精华内容
下载资源
问答
  • 7.1 单因素方差分析 7.1.1 方差分析概念 7.1.2 单因素方差分析的数据结构 例7.1.1三种治疗方案对降血糖的疗效比较 7.1.3 单因素方差分析模型 7.2 双因素方差分析 7.2.2 双因素方差分析的数据结构 ...多元线性回归分析

    🚀【MOOC数学建模与实验---学习笔记---整理汇总表】🚀

    🌈【学习网址:MOOC---郑州轻工业大学---数学建模与实验】🌈

    目   录

    7.1 单因素方差分析

    7.1.1 方差分析概念

    7.1.2 单因素方差分析的数据结构

    例7.1.1  三种治疗方案对降血糖的疗效比较

    7.1.3 单因素方差分析模型

    定理7.1.1 总变异 = 组间变异 + 组内变异

    例7.1.1 Matlab求解

    7.2 双因素方差分析

    7.2.1 问题引入

    7.2.2 双因素方差分析的数据结构

    7.2.3 因素方差分析模型

    1. 无交互作用的双因素方差分析模型

    2. 有交互作用的双因素方差分析模型

    7.3 一元线性回归分析

    7.3.1 回归分析的概念

    相关关系的类型

    7.3.2 一元线性回归模型

    1.回归参数的估计

    2.回归模型的显著性检验

    3.回归参数的显著性检验

    7.3.3 一元线性回归分析应用

    7.4 多元线性回归分析

    7.4.1 多元线性回归模型

    多元线性回归分析内容

    7.4.2 回归参数的估计

    7.4.3 回归方程的拟合优度

    7.4.4 显著性检验

    1.模型的显著性检验

    2. 偏回归系数的显著性检验

    7.4.5 共线性诊断

    7.5 牙膏价格问题

    7.5.1 问题描述

    7.5.2 问题分析

    7.5.3 模型假设与符号

    7.5.4 模型建立与求解

    1.牙膏价格差对销售量影响模型

    2.广告费用对销售量影响模型

    3.牙膏价格差与广告费用对销售量影响模型

    4.模型改进

    7.5.5 结果分析

    7.6 方差分析与回归分析的SPSS实现

    7.6.1 SPSS软件概述

    1 SPSS版本与安装

    2 SPSS界面

    3 SPSS特点

    4 SPSS数据

    7.6.2 SPSS与方差分析

    1 单因素方差分析

    2 双因素方差分析

    7.6.3 SPSS与回归分析 

    SPSS回归分析过程

    牙膏价格问题的回归分析


    数学方法解决实际问题,应用数学方法、概念:应用 -> 理论 -> 研究


    常用数据分析统计方法:方差分析、回归分析、主成分分析、因子分析、聚类分析、判别分析...


    历年赛题方法(全国赛):

    • 2010B 上海世博会影响力的定量评估
    • 2012A 葡萄酒的评价(回归分析、关联性分析)
    • 2013A 车道被占用对城市道路通行能力的影响(回归分析)
    • 2017B “拍照赚钱”的任务定价(回归分析、聚类分析)

    主要内容:方差分析、回归分析

    1. 单因素方差分析
    2. 多因素方差分析
    3. 一元回归分析
    4. 多元回归分析

    7.1 单因素方差分析

    数据分析   统计模型:方差分析模型、回归分析模型、主成分分析模型、聚类分析模型、因子分析模型

    7.1.1 方差分析概念

    • 在工农业生产和科学研究中,经常遇到这样的问题:影响产品产量、质量的因素很多,我们需要了解在这众多的因素中,哪些因素对影响产品产量、质量有显著影响。为此,要先做试验,然后对测试的结果进行分析。方差分析(Analysis of Variance,简称ANOVA)就是分析测试结果的一种方法。                主要是多组实验数据比较所采用的方法
    • 方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。

    例如,医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等都可以使用方差分析方法去解决。

    7.1.2 单因素方差分析的数据结构

    • 若指标观测值X只受一个因素A的影响,检验A在取不同的状态或水平时,对指标值X的影响称为单因素试验
    • 观测值X称为因变量(响应变量),是连续型的数值变量。
    • 因素(Factor)A是影响因变量变化的客观条件。

    设因素A有r个水平,每个水平下重复观测n次(n:重复数),则观测数据为如下形式

       \overline{x_{i}}:第i行的平均值;\overline{x}:整个实验数据的算数平均值(总均值)

    例7.1.1  三种治疗方案对降血糖的疗效比较

    例7.1.1 某医生研究一种四类降糖新药的疗效,按完全随机设计方案治疗糖尿病患者,治疗一月后,记录下每名受试者血糖下降值,资料见下表,问三种治疗方案对降血糖的疗效是否相同?【No,第1组疗效显著高于另外两组!】

    每一组,18名受试验者。3个剂量水平,每个剂量水平 重复观测 18次(n=18)。比较均值!

    7.1.3 单因素方差分析模型

    • 方差分析是从总体上判断多组数据平均数(r≥3)之间的差异是否显著。
    • 方差分析将全部数据看成是一个整体,分析构成变量的变异原因,进而计算不同变异来源的总体方差的估值。然后进行F检验,判断各样本的总体平均数是否有显著差异。若差异显著,再对平均数进行两两之间的比较。

    假设检验:分析数据之间差异是否显著。

       i:代表水平;j:代表重复数

    x_{ij} = \mu _{i} + \varepsilon _{ij} : 观测值 = 治疗方案 + 随机因素

    \mu _{i} :反映第x种(x = 1\2\3)治疗方案的平均治疗水平。

     H0:原假设;各个水平下的均值相同

    H0:先假定不同水平下的均值是相等的;三种治疗方案之间是没有差异的。-> 利用 数据分析 进行检验(类似于 反证法)

    单因素方差分析法是将样本总偏差的平方和分解成两个平方和(因子平方和误差平方和),通过这两个平方和之间的比较,导出假设检验的统计量和拒绝域。

    总偏差平方和:所有数据的偏差平方和。(求和:每个观测值与总均值之间的差的平方。)

    因子平方和:比较各个水平(行)下,数据之间的差异。xi:第i个水平下的样本均值。每个水平下的均值与总均值的偏差平方和。

    误差平方和:各个组内的偏差平方和。每一行数据内部的偏差平方和。主要与 随机误差 有关。

    自由度:自由取值的变量个数。

    定理7.1.1 总变异 = 组间变异 + 组内变异

    ST:所有数据之间的差异(xij之间的差异越大,ST就越大)。

    x_{ij} = \mu _{i} + \varepsilon _{ij} :\mu _{i} (组间变异\不同治疗方案) + \varepsilon _{ij}(组内变异)

