精华内容
下载资源
问答
  • 这些替代词将以逗号分隔。 返回的单词“ abandon”的字符串可能看起来像这样:“掉落,倾倒,挖沟,丢弃。 客户端返回结果后,它将允许用户输入另个词来引用同义词库。 您的服务器将具有个文件或数据库,可以...
  • 【知识图谱】知识图谱的基础概念与构建流程

    千次阅读 多人点赞 2019-11-09 18:46:49
    目录 1、引言 2、知识图谱的定义 3、知识图谱的架构 3.1知识图谱的逻辑结构 3.2知识图谱的体系架构 ...【导读】知识图谱技术是人工智能技术的组成部分,...我们专知的技术基石之正是知识图谱-构建AI知识体系-专...

    目录

    1、引言

    2、知识图谱的定义

    3、知识图谱的架构

    3.1 知识图谱的逻辑结构

    3.2 知识图谱的体系架构

    4、代表性知识图谱库

    5、知识图谱构建的关键技术

    5.1 知识提取

    5.2 知识表示

    5.3 知识融合


    【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。

    1、引言

    随着互联网的发展,网络数据内容呈现爆炸式增长的态势。由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了挑战。知识图谱(Knowledge Graph) 以其强大的语义处理能力和开放组织能力,为互联网时代的知识化组织和智能应用奠定了基础。最近,大规模知识图谱库的研究和应用在学术界和工业界引起了足够的注意力[1-5]。一个知识图谱旨在描述现实世界中存在的实体以及实体之间的关系。知识图谱于2012年5月17日由[Google]正式提出[6],其初衷是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。随着人工智能的技术发展和应用,知识图谱作为关键技术之一,已被广泛应用于智能搜索、智能问答、个性化推荐、内容分发等领域。

    2、知识图谱的定义

    在维基百科的官方词条中:知识图谱是Google用于增强其搜索引擎功能的知识库。本质上, 知识图谱旨在描述真实世界中存在的各种实体或概念及其关系,其构成一张巨大的语义网络图,节点表示实体或概念,边则由属性或关系构成。现在的知识图谱已被用来泛指各种大规模的知识库。 在具体介绍知识图谱的定义,我们先来看下知识类型的定义:

    知识图谱中包含三种节点:

    实体: 指的是具有可区别性且独立存在的某种事物。如某一个人、某一个城市、某一种植物等、某一种商品等等。世界万物有具体事物组成,此指实体。如图1的“中国”、“美国”、“日本”等。,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。

    语义类(概念):具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。 概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等。

    内容: 通常作为实体和语义类的名字、描述、解释等,可以由文本、图像、音视频等来表达。

    属性(值): 从一个实体指向它的属性值。不同的属性类型对应于不同类型属性的边。属性值主要指对象指定属性的值。如图1所示的“面积”、“人口”、“首都”是几种不同的属性。属性值主要指对象指定属性的值,例如960万平方公里等。

    关系: 形式化为一个函数,它把kk个点映射到一个布尔值。在知识图谱上,关系则是一个把kk个图节点(实体、语义类、属性值)映射到布尔值的函数。

    基于上述定义。基于三元组是知识图谱的一种通用表示方式,即,其中,是知识库中的实体集合,共包含|E|种不同实体; 是知识库中的关系集合,共包含|R|种不同关系;代表知识库中的三元组集合。三元组的基本形式主要包括(实体1-关系-实体2)和(实体-属性-属性值)等。每个实体(概念的外延)可用一个全局唯一确定的ID来标识,每个属性-属性值对(attribute-value pair,AVP)可用来刻画实体的内在特性,而关系可用来连接两个实体,刻画它们之间的关联。如下图1的知识图谱例子所示,中国是一个实体,北京是一个实体,中国-首都-北京 是一个(实体-关系-实体)的三元组样例北京是一个实体 ,人口是一种属性2069.3万是属性值。北京-人口-2069.3万构成一个(实体-属性-属性值)的三元组样例。

    微信图片_20170930152906.jpg

    图1 知识图谱示例

    3、知识图谱的架构

    知识图谱的架构包括自身的逻辑结构以及构建知识图谱所采用的技术(体系)架构。

    3.1 知识图谱的逻辑结构

    知识图谱在逻辑上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的Neo4j[7]、Twitter的FlockDB[8]、sones的GraphDB[9]等。模式层构建在数据层之上,是知识图谱的核心,通常采用本体库来管理知识图谱的模式层。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

