原型模型不带反馈环,软件产品的开发基本上是线性顺序进行的

    快速原型的本质是"快速"。开发人员应尽可能地建造出原型系统,以加速软件开发过程,节约软件开发成本

    原型的用途是获知用户的真正需求,一旦需求确定了,原型将被抛弃

     

    三、增量模型

    3.1什么是增量模型

    增量模型也称渐增模型。使用增量模型开发软件时,把软件产品作为一系列的增量构件来设计、编码、集成和测试。每个构件由多个相互作用的模块构成,并且能够完成特定的功能

    使用增量模型时,第一个增量构件往往实现软件的基本需求,提供最核心的功能

    把软件产品分解成增量构件时,唯一必须遵守的约束条件是,当把新构件集成到现有构件中时,所形成的产品必须是可测试的

    瀑布模型或快速原型模型目标是一次就把一个满足所有需求的产品提交给用户

    增量模型把整个软件产品分解成许多个增量构件,分批地逐步向用户提交产品

    3.2特点

    把瀑布模型的顺序特征与快速原型法的迭代特征相结合

    将软件看作一系列相互联系的增量,在开发过程的各次迭代中,每次完成其中的一个增量

    风险更大的增量模型

    确定用户需求后就着手拟定第一个构件的规格说明文档,完成后规格说明组转向第二个构件的规格说明文档,同时设计组开始涉及第一个构件

    使用该方法将不同的构件并行构建,可能加快工程进度,但将冒构建无法集成到一起的风险

    3.3优缺点

    优点

    1. 能在较短的时间内向用户提交可完成部分工作的产品
    2. 将待开发的软件系统模块化,可以分批次地提交软件产品,使用户可以及时了解软件项目的进展
    3. 以组件为单位进行开发降低了软件开发的风险。一个开发周期内的错误不会影响到整个软件系统
    4. 开发顺序灵活。开发人员可以对组件的实现顺序进行优先级排序,先完成需求稳定的核心组件。当组件的优先级发生变化时,还能及时地对实现顺序进行调整

    缺点

    1. 由于各个构件是逐渐并入已有的软件体系结构中的,所以加入构件必须不破坏已构造好的系统部分,这需要软件具备开放式的体系结构
    2. 在开发过程中,需求的变化是不可避免的。增量模型的灵活性可以使其适应这种变化的能力大大优于瀑布模型和快速原型模型,但也很容易退化为边做边改模型,从而是软件过程的控制失去整体性
    3. 如果增量包之间存在相交的情况且未很好处理,则必须做全盘系统分析,这种模型将功能细化后分别开发的方法较适应于需求经常改变的软件开发过程

    3.4作用

    1、开发初期的需求定义只是用来确定软件的基本结构,使得开发初期用户只需要对软件需求进行大概的描述;而对于需求的细节性描述,则可以延迟到增量构件开发时进行,以增量构件为单位逐个地进行需求补充。这种方式能够有效适应用户需求的变更

    2、软件系统可以按照增量构件的功能安排开发的优先顺序,并逐个实现和交付使用。不仅有利于用户尽早用上系统,能够更好地适应新的软件环境,而且在以增量方式使用系统的过程中,还能获得对软件系统后续构件的需求经验

    3、软件系统是逐渐扩展的,因此开发者可以通过对诸多构件的开发,逐步积累开发经验。实际上,增量式开发还有利于技术复用,前面构件中设计的算法、采用的技术策略、编写的源码等,都可以应用到后面将要创建的增量构件中去

    4、增量式开发有利于从总体上降低软件项目的技术风险。个别的构件或许不能使用,但一般不会影响到整个系统的正常工作

    5、实际上,在采用增量模型时,具有最高优先权的核心增量构件将会被最先交付,而随着后续构件不断被集成进系统,这个核心构件将会受到最多次数的测试。这意味着软件系统最重要的心脏部分将具有最高的可靠性,这将使得整个软件系统更具健壮性

     

    四、螺旋模型

    4.1什么是螺旋模型

    螺旋模型是一种演化软件开发过程模型,它兼顾了快速原型的迭代特征以及瀑布模型的系统化与严格监控。螺旋模型最大的特点在于引入了其他模型不具备的风险分析,使软件在无法排除重大风险时有机会停止,以减小损失。同时,在每个迭代阶段构建原型是螺旋模型用以减小风险的途径