    H0:原假设(\mu _{1} = \mu _{2} = \mu _{3} = ... = \mu _{r}

    用“均方和”进行比较:消除自由度的影响。MSA、MSE进行比较:观察SA、SE哪个引起的误差偏大。

    如果,因子平方和 所占的比例较大:各个因子之间的差异较大;

    如果,误差平方和 所占的比例较大:数据之间的差异,主要由随机误差引起。

    数据量越多,随机因素多占的比例越大,ST越大,∴ 用均方和进行比较。

    F(f_{A}, f_{E}) :F分布(第一自由度, 第二自由度)

    第一自由度:(r-1)、(水平数-1)          第二自由度:(n-r)、(样本观测值的个数-水平数)

    H0不合理:SA占的比例越大,F越大,越拒绝原假设。

    一般,r ≥ 3   《概率论与数理统计》

    拒绝原假设(各个水平下的均值相等):各个水平下的均值 有 显著差异。P值越小(小于α)(α一般为0.05)

    例7.1.1 Matlab求解

    % 例7.1.1
    x = xlsread('C:\Users\lwx\Desktop\chapter7.xlsx','Sheet1','A1:C18') % 读取数据
    % 每个水平(列)下 观测值、重复数都是一样的 单因素误差分析:重复数一样的数据容易分析处理
    [p,table,stats] = anova1(x)

    图1:方差分析表        图2:均值盒形图    箱形图    红线:反映平均血糖下降值(第1个下降值最高)     

        

    n:[18 18 18]:样本量          s:残差均方           残差自由度:51       means:均值比较

    三列数据:三组治疗方案的治疗效果;18个测试者;行数:重复数。

    7.2 双因素方差分析

    7.2.1 问题引入

    在实际应用中,指标值(因变量)往往受多个不同因素的影响。不仅这些因素会影响指标值,而且这些因素的不同水平交叉也会影响指标值。统计学中把多个因素不同水平交叉对指标值的影响称为交互作用。在多因素方差分析中,交互作用作为一个新因素来处理。 这里介绍两个因素的方差分析,亦称为双因素方差分析

    7.2.2 双因素方差分析的数据结构

    • 假设在观测指标X的试验中,有两个变化因素A和B。因素A有r个水平,记作A1 ,A2 ,…,Ar;因素B有k个水平,记作B1 ,B2 ,…,Bk;则A 与B的不同水平组合A_{i}B_{j}(i=1,2,…,r;j=1,2,…,k)共有rk个,每个 水平组合称为一个处理,每个处理作m次试验(亦可1次试验),得rkm个观测值x_{ij},双因素的有重复(无重复)观测数据表7.2.2。

       交叉项:重复观测数

    A1、B1水平下,有m个观测值。

    7.2.3 因素方差分析模型

    1. 无交互作用的双因素方差分析模型

    在双因素方差分析中,若不考虑两因素的交互作用效应,数据可采用无重复观测

       类似于 单因素方差分析

    x11...xrk:交叉水平下的观测值。

    \overline{x_{i.}}:第i行的算数平均(代表因素A的各个水平下的样本平均值)

    \overline{x_{.j}}:第j列的算数平均(代表因素B的各个水平下的样本平均值,因素B的第j个水平下 数据的算数平均);

    \overline{x}:所有数据的算数平均(总算数平均值)。

     A_{i}:第i个水平下

    在无交互作用下,分析因素A,B的不同水平对试验结果是否有显著影响,即为检验如下假设是否成立:

     检验两组假设:假设因素A下,不同水平下的均值没有差异;假设因素B...

    类似单因素方差分析数据的处理,在上述定义下,无交互作用双因素方差分析模型中的平方和分解如下。

     m=1的情况。

    SA:不同行数据之间的差异,因素A的不同水平之间的差异;SB:不同列数据之间的差异。SE:随机误差平方和。

    检验两组假设:假设因素A下,不同水平下的均值没有差异;假设因素B...   -->   构造两个检验统计量。

     无交互作用的双因素方差分析

    在Matlab中进行双因素方差分析,采用命令

    [p, table, stats] = anova2(x,reps)

    reps:试验数据(每个交叉水平下)重复次数,缺省时为1。

    % 例7.2.1
    x = [365,350,343,340,323;345,368,363,330,333;
        358,232,353,343,308;288,280,298,260,298]'; % 不转置 也行
    [p,table,stats] = anova2(x)

      此图,表格数据有误。看matlab运行图,即可。

    P值越大,越不拒绝原假设。

    2. 有交互作用的双因素方差分析模型

    在数据分析种,不一定存在交互作用,但是可以通过数据处理来识别有没有交互作用。

    交叉水平下的重复数 m。l:交叉水平下的重复数。

    \overline{x_{i.}}:第i行的算数平均(代表因素A的各个水平下的样本平均值)

    \overline{x_{.j}}:第j列的算数平均(代表因素B的各个水平下的样本平均值,因素B的第j个水平下 数据的算数平均);

    \overline{x_{ij}}:因素A、B交叉水平下的平均值。

    存在交互作用的情况下,双因素方差分析需要检验如下假设

    原假设 H03:假设不存在交互作用。

    有交互作用的双因素方差分析

     重复观测、交互作用影响

    拒绝原假设(各个水平下的均值相等):各个水平下的均值 有 显著差异。P值越小(小于α)(α一般为0.05)

    P值大,不拒绝 原假设。

    % 例7.2.2
    x = [26,19;24,20;27,23;25,22;25,21;
        20,18;17,17;22,13;21,16;17,12];
    [p,table,stats] = anova2(x,5) % 5:每个交叉水平下的重复数

    7.3 一元线性回归分析

     在应用问题研究当中,如果涉及到变量与变量之间的分析,可以借助回归分析来进行研究。

    7.3.1 回归分析的概念

    研究变量间的关系常有两种。

    • 确定性关系函数关系

    如圆面积与圆半径的关系;价格一定时,商品销售额与销售量的关系等。

    • 相关关系

    如父亲与子女身高的关系;收入水平与受教育程度间的关系等。

    变量间的相关关系不能用完全确切的函数形式表示,但在平均意义下 有一定的定量关系表达式。研究总体(总体规律)