    3.2 知识图谱的体系架构

    图2 知识图谱的技术架构

    知识图谱的体系架构是其指构建模式结构,如图2所示。其中虚线框内的部分为知识图谱的构建过程,也包含知识图谱的更新过程。知识图谱构建从最原始的数据(包括结构化、半结构化、非结构化数据)出发,采用一系列自动或者半自动的技术手段,从原始数据库和第三方数据库中提取知识事实,并将其存入知识库的数据层和模式层,这一过程包含:信息抽取、知识表示、知识融合、知识推理四个过程,每一次更新迭代均包含这四个阶段。知识图谱主要有自顶向下(top-down)与自底向上(bottom-up)两种构建方式。自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。该构建方式需要利用一些现有的结构化知识库作为其基础知识库,例如Freebase项目就是采用这种方式,它的绝大部分数据是从维基百科中得到的。自底向上指的是从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式[10]。目前,大多数知识图谱都采用自底向上的方式进行构建,其中最典型就是Google的Knowledge Vault[11]和微软的Satori知识库。现在也符合互联网数据内容知识产生的特点。

    4、代表性知识图谱库

    根据覆盖范围而言,知识图谱也可分为开放域通用知识图谱和垂直行业知识图谱[12]。开放通用知识图谱注重广度,强调融合更多的实体,较垂直行业知识图谱而言,其准确度不够高,并且受概念范围的影响,很难借助本体库对公理、规则以及约束条件的支持能力规范其实体、属性、实体间的关系等。通用知识图谱主要应用于智能搜索等领域。行业知识图谱通常需要依靠特定行业的数据来构建,具有特定的行业意义。行业知识图谱中,实体的属性与数据模式往往比较丰富,需要考虑到不同的业务场景与使用人员。下图展示了现在知名度较高的大规模知识库。

    微信图片_20170930153056.jpg

    图3 代表性知识图谱库概览

    5、知识图谱构建的关键技术

    大规模知识库的构建与应用需要多种技术的支持。通过知识提取技术,可以从一些公开的半结构化、非结构化和第三方结构化数据库的数据中提取出实体、关系、属性等知识要素。知识表示则通过一定有效手段对知识要素表示,便于进一步处理使用。然后通过知识融合,可消除实体、关系、属性等指称项与事实对象之间的歧义,形成高质量的知识库。知识推理则是在已有的知识库基础上进一步挖掘隐含的知识,从而丰富、扩展知识库。分布式的知识表示形成的综合向量对知识库的构建、推理、融合以及应用均具有重要的意义。接下来,本文将以知识抽取、知识表示、知识融合以及知识推理技术为重点,选取代表性的方法,说明其中的相关研究进展和实用技术手段 。

    5.1 知识提取

    知识抽取主要是面向开放的链接数据,通常典型的输入是自然语言文本或者多媒体内容文档(图像或者视频)等。然后通过自动化或者半自动化的技术抽取出可用的知识单元,知识单元主要包括实体(概念的外延)、关系以及属性3个知识要素,并以此为基础,形成一系列高质量的事实表达,为上层模式层的构建奠定基础。

    1.1 实体抽取

    实体抽取也称为命名实体学习(named entity learning) 或命名实体识别 (named entity recognition),指的是从原始数据语料中自动识别出命名实体。由于实体是知识图谱中的最基本元素,其抽取的完整性、准确率、召回率等将直接影响到知识图谱构建的质量。因此,实体抽取是知识抽取中最为基础与关键的一步。参照文献[13],我们可以将实体抽取的方法分为4种:基于百科站点或垂直站点提取、基于规则与词典的方法、基于统计机器学习的方法以及面向开放域的抽取方法。基于百科站点或垂直站点提取则是一种很常规基本的提取方法;基于规则的方法通常需要为目标实体编写模板,然后在原始语料中进行匹配;基于统计机器学习的方法主要是通过机器学习的方法对原始语料进行训练,然后再利用训练好的模型去识别实体;面向开放域的抽取将是面向海量的Web语料[14]。