    螺旋模型是快速原型模型以进化的开发方式为中心,在每个项目阶段使用瀑布模型法。该模型的每一个周期都包括需求定义、风险分析、工程实现和评审4个阶段,由这4个阶段进行迭代。软件开发过程每迭代一次,软件开发又前进一个层次。用螺旋模型的软件过程如下

    简化的螺旋模型

    完整的数据模型

     

    图中带箭头的点划线的长度代表当前累计的开发费用,螺旋线的角度值代表开发进度,螺旋线的每个周期对应于一个开发阶段

    图中的四个象限代表了以下活动

    1. 制定计划:确定软件目标,选定实施方案,弄清项目开发的限制条件
    2. 风险分析:分析评估所选方案,考虑如何识别和消除风险
    3. 实施工程:实施软件开发和验证
    4. 客户评估:评价开发工作,提出修正建议,制定下一步计划

    4.2特点

    螺旋模型在“瀑布模型”的每一个开发阶段前引入一个非常严格的风险识别、风险分析和风险控制,它把软件项目分解成一个个小项目。每个小项目都标识一个或多个主要风险,直到所有的主要风险因素都被确定

    螺旋模型强调风险分析,使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应,因此特别适用于庞大、复杂并具有高风险的系统

    4.3优缺点

    优点

    1. 对可选方案和约束条件的强调有利于已有软件的重用,也有助于把软件质量作为软件开发的一个重要目标
    2. 减少了过多测试(浪费资金)或测试不足(产品故障多)所带来的风险
    3. 在螺旋模型中维护只是模型的另一个周期,在维护和开发之间并没有本质区别

    缺点

    1. 采用螺旋模型需要具有相当丰富的风险评估经验和专门知识,在风险较大的项目开发中,如果未能够及时标识风险,势必造成重大损失
    2. 过多的迭代次数会增加开发成本,延迟提交时间

    4.4限制条件

    1. 螺旋模型强调风险分析,但要求许多客户接受和相信这种分析,并做出相关反应是不容易的,因此,这种模型往往适应于内部的大规模软件开发
    2. 如果执行风险分析将大大影响项目的利润,那么进行风险分析毫无意义,因此,螺旋模型只适合于大规模软件项目
    3. 软件开发人员应该擅长寻找可能的风险,准确地分析风险,否则将会带来更大的风险

    一个阶段首先是确定该阶段的目标,完成这些目标的选择方案及其约束条件,然后从风险角度分析方案的开发策略,努力排除各种潜在的风险,有时需要通过建造原型来完成。如果某些风险不能排除,该方案立即终止,否则启动下一个开发步骤。最后,评价该阶段的结果,并设计下一个阶段

    展开全文
  • 互联网运营常用8大数据分析模型

    千次阅读 2019-05-27 17:06:37
    1、用户模型 “不仅要知道用户当下在想什么,更要知道用户背后在想什么,以及用户正在经历着什么。” 传统用户模型构建方式 用户模型:基于对用户的访谈和观察等研究结果建立,严谨可靠但费时; 临时用户模型:基于...

    1、用户模型
    “不仅要知道用户当下在想什么,更要知道用户背后在想什么,以及用户正在经历着什么。”
    传统用户模型构建方式
    用户模型:基于对用户的访谈和观察等研究结果建立,严谨可靠但费时;
    临时用户模型:基于行业专家或市场调查数据对用户的理解建立,快速但容易有偏颇。(缺乏时间,资源的情况下)
    为了节省时间,降低风险,产品团队往往尽快将产品推向用户,快速试错,在这种场景下如何构造用户模型?
    1)首先,整理和收集已经获得的任何可认知用户的经验和数据,将这些信息映射成为用户的描述信息(属性)或用户的行为信息,并存储起来形成用户档案
    2)实时关注自身数据的波动,及时采取行动
    3)记录用户的行为数据而不是单纯地为用户打标签
    4)360°覆盖用户全生命周期的用户档案
    用户的每一步成长都通过行为记录下来,基于用户所在生命周期的不同阶段,针对新用户、流失用户、活跃用户、沉默用户分别采取有针对性的拉新、转化、留存等运营策略。