    相关关系的类型

       不相关:无明显相关关系

    回归分析(Regression Analysis)就是研究变量间的相关关系的统计方法,是英国生物学家兼统计学家高尔顿在研究父代与子代身高关系时得到的分析方法。

    通过对客观事物中变量的大量观察或试验获得的数据,寻找隐藏在数据背后的相关关系,并给出它们的表达形式——回归函数的估计。

    回归分析主要用于研究指标的估计和预测。

    通过数据分析,得到 回归表达式(回归函数),对变量进行估计、预测。

    设变量y与x(一维或多维)间有相关关系,称x为自变量(解释变量),y为因变量(被解释变量)。

    若x为一般变量,在获得x取值后,设y 的取值为一随机变量,可表示为

                                           y = f(x) + ε

    上式称为一般回归模型,其中ε称为随机误差项,一般假设 ε~N(0, \sigma ^{2})。正态分布

    7.3.2 一元线性回归模型

     r_{xy}:反映 x组数据与y组数据的线性相关程度。

    r_{xy} 越大,线性相关程度越强。            |r_{xy}| ≤ 1              

    一元线性回归分析内容

    (1)回归参数\beta _{0},\beta _{1},\sigma ^{2}的估计

    (2)回归模型的显著性检验

    (3)回归参数的显著性检验

    1.回归参数的估计

    yi:观测值          最小二乘法(参数估计、数据拟合)             \beta _{0}+\beta _{1}x_{i} :yi的回归值

     (7.3.3) 求导式

     \overline{x} , \overline{y}:x、y数据的样本均值

    2.回归模型的显著性检验

    在模型假定下,可以证明

    对模型(7.3.2)的显著性提出假设

          H0 : 回归方程不显著,H1 : 回归方程显著

    如果回归方程显著,意味着SSE应该比较小,F值应该比较大,所以在显著水平α下,当 F\geq F_{\alpha } (1,n-2)时,拒绝原假设,认为回归方程显著。

    3.回归参数的显著性检验

     t^2 = F

    MATLAB进行回归分析的命令为 regress,其调用方式为 [b,bint,r,rint,stats] = regress(y, x) ,其输出结果为

    • b :回归方程的系数
    • bint:回归方程系数的95%置信区间
    • r: 回归方程的残差
    • rint:残差的95%置信区间
    • stats: 可决系数R^{2}、模型检验F值、模型检验P值

    7.3.3 一元线性回归分析应用

    例7.3.1 为研究销售收入与广告费用支出之间的关系,某医药管理部门随机抽取20家药品生产企业,得到它们的年销售收入和广告费用支出(万元)的数据如下表。分析销售收入与广告费用之间的关系。

    分析 由表(1)可得模型检验F值为116.3958,P值非常小,即模型是显著的;由表(2)可得模型的决定系数R^{2} = 0.866067,接近于1,说明模型拟合效果较好;由表(3)可得回归方程的系数\beta _{0} = 274.5502,\beta _{1} = 5.1308,且参数\beta _{1}检验的P值较小,显著非零,则回归方程为

    根据得到的回归方程可进行因变量y的估计和预测。

    7.4 多元线性回归分析

    研究多个变量之间相关性的常用统计方法:多元线性回归分析。

    7.4.1 多元线性回归模型

    实际应用中影响因变量变化的因素往往有多个,例如产出受各种投入要素(资本、劳动力、技术等)的影响;销售额受价格和广告费投入等的影响。      研究 多个变量 影响 因变量的情况。

    回归模型中自变量(解释变量)个数为两个及两个以上时,即为多元回归模型

    多元线性回归模型的一般形式为

     (p=1:一元线性回归模型)

    • \beta _{1}\beta _{2},...,\beta _{p} 称为 偏回归系数              \beta _{0} :辅助作用,根据实际问题分析,选择是否保留。
    • β_{i}\beta _{i} 表示假定其他变量不变,当 xi 每变动一个单位时,y 的平均变动值。 

    多元线性回归分析内容

    1. 回归参数的估计
    2. 回归方程的拟合优度
    3. 显著性检验
    4. 共线性诊断

    7.4.2 回归参数的估计

    x_{np} :第p个自变量的观测值。

    yi的值 由 自变量xi的线性回归值、随机误差 \varepsilon_{i} 的值 所构成。

    Y:因变量构成的列向量;\beta:回归参数向量;\varepsilon:随机误差项构成的向量。

     偏导数 = 0

    7.4.3 回归方程的拟合优度

    7.4.4 显著性检验

    多元线性回归分析的显著性检验包括模型的显著性检验和各偏回归系数的显著性检验。

    1.模型的显著性检验

    2. 偏回归系数的显著性检验

    关于模型的显著性检验 不拒绝 原假设 时,模型是不显著的,此时 不必做 偏回归系数的显著性检验。

    7.4.5 共线性诊断

    多元线性回归分析中,要求回归模型(7.4.1)中自变量之间线性无关。若有两个或两个以上的自变量彼此相关,称模型存在多重共线性

    多重共线性产生的问题

    (1)可能会使回归的结果造成混乱,甚至会把分析引入歧途;

    (2)可能对参数估计值的正负号产生影响,特别是各回归系数的正负号有可能同预期的正负号相反 。

    检测多重共线性的最简单的一种办法是计算模型中各对自变量之间的相关系数,并对各相关系数进行显著性检验。若有一个或多个相关系数显著,就表示模型中所用的自变量之间相关,存在着多重共线性。

    如果出现下列情况,暗示存在多重共线性。(存在多重共线性,需要对模型进行修正)

    • 模型中各对自变量之间显著相关;
    • 当模型的线性关系检验(F检验)显著时,几乎所有回归系数的t检验却不显著;
    • 回归系数的正负号与预期的相反。

    7.5 牙膏价格问题

    7.5.1 问题描述

    某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销 售量与销售价格、广告投入等因素之间的关系,从而预测出在不同价格和广告费用下的销售量。表7.5.1是30个销售周期(4周为1销售周期)中收集到的资料。试根据这些数据建立一个数学模型,分析牙膏的销售量与其它因素的关系,为制定价格策略和广告投入提供决策依据。

    7.5.2 问题分析

    1.牙膏价格与销售量

    由于牙膏是小件生活必需品,对大多数顾客来说,在购买同类产品的牙膏时更多地会在意不同品牌中间的价格差异,而不是他们的 价格本身。因此在研究各个因素对销售量的影响时,用价格差代替公司销售价格更为合适。

    通过分析其他厂家牙膏价格与本公司牙膏价格差对销售量的影响关系,建立价格差与销售量的相关模型。

    2.广告费用与销售量

    通过分析广告费用对销售量的影响关系,建立广告费用与销售 量的相关模型。

    7.5.3 模型假设与符号

    实际中,由于影响牙膏销售量的因素有很多,根据问题分析和相关数据,提出假设:

    (1)假设牙膏销售量主要受价格差和广告费用影响,即其它因素对销售量的影响归入随机误差。

    (2)令 y~本公司牙膏销售量;x_{1}~其它厂家牙膏价格与本公司牙膏价格差;x_{2}~本公司广告费用。x_{1}x_{2}对y的影响、建立模型。

    7.5.4 模型建立与求解

    1.牙膏价格差对销售量影响模型

     正相关的线性关系

    2.广告费用对销售量影响模型

       勉强接受:线性关系

    建立模型:多尝试,以合理性为前提,越简单越好。

    3.牙膏价格差与广告费用对销售量影响模型

    由(7.5.1)和(7.5.2),将常数项合并,随机误差项合并,且不考虑牙膏价格差与广告费用对销售量的交叉影响。可得牙膏价格差与广告 费用对销售量影响模型

                                     