    1) 基于百科或垂直站点提取

    基于百科站点或垂直站点提取这种方法是从百科类站点(如维基百科、百度百科、互动百科等)的标题和链接中提取实体名。这种方法的优点是可以得到开放互联网中最常见的实体名,其缺点是对于中低频的覆盖率低。与一般性通用的网站相比,垂直类站点的实体提取可以获取特定领域的实体。例如从豆瓣各频道(音乐、读书、电影等)获取各种实体列表。这种方法主要是基于爬取技术来实现和获取。基于百科类站点或垂直站点是一种最常规和基本的方法。

    2) 基于规则与词典的实体提取方法

    早期的实体抽取是在限定文本领域、限定语义单元类型的条件下进行的,主要采用的是基于规则与词典的方法,例如使用已定义的规则,抽取出文本中的人名、地名、组织机构名、特定时间等实体[15]。文献[16]首次实现了一套能够抽取公司名称的实体抽取系统,其中主要用到了启发式算法与规则模板相结合的方法。然而,基于规则模板的方法不仅需要依靠大量的专家来编写规则或模板,覆盖的领域范围有限,而且很难适应数据变化的新需求。

    3) 基于统计机器学习的实体抽取方法

    鉴于基于规则与词典实体的局限性,为具更有可扩展性,相关研究人员将机器学习中的监督学习算法用于命名实体的抽取问题上。例如文献[17]利用KNN算法与条件随机场模型,实现了对Twitter文本数据中实体的识别。单纯的监督学习算法在性能上不仅受到训练集合的限制,并且算法的准确率与召回率都不够理想。相关研究者认识到监督学习算法的制约性后,尝试将监督学习算法与规则相互结合,取得了一定的成果。例如文献[18]基于字典,使用最大熵算法在Medline论文摘要的GENIA数据集上进行了实体抽取实验,实验的准确率与召回率都在70%以上。近年来随着深度学习的兴起应用,基于深度学习的命名实体识别得到广泛应用。在文献[19],介绍了一种基于双向LSTM深度神经网络和条件随机场的识别方法,在测试数据上取得的最好的表现结果。

    微信图片_20170930153146.jpg

    图4 基于BI-LSTM和CRF的架构

    4) 面向开放域的实体抽取方法

    针对如何从少量实体实例中自动发现具有区分力的模式,进而扩展到海量文本去给实体做分类与聚类的问题,文献[20]提出了一种通过迭代方式扩展实体语料库的解决方案,其基本思想是通过少量的实体实例建立特征模型,再通过该模型应用于新的数据集得到新的命名实体。文献[21]提出了一种基于无监督学习的开放域聚类算法,其基本思想是基于已知实体的语义特征去搜索日志中识别出命名的实体,然后进行聚类。

    1.2 语义类抽取

    语义类抽取是指从文本中自动抽取信息来构造语义类并建立实体和语义类的关联, 作为实体层面上的规整和抽象。以下介绍一种行之有效的语义类抽取方法,包含三个模块:并列度相似计算、上下位关系提取以及语义类生成 [22]。

    1) 并列相似度计算

    并列相似度计算其结果是词和词之间的相似性信息,例如三元组(苹果,梨,s1)表示苹果和梨的相似度是s1。两个词有较高的并列相似度的条件是它们具有并列关系(即同属于一个语义类),并且有较大的关联度。按照这样的标准,北京和上海具有较高的并列相似度,而北京和汽车的并列相似度很低(因为它们不属于同一个语义类)。对于海淀、朝阳、闵行三个市辖区来说,海淀和朝阳的并列相似度大于海淀和闵行的并列相似度(因为前两者的关联度更高)。

    当前主流的并列相似度计算方法有分布相似度法(distributional similarity) 和模式匹配法(pattern Matching)。分布相似度方法[23-24]基于哈里斯(Harris)的分布假设(distributional hypothesis)[25],即经常出现在类似的上下文环境中的两个词具有语义上的相似性。分布相似度方法的实现分三个步骤:第一步,定义上下文;第二步,把每个词表示成一个特征向量,向量每一维代表一个不同的上下文,向量的值表示本词相对于上下文的权重;第三步,计算两个特征向量之间的相似度,将其作为它们所代表的词之间的相似度。 模式匹配法的基本思路是把一些模式作用于源数据,得到一些词和词之间共同出现的信息,然后把这些信息聚集起来生成单词之间的相似度。模式可以是手工定义的,也可以是根据一些种子数据而自动生成的。分布相似度法和模式匹配法都可以用来在数以百亿计的句子中或者数以十亿计的网页中抽取词的相似性信息。有关分布相似度法和模式匹配法所生成的相似度信息的质量比较参见文献。