    2、事件模型
    1)事件是什么
    就是用户在产品上的行为,它是用户行为的一个专业描述,用户在产品上的所有获得的程序反馈都可以抽象为事件,由开发人员通过埋点进行采集,通俗讲就是:将一段代码放入对应的页面/按钮,用户进入页面/点击按钮的本质是在加载背后的代码,同时再加载事件采集代码,这样就被SDK所记录下来了。(利用百度统计加入代码采集用户下载成功和失败事件)
    2)事件的采集
    事件:用户在产品上的行为
    属性:描述事件的维度
    值:属性的内容
    采集时机:用户点击(click)、网页加载完成、服务器判断返回等。在设计埋点需求文档时,采集时机的说明尤为重要,也是保证数据准确性的核心。
    举个例子,在采集过程中如果没有明确时机,当用户点击了注册按钮,由于用户输入了错误的注册信息实际没有注册成功,可能仍然会进行记录,这样在统计注册成功事件的时候就不是准确的。而正确的采集时机描述应该是“服务器返回注册成功的判断”。(日本官网采集的就是返回激活成功或者失败页面)
    3)事件的分析人数
    某一事件(行为)有多少人触发了次数:某一事件(行为)触发了多少次人均次数:某一事件(行为)平均触发多少次活跃比:在一个时间区间内,触发某一事件的人数占当前时间段内所有活跃人数的比
    4)事件的管理
    当事件很多时,可以对事件进行分门别类地管理。同时,可以从产品业务角度将重要的用户行为标注出来,以便可以在分析时方便、快捷地查找常用、重要的事件。

    3、漏斗模型
    漏斗模型帮助你分析一个多步骤过程中每一步的转化与流失情况。
    举例来说,用户下载产品的完整流程可能包含以下步骤:
    展示-->点击-->下载-->安装-->体验

    我们可以将如上流程设置为一个漏斗,分析整体的转化情况,以及每一步具体的转化率和转化中位时间
    我们需要将按照流程操作的用户进行各个转化层级上的监控,寻找每个层级的可优化点;
    对没有按照流程操作的用户绘制他们的转化路径,找到可提升用户体验,缩短路径的空间。
    更好的利用漏斗模型:
    1)细化每一个环节,展示到点击之间?点击到下载之间?下载到安装之间?安装到体验之间?
    2)拥有埋点意识和全局观念,才能够有效采集,为每个环节的漏斗优化做出决策依据,推动各个部门优化

    4、热图分析模型
    什么是热图分析模型?
    反映用户在网页上的关注点在哪里,尤其对于官网首页来说,信息密度极高,用户究竟是如何点击,如何浏览的效果图
    按计算维度划分,热图可以分为点击热图和浏览热图。
    点击热图:追踪的是鼠标的点击情况,进行人数、次数统计并基于百分比进行热力分布,点击热图又分为两种,一种是鼠标的所有点击,一种是页面可点击元素的点击。前者可以追踪页面上所有可点击和不可点击位置的被点击情况,后者只追踪页面上可点击元素的点击情况。
    浏览热图(也称注意力热图)记录的是用户在不同页面或同一页面不同位置停留时间的百分比计算,基于停留时长。
    热图分析模型中的新特性
    1)面向特定人群的分析与人群对比
    比如理财产品,投资用户和未投资用户关注点肯定不同
    2)聚焦分析
    点击率= 点击次数/当前页面的浏览次数
    聚焦率=点击次数/当前页面的点击总次数
    应用场景
    1)落地页效果分析
    2)首页流量追踪
    3)关键页体验衡量(产品体验和下载页面)

    5、留存分析模型
    留存定义和公式
    定义:满足某个条件的用户,在某个时间点有没有进行回访行为
    公式:若满足某个条件的用户数为n,在某个时间点进行回访行为的用户数为m,那么该时间点的留存率就是(m/n)N-day留存,即第几日留存,只计算第N天完成回访行为的用户Unbounded留存(N天内留存),留存会累计计算N天内所有完成过回访行为的用户。-Bracket留存 (自定义观察期留存)N-day留存和Unbounded留存都是按照独立的天/周/月为观察单位计算,但有时候我们不希望受限于这种固定时间度量,我们希望划分为几个观察期第一个观察期:
    次日
    第二个观察期:第3日-第7日
    第三个观察期:第8日-第14日
    第四个观察期:第15日到第30日
    自定义留存
    上述三种留存方式,都是对时间的限定,对留存的定义都是用户打开了APP或进入了网站
    自定义留存是基于业务场景下的留存情况,比如阅读类产品会把看过至少一篇文章的用户定义为真正的留存用户,电商类产品会把至少查看过一次商品详情定义为有效留存初始行为:初始与回访是相对的概念。回访行为:与初始行为的设定是并且关系。用户的初始行为可以理解为上一次行为,回访行为即理解为下一次行为。对初始行为和回访行为的设定本质上是在进一步筛选用户群。在滴滴的一次增长分享会曾提到过“抢了红包的用户后来打了车的日留存”,即初始行为是抢了红包,回访行为是打了车。“抢了红包的用户打了车的3日留存”即初始行为是抢了红包,回访行为是打车,看这部分人的第三天留存。