    由数据进行回归分析,见表7.5.2

                                        

    4.模型改进

     只考虑 线性关系

    由表7.5.3回归结果可得,修正可决系数为0.874,模型显著性检验的p值为0,模型是显著的。并且各回归参数均显著非0,说明模型 有效,得到牙膏价格差与广告费用对销售量影响模型为

                                                         

    7.5.5 结果分析

                                                         

    由模型(7.5.5)可知,提高本公司牙膏价格,将会减少本公司牙膏销售量,例如,广告费不变时,本公司牙膏价格比其它厂家平均价格 提高1元,估计销售量将会减少约1.468百万支。

    另一方面,一定程度上,增加广告费用将会提高销售量,但过 度增加广告费用就会增加成本。

    根据模型(7.5.5),只要给定了x_{1}x_{2},代入就可以对销售量进行估计和预测,还可以进行一定的置信度下的区间预测。如当x_{1}=0.2,x_{2}=6.5时,可以计算得到销售量的预测值约为8.379(百万支),其95%的预测区间为[7.874, 8.863]。

    在公司管理中,这个预测上限可以用来作为公司的生产和库存数量;而这个预测下限可以用来较好地把握公司的现金流,因为到时至少有7.874百万支牙膏可以有把握的卖出去,可以回来相应的销售款。

    若考虑牙膏价格差与广告费用两个因素间可能会有交互作用,可以将二者的乘积x_{1}x_{2}来表示这个作用对销售量的影响,对原来的模型进行改进,

       

    同理,可对模型7.5.6进行回归分析,研究模型的有效性和显著性(略)。

    7.6 方差分析与回归分析的SPSS实现

    数据统计分析:Matlab、R、SPSS

    7.6.1 SPSS软件概述

    1 SPSS版本与安装

    SPSS的版本每年更新,当前最新为SPSS26.0,较新版本都有中文版,这里以2013年的SPSS22.0中文版为例介绍其安装及应用。

     数学建模【SPSS 下载、安装】

    2 SPSS界面

    SPSS的主要界面 有 数据编辑窗口 和 结果输出窗口。

    SPSS软件在其基本界面上集成了数据录入、转换、检索、统计分析、作图、制表及编辑等功能;采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。

    数据编辑窗口:标题栏、菜单栏、工具栏、状态栏、数据视图、变量视图

    控制菜单图标、窗口名称、窗口控制图标、窗口控制按钮

    变量视图

    3 SPSS特点

    • (1)囊括了各种成熟的统计方法与模型,为统计分析用户提供了全方位的统计学算法,为各种研究提供了相应的统计学方法。
    • (2)提供了各种数据准备与数据整理技术。
    • (3)自由灵活的表格功能。
    • (4)各种常用的统计学图形。

    SPSS最突出的特点就是操作界面极为友好,输出结果美观漂亮。SPSS是第一个采用人机交互界面的统计软件,非常容易学习和使用。

    SPSS软件基本操作可通过点击鼠标来完成,有一定统计基础且熟悉Windows一般操作的应用者参考它的帮助系统 基本上 可以自学使用;除了数据录入及部分命令程序等少数输入工作需要使用键盘键入外,对于常见的统计分析方法完全可以通过对“菜单”、“对话框”的操作完成,无需编程。

    4 SPSS数据

    SPSS能够与常用的数据文件格式互交。                  Excel文件

    SPSS数据文件中,变量有三种的基本类型:数值型、字符型和日期型。

    SPSS的文件类型:

    (1)数据文件:拓展名为.sav

    (2)结果文件:拓展名为.spv

    (3)图形文件:拓展名为.cht

    (4)语法文件:拓展名为.sps

    7.6.2 SPSS与方差分析

    【例7.1.1、例7.2.2 Excel文件:链接:https://pan.baidu.com/s/1PLXyYCelCfOGgMPbl7T2AA   提取码:zjxs】

    1 单因素方差分析

    生成数据:1、导入数据;2、手工录入

    54条数据:因变量(血糖下降值)记为A,分组变量(3个组别)记为g。Excel表中,第一行为变量名。

       

      数据视图
    变量视图

    单因素方差分析

      

       

    多重比较:将 各个水平下的均值 进行比较。Tukey:针对重复次数一样的多重比较。显著性水平 默认 0.05。

    左边:输出列表;右边:输出结果(概括性描述)。

    表2:方差极性检验(显著性-P值:0.871)   表3:方差分析表(因子平方和、误差平方和;总平方和)

     只要P值小于0.05,就认为 是有 显著差异的。

    根据多重比较的结果,进行分类得到的分类表。

      

    均值图                      1、2之间,有显著差异;2、3无显著差异。

    2 双因素方差分析

    【例7.1.1、例7.2.2 Excel文件:链接:https://pan.baidu.com/s/1PLXyYCelCfOGgMPbl7T2AA   提取码:zjxs】 

    双因素并且考虑交互作用的方差分析:将分析数据作为因变量指标;将时段、路段两个因素 建立 两个分组变量。

    将Excel表中的数据,导入SPSS。

       

    选择 “模型”:

        

       

    绘图

      -> 点击“添加”  ->   

    事后多重比较

    选项

        

      

        

        

    7.6.3 SPSS与回归分析 

    SPSS回归分析过程

    牙膏价格问题的回归分析

       

       

          

       

    表1:自变量、因变量、标准差...描述结果;表2:相关系数矩阵表---研究共线性;

    模型汇总统计量计算 Model Summary;ANOVA:回归分析的方差分析表;

    coefficients:回归系数估计

    不考虑x2(将x2从模型中去除!)

      

    展开全文
  • 方差分析

    2020-03-26 08:09:53
    一、方差分析原理 1. 方差分析概述 方差分析可用来研究多个分组的均值有无差异,其中...一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。 方差分析可用于: (1)完全随...