    2) 上下位关系提取

    该该模块从文档中抽取词的上下位关系信息,生成(下义词,上义词)数据对,例如(狗,动物)、(悉尼,城市)。提取上下位关系最简单的方法是解析百科类站点的分类信息(如维基百科的“分类”和百度百科的“开放分类”)。这种方法的主要缺点包括:并不是所有的分类词条都代表上位词,例如百度百科中“狗”的开放分类“养殖”就不是其上位词;生成的关系图中没有权重信息,因此不能区分同一个实体所对应的不同上位词的重要性;覆盖率偏低,即很多上下位关系并没有包含在百科站点的分类信息中。

    在英文数据上用Hearst 模式和IsA 模式进行模式匹配被认为是比较有效的上下位关系抽取方法。下面是这些模式的中文版本(其中NPC 表示上位词,NP 表示下位词):

    NPC { 包括| 包含| 有} {NP、}* [ 等| 等等]
    NPC { 如| 比如| 像| 象} {NP、}*
    {NP、}* [{ 以及| 和| 与} NP] 等 NPC
    {NP、}* { 以及| 和| 与} { 其它| 其他} NPC
    NP 是 { 一个| 一种| 一类} NPC

    此外,一些网页表格中包含有上下位关系信息,例如在带有表头的表格中,表头行的文本是其它行的上位词。

    3) 语义类生成

    该模块包括聚类和语义类标定两个子模块。聚类的结果决定了要生成哪些语义类以及每个语义类包含哪些实体,而语义类标定的任务是给一个语义类附加一个或者多个上位词作为其成员的公共上位词。此模块依赖于并列相似性和上下位关系信息来进行聚类和标定。有些研究工作只根据上下位关系图来生成语义类,但经验表明并列相似性信息对于提高最终生成的语义类的精度和覆盖率都至关重要。

    1.3 属性和属性值抽取

    属性提取的任务是为每个本体语义类构造属性列表(如城市的属性包括面积、人口、所在国家、地理位置等),而属性值提取则为一个语义类的实体附加属性值。属性和属性值的抽取能够形成完整的实体概念的知识图谱维度。常见的属性和属性值抽取方法包括从百科类站点中提取,从垂直网站中进行包装器归纳,从网页表格中提取,以及利用手工定义或自动生成的模式从句子和查询日志中提取。

    常见的语义类/ 实体的常见属性/ 属性值可以通过解析百科类站点中的半结构化信息(如维基百科的信息盒和百度百科的属性表格)而获得。尽管通过这种简单手段能够得到高质量的属性,但同时需要采用其它方法来增加覆盖率(即为语义类增加更多属性以及为更多的实体添加属性值)。

    微信图片_20170930153321.jpg

    图5 爱因斯坦信息页

    由于垂直网站(如电子产品网站、图书网站、电影网站、音乐网站)包含有大量实体的属性信息。例如上图的网页中包含了图书的作者、出版社、出版时间、评分等信息。通过基于一定规则模板建立,便可以从垂直站点中生成包装器(或称为模版),并根据包装器来提取属性信息。从包装器生成的自动化程度来看,这些方法可以分为手工法(即手工编写包装器)、监督方法、半监督法以及无监督法。考虑到需要从大量不同的网站中提取信息,并且网站模版可能会更新等因素,无监督包装器归纳方法显得更加重要和现实。无监督包装器归纳的基本思路是利用对同一个网站下面多个网页的超文本标签树的对比来生成模版。简单来看,不同网页的公共部分往往对应于模版或者属性名,不同的部分则可能是属性值,而同一个网页中重复的标签块则预示着重复的记录。

    属性抽取的另一个信息源是网页表格。表格的内容对于人来说一目了然,而对于机器而言,情况则要复杂得多。由于表格类型千差万别,很多表格制作得不规则,加上机器缺乏人所具有的背景知识等原因,从网页表格中提取高质量的属性信息成为挑战。