    6、粘性分析模型
    定义:对活跃用户使用产品的习惯的分析,例如一个月使用了几天,使用大于一天,大于七天的用户有多少,例如某些产品上线了新功能,用户使用需要签到,可以由此分析出用户的使用习惯,评估新功能的吸引力和健康度。
    作用:使用留存分析,了解产品和功能黏住用户的能力如何,用户喜欢哪个功能,不同用户在同一功能在适用上的差异,有助于科学评估产品,制定留存策略
    举例:股票APP,已投资用户和未投资的用户触发功能【查看股票市场】的次数

    7、全行为路径分析模型
    行为路径分析分为漏斗分析和全行为路径分析。与漏斗分析模型不同,漏斗分析模型是分析既定的行为转化,例如电商产品,分析从查看产品详情到最终支付每一步的转化率。而全行为路径分析是对用户在APP或网站的每个模块的流转情况,挖掘用户的访问模式,从而优化产品或网站.
    一般可用树形图表现,如下图,一个线上培训网站,用户大都会打开搜索课程,所以需要优化搜索课程。而在第一次搜索课程后,用户并没有搜索到想要的课程,又进行了第二次搜索,因此可以将用户搜索频率高的关键词设置成可点击元素,链接到用户使用频率高的相关课程。引导用户点击得到想要的结果。

    8、用户分群模型
    分群是对某一特征用户的划分和归组,而分层,更多的是对全量用户的一个管理手段,细分用户的方法其实我们一直在用,比如我们熟悉的RFM模型:
    RFM模型是从用户的业务数据中提取了三个特征维度:最近一次消费时间(Recency)、消费频率 (Frequency)、消费金额 (Monetary)。通过这三个维度将用户有效地细分为8个具有不同用户价值及应对策略的群体,如下图所示。

    另外四个用户分群的维度:
    1、用户属性:用户客观的属性,描述用户真实人口属性的标签,比如:年龄、性别、城市、浏览器版本、系统版本、操作版本、渠道来源等就是用户属性
    2、活跃时间
    3、做过,没做过
    4、新增于:何时新增用户较多

    参考来源:http://info.hhczy.com/article/20181019/34693.shtml

    展开全文
  • 模型灵敏性分析总结

    千次阅读 2020-10-27 11:55:12
    稳健性分析常常是针对模型的某些理想化假设做分析。 寻找限制因素(瓶颈)或者寻找最急切需要改变的量都可以用灵敏性分析 注意所有的分析最好都结合实际说明为什么可能出现这种情况,并且说明对应现实中的结果将

    建模过程会对问题做一些假设,需要考虑所得结果对每一条假设的敏感程度以及各个参数的敏感程度。

    灵敏性分析常常是根据对数据提出的假设做分析,将灵敏性数据表示成相对改变量或者百分比改变的形式,要比表示成绝对改变量的形式更自然也更适用。

    一个模型称为稳健的,是指即使这个模型不完全精确,由其导出的结果也是正确的。稳健性分析常常是针对模型的某些理想化假设做分析。

    寻找限制性因素(瓶颈)或者寻找最急切需要改变的量都可以用灵敏性分析

    注意所有的分析最好都结合实际说明为什么可能出现这种情况,并且说明对应现实中的结果将如何改变。如果没有这些意义也可以,不过就仅仅是对模型本身进行分析了。

    决策型模型

    1. 由于风险因素的存在,有必要研究几种可供选择的方案。
    2. 决策改变的临界点。
    3. 各参数的改变对决策时选择的各种值有什么影响。
    4. 将假设的定值定为变量。