    目录

     

    一、方差分析原理

    1. 方差分析概述

    2. 基本思想

    单因素方差分析(one-way ANOVA)

    试验参数

    单因素方差分析基本步骤

    单因素方差分析的进一步分析

    多(双)因素方差分析

    试验参数

     例如双因素方差分析的基本步骤

           3.方差分析的实验设计


    一、方差分析原理

    1. 方差分析概述

    方差分析可用来研究多个分组的均值有无差异,其中分组是按影响因素的不同水平值组合进行划分的。

    方差分析,是用来检验两个或两个以上均值间差别显著性(影响观察结果的因素:原因变量(列变量)的个数大于2,或分组变量(行变量)的个数大于1)。一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。

    方差分析可用于:

    (1)完全随机设计(单因素)、随机区组设计(双因素)、析因设计、拉丁方设计和正交设计等资料;

    (2)可对两因素间交互作用差异进行显著性检验;

    (3)进行方差齐性检验。

    要比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方(Mean Square)。

    2. 基本思想

    基本思想是,将所有测量值上的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。

    根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以各自的自由度得出各部分的均方,然后列出方差分析表算出F检验值,作出统计推断。

    方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。

     效应项与试验设计或统计分析的目的有关,一般有:主效应(包括各种因素),交互影响项(因素间的多级交互影响),协变量(来自回归的变异项),等等。

    当分析和确定了各个效应项S后,根据原始观察资料可计算出各个离均差平方和SS,再根据相应的自由度df,由公式MS=SS/df,求出均方MS,最后由相应的均方,求出各个变异项的F值,F值实际上是两个均方之比值,通常情况下,分母的均方是误差项的均方。

    单因素方差分析(one-way ANOVA)

    试验参数

    假设因素A有s个水平A1,A2…..,As,每个水平下进行nj次独立试验,样本总数n

     观测变量总离差平方和 = 组间离差平方和 + 组内离差平方和,表述为:SST=SSA+SSE

    组内差异——测量误差、个体差异

            SSE(误差平方和)各个水平下,样本观察值与样本均值差异的平方和

            组内自由度  dfe=n-s

    组间差异——不同实验条件处理

            SSA(因素A的效应平方和)各个水平下样本平均值与数据总平均差异的平方和

            组间自由度  dfa=s-1

    均方 = 离差平方和 / 自由度   SA=SSA/dfa   SE=SSE/dfe

    单因素方差分析基本步骤

    1、提出原假设:H0——无差异;H1——有显著差异

    2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验

    拒绝H0

    F>F0.05(dfa,dfe)

    组间均方>>组内均方,来自不同正态总体

    接受H0

    F<F0.05(dfa,dfe)

     组间均方<<组内均方,来自相同正态总体

    3、计算检验统计量的观测值和概率P值

    4、给定显著性水平,并作出决策

    单因素方差分析的进一步分析

             在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。

            1、方差齐性检验    ——对控制变量不同水平下各观测变量总体方差是否相等进行检验

            前面提到,控制变量不同水平下观测变量总体方差无显著差异是方差分析的前提要求。如果没有满足这个前提要求,就不能认为各总体分布相同。因此,有必要对方差是否齐性进行检验。

            其原假设是:各水平下观测变量总体的方差无显著差异。

            2、多重比较检验      ——控制变量的不同水平对观测变量的影响程度如何,实现对各个水平下观测变量总体均值的逐对比较

            单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显著的,等等。

            多重比较检验利用了全部观测变量值,实现对各个水平下观测变量总体均值的逐对比较。由于多重比较检验问题也是假设检验问题,因此也遵循假设检验的基本步骤。

    检验构造方法

            (1)LSD方法

             LSD方法称为最小显著性差异(Least Significant Difference)法。最小显著性差异法的字面就体现了其检验敏感性高的特点,即水平间的均值只要存在一定程度的微小差异就可能被检验出来。

    正是如此,它利用全部观测变量值,而非仅使用某两组的数据。LSD方法适用于各总体方差相等的情况,但它并没有对犯一类错误的概率问题加以有效控制。

            (2)S-N-K方法

              S-N-K方法是一种有效划分相似性子集的方法。该方法适合于各水平观测值个数相等的情况,

     3、其他检验

    (1)先验对比检验

            在多重比较检验中,如果发现某些水平与另外一些水平的均值差距显著,如有五个水平,其中x1、x2、x3与x4、x5的均值有显著差异,就可以进一步分析比较这两组总的均值是否存在显著差异,即1/3(x1+x2+x3)与1/2(x4+x5)是否有显著差异。这种事先指定各均值的系数,再对其线性组合进行检验的分析方法称为先验对比检验。通过先验对比检验能够更精确地掌握各水平间或各相似性子集间均值的差异程度。

            (2)趋势检验

            当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。

    多(双)因素方差分析

    单独效应   ——其他因素固定,某一因素不同水平之间均数的差别

    交互效应   ——某因素的单独效应,随另一因素水平而变化,且不能用随机误差解释

    试验参数

            假设因素A有r个水平(A1,A2…..,Ar),因素B有s个水平(B1,B2……,Bs),每个ABzuhe进行t次独立试验,样本总数n

    同样计算离差平方和SST=SSA+SSE+SSB+SSAB

    SSE(误差平方和)每个(ij)水平下测量值与均值差异的平方和

    SSA、SSB(因素A\B的效应平方和)、SSAB(AB交互效应平方和)

     例如双因素方差分析的基本步骤

            1、提出原假设:

     

    因素A(r)

    因素B(s)

    AB交互作用(rs)

    无显著差异

    H01

    H02

    H03

    有显著差异

    H11

    H12

    H13

             2、F值检验

    拒绝H01

    F0.05(dfa,dfe)<FA

    因素A不同存在显著差异

    拒绝H02

    F0.05(dfb,dfe)<FB

    因素B不同存在显著差异

    拒绝H03

    F0.05(dfab,dfe)<FAB

    因素A与B存在交互效应

           3.方差分析的实验设计

    为了确定方差分析表中各个有关效应项,需要在试验设计阶段就作出安排,再根据设计要求进行试验,得出原始观察值,按原来设计方案算出方差分析表中的各项。

    在试验设计阶段通常需要考虑如下4个方面:

    (1)研究的因变量

    即试验所要观察的主要指标,一次试验时可以有多个观察指标,方差分析时也可以同时对多个因变量进行分析;

    (2)因素和水平

    试验的因素(factor)可以是品种、人员、方法、时间、地区等等,因素所处的状态叫水平(level)。在每一个因素下面可以分成若干水平。

    (3)因素间的交互影响

    多因素的试验设计,有时需要分析因素间的交互影响(interaction),2个因素间的交互影响称为一级交互影响(A×B);3个因素间的交互影响称为二级交互影响(A×B×C)。

    当交互影响项呈现统计不显著时,表明各个因素独立,当呈现统计显著时,就需要列出这个交互影响项的效应,以助于作出正确的统计推断。

    举例解释上述概念:要考察焦虑症的治疗疗效,一个因素是治疗方案,有2种治疗方案,即该因素有2个水平;(治疗方案称为组间因子,因为每个患者只能被分配到一个组别中,没有患者同时接受两种治疗);再考虑一个因素治疗时间,也有两个水平:治疗5周和治疗6个月,同一患者在5周和6个月不止一次地被测量(两次),称为重复测量(治疗时间称为组内因子,因为每个患者在所有水平下都进行了测量)。

    建立方差分析模型时,既要考虑两个因素治疗方案和治疗时间(主效应),又要考虑治疗方案和时间的交互影响(交互效应),此时即两因素混合模型方差分析。

    当某个因素的各个水平下的因变量的均值呈现统计显著性差异时,必要时可作两两水平间的比较,称为均值间的两两比较。

     

    展开全文
  • 一元线性回归 1、女士的身高-体重例子。--借助excel数据分析功能 2、气温-冰红茶销售量例子。--直接计算 多元线性回归 3、薪资-性别-年龄-教育程度例子。--借助excel数据分析功能 4、店铺营业额-店铺面积-离车站...