    上述三种方法的共同点是通过挖掘原始数据中的半结构化信息来获取属性和属性值。与通过“阅读”句子来进行信息抽取的方法相比,这些方法绕开了自然语言理解这样一个“硬骨头”而试图达到以柔克刚的效果。在现阶段,计算机知识库中的大多数属性值确实是通过上述方法获得的。但现实情况是只有一部分的人类知识是以半结构化形式体现的,而更多的知识则隐藏在自然语言句子中,因此直接从句子中抽取信息成为进一步提高知识库覆盖率的关键。当前从句子和查询日志中提取属性和属性值的基本手段是模式匹配和对自然语言的浅层处理。图6 描绘了为语义类抽取属性名的主框架(同样的过程也适用于为实体抽取属性值)。图中虚线左边的部分是输入,它包括一些手工定义的模式和一个作为种子的(词,属性)列表。模式的例子参见表3,(词,属性)的例子如(北京,面积)。在只有语义类无关的模式作为输入的情况下,整个方法是一个在句子中进行模式匹配而生成(语义类,属性)关系图的无监督的知识提取过程。此过程分两个步骤,第一个步骤通过将输入的模式作用到句子上而生成一些(词,属性)元组,这些数据元组在第二个步骤中根据语义类进行合并而生成(语义类,属性)关系图。在输入中包含种子列表或者语义类相关模式的情况下,整个方法是一个半监督的自举过程,分三个步骤:

    模式生成:在句子中匹配种子列表中的词和属性从而生成模式。模式通常由词和属性的环境信息而生成。

    模式匹配。

    模式评价与选择:通过生成的(语义类,属性)关系图对自动生成的模式的质量进行自动评价并选择高分值的模式作为下一轮匹配的输入。

    1.3 关系抽取

    关系抽取的目标是解决实体语义链接的问题。关系的基本信息包括参数类型、满足此关系的元组模式等。例如关系BeCapitalOf(表示一个国家的首都)的基本信息如下:

    参数类型:(Capital, Country)
    模式:

    微信图片_20170930153412.jpg

    元组:(北京,中国);(华盛顿,美国);Capital 和 Country表示首都和国家两个语义类。

    早期的关系抽取主要是通过人工构造语义规则以及模板的方法识别实体关系。随后,实体间的关系模型逐渐替代了人工预定义的语法与规则。但是仍需要提前定义实体间的关系类型。 文献[26]提出了面向开放域的信息抽取框架 (open information extraction,OIE),这是抽取模式上的一个巨大进步。但OIE方法在对实体的隐含关系抽取方面性能低下,因此部分研究者提出了基于马尔可夫逻辑网、基于本体推理的深层隐含关系抽取方法[27]。

    开放式实体关系抽取

    开放式实体关系抽取可分为二元开放式关系抽取和n元开放式关系抽取。在二元开放式关系抽取中,早期的研究有KnowItAll[28]与TextRunner[27]系统,在准确率与召回率上表现一般。文献[29]提出了一种基于Wikipedia的OIE方法WOE,经自监督学习得到抽取器,准确率较TextRunner有明显的提高。针对WOE的缺点,文献[30]提出了第二代OIE ReVerb系统,以动词关系抽取为主。文献[31]提出了第三代OIE系统OLLIE(open language learning for information extraction),尝试弥补并扩展OIE的模型及相应的系统,抽取结果的准确度得到了增强。

    然而,基于语义角色标注的OIE分析显示:英文语句中40%的实体关系是n元的[32],如处理不当,可能会影响整体抽取的完整性。文献[33]提出了一种可抽取任意英文语句中n元实体关系的方法KPAKEN,弥补了ReVerb的不足。但是由于算法对语句深层语法特征的提取导致其效率显著下降,并不适用于大规模开放域语料的情况。