    优化型模型

    1. 线性关系一般都是由假设得来,如果采取非线性函数(改变函数形式),则线性化的模型在多少范围内是有效的。
    2. 对于线性优化,可以改变限制的资源量的改变求得其影子价格,提出在何种情况下应当引入更多的资源。(只用分析关键约束的影子价格,或者影子价格为0得出其为非限制性因素)
    3. 线性规划还可以求得优化点改变的临界条件,以及限制因素改变的临界条件。
    4. 各参数的改变对结果有什么影响。

    动态模型

    1. 各参数的改变对结果有什么影响。
    2. 动力学
      探究初始状态的改变使结果发生改变的临界点
      探究平衡态附近的变化规律、是否稳定(画图来看、用向量场/相图描述)
      稳定性探究可以用某个方程(详细见《数学建模方法于分析》P105)
      还可以探究一下什么时候出现混沌现象,即探究其收敛域(混沌动力系统对初始条件有着异常的灵敏性P149)
      除了內源因素,还要考虑外源因素,对动力系统分析会造成什么影响,最好能找到现实中存在的事件,说明这种事情发生的可能性
    3. 对于用数值方法求解微分方程组,不论用哪一种数值方法,一定要通过对控制精度的参数进行灵敏度分析来检验结果

    概率模型

    1. 对独立性假设做稳健性分析。(一般都会假设变量独立,因为通过中心极限定理假设为正态分布时,独立性是前提)。可以假设为后一个增加量的数量受到当时拥挤程度的影响,可以参考马尔科夫链的无后效性思想,引入一个矩阵描述下一刻增量与当前拥挤程度的关系
    2. 各参数的改变对结果有什么影响。

    线性回归/时间序列

    1. 各参数改变对结果有什么影响。
    2. 如果少了一个变量,R方和残差有什么影响(一般是残差变大,R方变小,R方代表携带的信息量)
    3. 残差图,对残差趋势进行分析,说明回归/拟合的合理性。
    4. 去掉残差较大的一些点,检测稳定性。
    5. 时间序列与之类似,不过可以计算残差的自相关函数,检验残差是否是白噪声序列来检验函数是否包含所有的时间序列相关性。
    6. 时间序列增加更多的预测因子,检验是否会产生较大的变化。
    7. 线性回归做齐方差/异方差检验
    展开全文
  • 8种常见的大数据分析模型

    千次阅读 2020-10-10 12:23:01
    这篇文章给大家简单介绍一下八个模型,具体如下:1.留存分析模型留存分析模型是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。这是用来衡量产...
  • 因子分析在SPSS中的操作过程及结果解读

    万次阅读 多人点赞 2019-01-14 16:28:27
    因子分析在SPSS中的操作...因子分析模型中,假定每个原始变量由两部分组成:共同因子和唯一因子。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表...
  • 提到数据分析,肯定要提到数据分析模型,在进行数据分析之前,先搭建数据分析模型,根据模型中的内容,具体细分到不同的数据指标进行细化分析,最终得到想要的分析结果或结论。 一:数据分析模型 要进行一次完整的...
  • 主成分分析

    万次阅读 多人点赞 2014-03-12 10:07:24
    主成分分析 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了...第一节 主成分分析的原理及模型 一、
  • 今天给大家介绍几个数据分析模型吧 一、用户价值模型 1、RFM模型 RFM分析是客户关系分析中一种简单实用客户分析方法,他将最近一次消费、消费频率、消费金额这三个要素构成了数据分析最好的指标,衡量客户价值和...
  • 今天老李就给罗列了6个常用的数据分析模型,并附上实际的案例讲解以及分析模板,希望能让大家快速掌握这些模型和方法! 话不多说,上干货! 1、RFM模型 RFM 分析是美国数据库营销研究所提出的一种简单实用的客户...
  • 目前贷款的风控因为每一个样本的收集都需要放款来收集,想想每人放一万,一个亿也就只能放1万人,所以样本...说到模型,既然是特征多,样本少,那就需要一个非常抗过拟合的模型。另外如果是单独针对反欺诈而不是信用,
  • 销售数据分析模型

    千次阅读 2015-08-04 13:33:37
    销售数据分析的重要已无需赘言,只有通过对销售数据的准确分析我们才有可能真正找准数据变动(增长或下滑)的根本原因,营销专家刘杰称之为“动因”。找准了“动因”也就发现了真正的问题所在,解决问题、发现新的...
  • 如何建立风险分析模型