    在学习机器学习的线性回归这块内容,想再一次好好理清楚算法的基本思路。最初还是使用了excel来理顺一遍思路。excel的数据分析功能也还是十分便捷的,计算也十分方便。
    本博客共使用四个详细例子来介绍线性回归。分别是1、女士的身高-体重例子–借助excel数据分析功能;2、气温-冰红茶销售量例子。–直接计算;3、薪资-性别-年龄-教育程度例子。–借助excel数据分析功能;4、店铺营业额-店铺面积-离车站距离例子。–直接计算。

    一元线性回归

    1、女士的身高-体重例子。–借助excel数据分析功能
    使用excel中散点图功能将数据绘制成散点图。

    在这里插入图片描述
    散点图右键,选择“设置趋势线格式”。
    在这里插入图片描述
    弹出的设置框可以设置散点图样式,趋势线选择线性,勾选显示公式、显示R平方值。
    在这里插入图片描述
    同样的,在坐标轴右键,选择“设置坐标轴格式”。弹出的设置框可以修改一下坐标轴的初始值,让散点图更好看一些。
    在这里插入图片描述
    最终散点图如下。可以看到数据分布特征非常明显,呈现线性分布。右键添加趋势线,并显示方程、R²。R²=0.991,接近于 1,说明模型能够解释99.1%的方差,效果非常好。
    在这里插入图片描述

    根据excel中:“数据-数据分析-回归”得到得模型如下。
    旧版excel点击:“工具-数据-数据分析-回归”。
    在这里插入图片描述
    Y值输入区域:选择你的Y值数据,我这为C列;X值输入区域:选择你的X值数据,我这为B列。
    输出区域默认为新的工作表,但我希望输出与数据在同一张表格,所以选择了想要的区域位置。其他的内容根据需要自行勾选。
    在这里插入图片描述
    输出内容如下:
    在这里插入图片描述

    这个值为R²,反映了模型的解释能力,越接近于1说明效果越好。这里可以看出我们模型的效果很好。
    在这里插入图片描述

    F检验,即对方程是否有线性关系的检验,原假设 H0:方程没有线性关系,我们看到 P值< 0.01,故拒绝 H0,认为方程具有线性关系。
    在这里插入图片描述

    t 检验,即对一元线性方程的截距项α和系数β进行检验,H0:α=0,可以看到 P<0.01,拒绝H0,说明α通过了t检验;同理,β也通过了 t检验。
    在这里插入图片描述

    根据这里可以得到线性回归方程为y=-87.5167+3.45x。
    方程是需要自己写的哈,数据分析功能不会直接输出的。
    在这里插入图片描述

    残差图:可以看到数据并没有散乱的分布在X 轴两侧,而是呈抛物线的形状,说明模型中需要引入一个二次项,从散点图中亦可以看出。
    在这里插入图片描述

    正态概率图:散点分布在一条直线上,说明服从正太分布。当样本足够大(一般认为≥30)时,一般不需要太关注正太分布性。
    在这里插入图片描述

    2、气温-冰红茶销售量例子。–直接计算
    使用excel中散点图功能将数据绘制成散点图。可以看到数据呈现线性分布,气温与销售量呈正相关。右键添加趋势线,并显示方程、R²。R²接近于 1,说明模型效果较好。
    在这里插入图片描述
    第A列为每日最高气温x的值,A16为x的和,A17为x的平均数。第B列为当日冰红茶的销售量y,B16为y的和,B17为y的平均数。第C列为各个x减去x平均值的具体数值。第E列为的各个x的离差平方,E16即为x的离差平方和Sxx的值。第D列为各个y减去y平均值的具体数值。第F列为的各个y的离差平方,F16即为y的离差平方和Syy的值。第G列为的各个x与相应y的离差平方,G16即为x和y的离差平方和Sxy的值。
    在这里插入图片描述
    由a=Sxy/Sxx得到a的值,由b=y-ax得到b的值。然后得出方程y=3.7x-36.4。
    在这里插入图片描述
    根据公式得到销售量的预测值,即第K列。K16为预测值的和,K17为预测值的平均数。第L列为预测值减去预测平均数的具体数值。第M列为预测值的离差平方,M16即为预测值的离差平方和。第N列为y与预测值的离差平方,N16为y和预测值的离差平方和。
    在这里插入图片描述
    由R2=Syy2/sqrt(Syy*Syy1)得到R2.。可见该方程的精度比较高。
    在这里插入图片描述

    多元线性回归

    3、薪资-性别-年龄-教育程度例子。–借助excel数据分析功能
    根据excel中散点图功能,绘制出三个自变量与因变量的散点图,并得到方程和R²。可以看出年龄、工龄、教育程度与薪资都成正相关。
    其中年龄-薪资的模型图拟合度较好,R²最大。
    做法同1类似,需要分别选择X值。
    在这里插入图片描述
    同1的步骤,根据excel中:“数据-数据分析-回归”得到得模型如下。
    注意:x的赋值要把三个x都选上。输出内容如下:
    在这里插入图片描述
    整体的R²,可以看出我们模型的效果还是比较好的。
    在这里插入图片描述
    整体方程P值<<0.01,故拒绝原假设,方程通过了F检验。
    在这里插入图片描述
    所有的自变量都通过了t检验。
    在这里插入图片描述
    可以得到线性回归方程为
    y=-44632.8+2303.837x1+1952.72x2+8052.969x3。
    在这里插入图片描述

    4、店铺营业额-店铺面积-离车站距离例子。–直接计算
    使用excel中散点图功能将数据绘制成散点图。可以看到数据呈现线性分布,店铺面积与营业额呈正相关,距离与营业额呈负相关。。
    在这里插入图片描述
    第A列为店铺的面积大小(x1),A12为面积大小之和,A13为面积的平均值。第B列为店铺到车站的距离(x2),B12为距离之和,B13为距离的平均数。第C列为营业额的数值(y),C12为营业额之和,C13为营业额的平均数。第D列为各个x1减去x1平均值的具体数值。第E列为的各个x1的离差平方,E12即为x1的离差平方和Sx1x1的值。
    第F列为各个x2减去x2平均值的具体数值。第G列为的各个x2的离差平方,G12即为x2的离差平方和Sx2x2的值。第H列为各个y减去y平均值的具体数值。第I列为的各个y的离差平方,I12即为y的离差平方和Syy的值。第J列为的各个x1与相应y的离差平方,J12即为x1和y的离差平方和Sx1y的值。第K列为的各个x2与相应y的离差平方,K12即为x2和y的离差平方和Sx2y的值。第L列为的各个x1与相应x2的离差平方,L12即为x1和x2的离差平方和Sx1x2的值。第N列为预测值。
    在这里插入图片描述
    由a1=Sx1ySx2x2-Sx2ySx1x2/Sx1x1Sx2x2-Sx1x2^ 2得到a1的值,由a2=Sx2ySx1x1-Sx1ySx1x2/Sx1x1Sx2x2-Sx1x2^2得到a2的值,由b=y-a1x1-a2x2`得到b值,最后得到方程y=41.5x1-0.3x2+65.3。
    在这里插入图片描述

    展开全文
  • 多元相关分析多元回归分析

    万次阅读 多人点赞 2018-10-27 17:13:02
    方差分析检验  t检验 多元回归分析模型建立 线性回归模型基本假设 多元回归分析用途 多元线性相关分析 矩阵相关分析 复相关分析 曲线回归模型 多项式曲线 二次函数 对数函数 指数函数 幂函数 双曲线...

    目录

    变量间的关系分析

    什么是相关分析

    什么是回归分析

    分析步骤

    回归分析与相关分析的主要区别

    一元线性相关分析

    一元线性回归分析

    建模

    方差分析检验

     t检验

    多元回归分析模型建立

    线性回归模型基本假设

    多元回归分析用途

    多元线性相关分析

    矩阵相关分析

    复相关分析

    曲线回归模型

    多项式曲线

    二次函数

    对数函数

    指数函数

    幂函数

    双曲线函数


    变量间的关系分析

    变量间的关系有两类,一类是变量间存在着完全确定的关系,称为函数关系,另一类是变量间的关系不存在完全的确定性,不能用精缺的数学公式表示,但变量间存在十分密切的关系,这种称为相关关系,存在相关关系的变量称为相关变量

    相关变量间的关系有两种:一种是平行关系,即两个或两个以上变量相互影响。另一种是依存关系,即是一个变量的变化受到另一个或多个变量的影响。相关分析是研究呈平行关系的相关变量之间的关系。而回归分析是研究呈依存关系的相关变量间的关系。表示原因的变量称为自变量-independent variable,表示结果的变量称为因变量-dependent variable

    什么是相关分析

    通过计算变量间的相关系数来判断两个变量的相关程度及正负相关。

    什么是回归分析

    通过研究变量的依存关系,将变量分为因变量和自变量,并确定自变量和因变量的具体关系方程式

    分析步骤

    建立模型、求解参数、对模型进行检验

    回归分析与相关分析的主要区别

    1.在回归分析中,解释变量称为自变量,被解释变量称为因变量,相关分析中,并不区分自变量和因变量,各变量处于平的地位。--(自变量就是自己会变得变量,因变量是因为别人改变的)

    2.在相关分析中所涉及的变量全部是随机变量,在回归分析中只有只有因变量是随机变量。

    3.相关分析研究主要是为刻画两类变量间的线性相关的密切程度,而回归分析不仅可以揭示自变量对因变量的影响大小,还可以由回归方程进行预测和控制。

    一元线性相关分析

    线性相关分析是用相关系数来表示两个变量间相互的线性关系,总体相关系数的计算公式为:

     δ^2x代表x的总体方差, δ^2y代表y的总体方差,δxy代表x变量与y变量的协方差,相关系数ρ没有单位,在-1到1之间波动,绝对值越接近1越相关,符号代表正相关或复相关。

    一元线性回归分析

    使用自变量与因变量绘制散点图,如果大致呈直线型,则可以拟合一条直线方程

    建模

    直线模型为:

     y是因变量y的估计值,x为自变量的实际值,a、b为待估值

    几何意义:a是直线方程的截距,b是回归系数

    经济意义:a是x=0时y的估计值,b是回归系数

    对于上图来说,x与y有直线的趋势,但并不是一一对应的,y与回归方程上的点的差距成为估计误差或残差,残差越小,方程愈加理想。

    当误差的平方和最小时,即Q,a和b最合适

    对Q求关于a和b的偏导数,并令其分别等于零,可得:

     式中,lxx表示x的离差平方和,lxy表示x与y的离差积和。

    方差分析检验

    将因变量y实测值的离均差平方和分成两部分即使:

    分为:

    实测值yi扣除了x对y的线性影响后剩下的变异

    和x对y的线性影响,简称为回归评方或回归贡献

    然后证明:

     t检验

    当β成立时,样本回归系数b服从正态分布,这是可以使用T检验判断是否有数学意义,检验所用统计量为

    例如t=10,那么可以判断α=0.05水平处拒绝H0,接受H1,那么x与y存在回归关系

    多元回归分析模型建立

    一个因变量与多个自变量间的线性数量关系可以用多元线性回归方程来表示

    b0是方程中的常数项,bi,i=1,2,3称为偏回归系数。

    当我们得到N组观测数据时,模型可表示为:

    其矩阵为:

    X为设计阵,β为回归系数向量。

    线性回归模型基本假设

    在建立线性回归模型前,需要对模型做一些假定,经典线性回归模型的基本假设前提为:

    1.解释变量一般来说是非随机变量

    2.误差等方差及不相关假定(G-M条件)

    3.误差正太分布的假定条件为:

    4. n>p,即是要求样本容量个数多于解释变量的个数

    多元回归分析用途

    1.描述解释现象,希望回归方程中的自变量尽可能少一些

    2.用于预测,希望预测的均方误差较小

    3.用于控制,希望各个回归系数具有较小的方差和均方误差

    变量太多,容易引起以下四个问题:
    1.增加了模型的复杂度

    2.计算量增大

    3.估计和预测的精度下降

    4.模型应用费用增加

    多元线性相关分析

    两个变量间的关系称为简单相关,多个变量称为偏相关或复相关

    矩阵相关分析

    设n个样本的资料矩阵为:

    此时任意两个变量间的相关系数构成的矩阵为:

    其中rij为任意两个变量之间的简单相关系数,即是:

    复相关分析

    系数计算:

    设y与x1,x2,....,回归模型为

    y与x1,x2,....做相关分析就是对y于y^做相关分析,相关系数计算公式为

    曲线回归模型

    多项式曲线

    二次函数

    y=a+bx+cx^2

    对数函数

    y=a+blogx

    指数函数

    y = ae^bx或y = ae^(b/x)