    千次阅读 2020-02-14 10:32:13
    入门风险分析,总结一下建立风险分析模型的方法。 方法一 这类模型比较简单,首先确定所评估的风险具有哪些风险因素,然后根据这些因素建立一个数学模型,例如在文献[1]中,研究猪场疫病的风险分析,首先确定了风险...
  • 数据分析-PART2--10大数据分析模型

    万次阅读 多人点赞 2018-07-31 10:00:39
    数据分析-PART2--10大数据分析模型 数据分析-PART3--数据分析常用指标 数据分析-PART4--数据分析方法 数据分析-PART5--数据分析可视化 数据分析-PART6--数据分析能力培养 数据分析-PART 7--数据分析工具网站...
  • 序列的平稳性与纯随机性检验,模型有效性,参数的显著性,最优模型准则AIC,SBC data <- scan() 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3 79 ...
  • 深度神经网络的解释方法有很多,每种解释方法都有各自的优缺点。在大多数情况下,我们感兴趣的是局部解释方法,即对特定输入的网络输出的解释,因为DNNs往往过于...归因方法将模型输出的权重分配给给定输入的每个维度
  • 单因子有效性分析之收益率分析.
  • 经济管理学中常用的模型分析

    万次阅读 2018-03-28 09:24:04
    经济管理学中常用的模型分析法常用的分析模型有:波特五力模型、波士顿矩阵、鱼骨分析法、5W1H分析法、麦肯锡7S模型、杜邦分析法、营销漏斗模型、可行分析、绩效分析;SMART原则、SWOT分析、PEST分析法、GROW模型...
  • 回归分析模型检验评估

    千次阅读 2019-07-01 21:56:42
    回归分析 回归分析的概念这里不多说了,她是一个很常见的机器学习算法。使用场景多,多数情况下,就是调包,进行函数和数据的套入,然后得出各变量之间的参数。最后预测出一个结果。。 标准误差 标准误差是回归直线...
  • 研究金融市场表现和天气预报的事实上的选择,时间序列是最普遍的分析技术之一,因为它与时间有着不可分割的关系 - 我们总是有兴趣预测未来。 时间相关模型 一种直观的预测方法是参考最近的时间点。今天的股价可能...
  • 1、用户模型 “不仅要知道用户当下在想什么,更要知道用户背后在想什么,以及用户正在经历着什么。” 传统用户模型构建方式 用户模型:基于对用户的访谈和观察等研究结果建立,严谨可靠但费时; 临时用户模型:...
  • 浅谈模型鲁棒

    万次阅读 多人点赞 2019-06-23 11:42:15
    鲁棒的理解以及鲁棒与准确率的关系
  • 用户行为分析模型——RFM模型

    万次阅读 多人点赞 2019-07-10 16:34:54
    用户行为分析模型——RFM模型1. RFM模型 1. RFM模型        RFM模型根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。 R(Recency)——最近一次交易时间间隔。基于最近一次...
  • 数据分析模型篇—安索夫矩阵

    千次阅读 2019-09-03 23:21:11
    前一段时间里面,已经给大家分享了关于在企业战略管理中使用的四种分析模型及方法,今天给大家带来的是企业战略管理中在营销分析方面的一个模型—安索夫矩阵。 安索夫矩阵主要是以产品和市场作为两大基本方向,区别...
  • 引言 在很多安全分析类产品建设的过程中都会涉及到关联...下面就来聊一下我对关联分析模型的一点思考。 一、概述 有很多公司在自己的产品介绍中说自己的产品有多少种内置规则等等,仔细分析就会发现很多是一个模型出
  • 面板数据分析步骤及流程-R语言

    万次阅读 多人点赞 2016-08-16 16:49:55
    面板数据模型选择及分析步骤;附R语言代码
  • 数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。  1)数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在...
  • SPSS(二)SPSS实现多因素方差分析模型 单因素方差分析上一篇博客https://blog.csdn.net/LuYi_WeiLin/article/details/89917656已经介绍完毕 这篇博客我们主要来学习多因素方差分析 多因素方差分析,就是同时考虑...
  • 消费者行为分析模型

    万次阅读 2013-09-10 14:32:39
    简介 AISAS模式是由电通公司针对互联网与无线应用时代消费者生活形态的变化,而提出的一种全新的消费者行为分析模型。营销方式正从传统的AIDMA营销法则(Attention 注意Interest 兴趣 Desire 欲望 Memory 记忆 ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 331,507
精华内容 132,602
关键字:

如何分析模型的有效性