    幂函数

    y=ax^b (a>0)

    双曲线函数

    y = a+b/x

     实战操作见下一篇文章

    展开全文
  • python方差分析

    千次阅读 2019-11-22 10:18:40
    一元方差分析 一元单因素方差分析 一元多因素方差分析 协方差分析 一元方差分析 一元单因素方差分析 场景:5种不同像素的数码相机(单因素)对销量(研究的因变量)是否有显著差异 G = dc_sales['pixel'...
  • 【通俗向】方差分析--几种常见的方差分析

    万次阅读 多人点赞 2017-03-29 14:48:57
    一般情况下,基本的方差分析模型包含以下三类,三类下面会根据具体情况再进行细分,主要的三类为一元方差分析,协方差分析多元方差分析。1、一元方差分析 一元方差分为单因素、多因素两类(协方差单独分类),...
  • 青年智囊SPSS双因素重复测量方差分析简洁版上期我们分享了卡方检验的案例,很多小伙伴私信我们给了我们很好的反馈,感谢大家的支持!还有几位小伙伴希望我们能出一期SPSS重复测量方差分析的教程,应大家的要求,这期...
  • 多元线性回归方差分析表理解

    千次阅读 2019-09-06 23:47:41
    1.单因素一元方差分析的方法案例: 例子: 案例的代码: X=[533 580 525 600 570 650 500; %因数I [A,F]实验组+CK标准 565 600 500 615 575 661 510; 525 575 510 590 565 643 513]; group={‘A’,‘B...
  • matlab实现一元线性回归和多元线性回归

    万次阅读 多人点赞 2018-01-30 10:58:46
    在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 ...
  • 根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。本文将重点讲述一元多因素方差分析,下篇文章将详细讲述...
  • Python 多因素方差分析

    万次阅读 2018-10-04 16:52:24
    在实际应用中,一个实验的指标往往受到多个因素的影响。...同时对因素A因素B进行分析,就称为双因素方差分析。 a b c a1 b1 20 a1 b2 22 a1 b3 24 a1 b4 16 a1 b5 26 a2 b1 12 a2 b2 10 a2 b3 14 a2 b...
  • 文章目录原理以及公式【1】一元线性回归问题【2】多元线性回归问题【3】学习率【4】流程分析一元线性回归)【5】流程分析多元线性回归)归一化原理以及每种归一化适用的场合一元线性回归代码以及可视化结果多元...
  • 多因素方差分析

    千次阅读 2019-10-19 11:00:00
    总第173篇/张俊红01.前言在前面我们讲过简单的单因素方差分析,这一篇我们讲讲双因素方差分析以及多因素方差分析,双因素方差分析是最简单的多因素方差分析。单因素分析就是只...
  • 1 单因素试验的方差分析 2 双因素试验的方差分析 3 一元线性回归 4 多元线性回归
  • 1. 方差分析表 1.1 单因素方差分析表 误差来源 平方SSSSSS 自由度dfdfdf 均方MSMSMS FFF值 PPP值 FFF临界值Significance  FSignificance \; FSignificanceF 组间(因素影响)factor  Afactor \; \bold...
  • 线性分布、卡方分布与方差分析

    千次阅读 2019-04-09 20:58:49
    线性回归可分为一元线性回归和多元线性回归。下面将介绍一元线性回归模型。 当可控变量只有一个时,回归函数可表示为 (1) 则 (2) 形如(1)式,可称为一元线性回归模型,称为回归系数,常数均未知。 对于...
  • 领域:零售,电子商务,旅游,酒店,物流制造业商业分析师必备的技能:理解商业商业问题可应用于商业数据的数据分析技术算法计算机编程数据结构数据存储或数据仓库技术,包括如何有效地查询数据数据分析中...
  • # -*- coding: utf-8 -*- """ Created on Tue Jul 9 11:01:42 2019 ...# 《Python数据分析基础》中国统计出版社 #import numpy as np from scipy import stats import pandas as pd import statsmodels.api ...
  • R语言实战笔记--第九章 方差分析

    千次阅读 2016-12-30 16:25:08
    R语言实战笔记–第九章 方差... 单因素方差分析,多因素方差分析,协方差分析多元方差分析,协变量:单因素,多因素都是一元方差分析,只有一个因变量(y),协方差分析也是,多元就是有多个因变量,协变量的意思其实
  • 由于方差分析的原理基本在所有概率论与数理统计的书中都可以找到,那么这里就直接以图片的形式呈现了。关于方差齐次性检验以后会补充。 简介 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A...
  • R语言实现方差分析

    千次阅读 2020-03-23 21:42:45
    方差分析对数据的要求:满足正态性(来自同一正态总体)和方差齐性(各组方差相等),在这两个条件下,若各组有差异,则只可能是来自影响因素的不同水平。 用aov()函数进行方差分析,基本格式为: aov(formula, ...
  • 重复测量的方差分析

    千次阅读 2019-12-24 12:07:23
    重复测量的意义:由于重复测量时,每个个体的测量结果之间存在一定程度的相关,违背了方差分析数据独立性的要求,如果仍使用一般的方差分析,将会增加犯I类错误的概率,所以重复测量资料有相对应的方差分析方法。...
  • 多元统计分析多元线性回归的R语言实现多元统计分析--multivariate statistical analysis研究客观事物中多个变量之间相互依赖的统计规律性。或从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么...
  • 概率,期望,方差  只有一个变量时  F(x<=a) =∫-∞af(x)dx  当区间取负无穷到正无穷时积分为1  推广到多元之后:    同理,当区间取满整个空间时,积分为1  f被称为概率密度函数  边缘分布函数...
  • 10.MATLAB方差分析

    万次阅读 多人点赞 2017-03-01 08:55:49
    方差分析是英国统计学家R.A.Fisher在20世纪20年代提出的一种统计方法,它有着非常广泛的应用。在生产实践科学研究中,经验要研究生产条件或实验条件的改变对产品的质量或产量的影响。如在农业生产中,需要考虑品种...
  • 本学期我的专业课是概率论,回归分析,偏微分方程,数值代数,数值逼近,金融时间序列分析,应用金融计量学商务英语。在所有的这些课程中,回归分析其实相对来说是比较友好的。但是学统计的人应该都会有感觉就是,...
  • 多元分析

    千次阅读 2020-06-12 20:14:44
    多元分析是多变量的统计分析方法,是数理统计的一个分支。 1.聚类分析 聚类分析又称群分析,是对多个样本或指标进行定量分类的一种多元统计分析方法。对样本进行分类称为Q型聚类分析,对指标进行分类称为R型聚类分析...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 3,349
精华内容 1,339
关键字:

一元方差分析和多元方差分析