    基于联合推理的实体关系抽取

    联合推理的关系抽取中的典型方法是马尔可夫逻辑网MLN(Markov logic network)[34],它是一种将马尔可夫网络与一阶逻辑相结合的统计关系学习框架,同时也是在OIE中融入推理的一种重要实体关系抽取模型。基于该模型,文献[35]提出了一种无监督学习模型StatSnowball,不同于传统的OIE,该方法可自动产生或选择模板生成抽取器。在StatSnowball的基础上,文献[27,36]提出了一种实体识别与关系抽取相结合的模型EntSum,主要由扩展的CRF命名实体识别模块与基于StatSnowball的关系抽取模块组成,在保证准确率的同时也提高了召回率。文献[27,37]提出了一种简易的Markov逻辑TML(tractable Markov logic),TML将领域知识分解为若干部分,各部分主要来源于事物类的层次化结构,并依据此结构,将各大部分进一步分解为若干个子部分,以此类推。TML具有较强的表示能力,能够较为简洁地表示概念以及关系的本体结构。

    5.2 知识表示

    传统的知识表示方法主要是以RDF(Resource Description Framework资源描述框架)的三元组SPO(subject,property,object)来符号性描述实体之间的关系。这种表示方法通用简单,受到广泛认可,但是其在计算效率、数据稀疏性等方面面临诸多问题。近年来,以深度学习为代表的以深度学习为代表的表示学习技术取得了重要的进展,可以将实体的语义信息表示为稠密低维实值向量,进而在低维空间中高效计算实体、关系及其之间的复杂语义关联,对知识库的构建、推理、融合以及应用均具有重要的意义[38-40]。

    2.1 代表模型

    知识表示学习的代表模型有距离模型、单层神经网络模型、双线性模型、神经张量模型、矩阵分解模型、翻译模型等。详细可参见清华大学刘知远的知识表示学习研究进展。相关实现也可参见 [39]。

    1)距离模型

    距离模型在文献[41] 提出了知识库中实体以及关系的结构化表示方法(structured embedding,SE),其基本思想是:首先将实体用向量进行表示,然后通过关系矩阵将实体投影到与实体关系对的向量空间中,最后通过计算投影向量之间的距离来判断实体间已存在的关系的置信度。由于距离模型中的关系矩阵是两个不同的矩阵,使得协同性较差。

    2)单层神经网络模型

    文献[42]针对上述提到的距离模型中的缺陷,提出了采用单层神经网络的非线性模型(single layer model,SLM),模型为知识库中每个三元组(h,r,t) 定义了以下形式的评价函数:

    微信图片_20170930153950.png

    式中, ut的T次幂∈R的k次幂为关系 r 的向量化表示;g()为tanh函数; Mr,1×Mr,2∈R的k次幂是通过关系r定义的两个矩阵。单层神经网络模型的非线性操作虽然能够进一步刻画实体在关系下的语义相关性,但在计算开销上却大大增加。

    3)双线性模型

    双 线 性 模 型 又 叫 隐 变 量 模 型 (latent factor model,LFM),由文献[43-44]首先提出。模型为知识库中每个三元组 定义的评价函数具有如下形式:

    微信图片_20170930154623.png

    式中,Mr∈R的d×d次幂是通过关系r 定义的双线性变换矩阵;
    lh×lt∈R的d次幂是三元组中头实体与尾实体的向量化表示。双线性模型主要是通过基于实体间关系的双线性变换来刻画实体在关系下的语义相关性。模型不仅形式简单、易于计算,而且还能够有效刻画实体间的协同性。基于上述工作,文献[45]尝试将双线性变换矩阵r M 变换为对角矩阵, 提出了DISTMULT模型,不仅简化了计算的复杂度,并且实验效果得到了显著提升。

    4)神经张量模型

    文献[45]提出的神经张量模型,其基本思想是:在不同的维度下,将实体联系起来,表示实体间复杂的语义联系。模型为知识库中的每个三元组(h,r,t)定义了以下形式的评价函数:

    微信图片_20170930154916.png

    式中, ut的T次幂∈R的k次幂为关系 r 的向量化表示;g()为tanh函数; Mr∈d×k×k是一个三阶张量;Mr,1×Mr,2∈R的k次幂是通过关系r定义的两个矩阵。

    神经张量模型在构建实体的向量表示时,是将该实体中的所有单词的向量取平均值,这样一方面可以重复使用单词向量构建实体,另一方面将有利于增强低维向量的稠密程度以及实体与关系的语义计算。

    5)矩阵分解模型

    通过矩阵分解的方式可得到低维的向量表示,故不少研究者提出可采用该方式进行知识表示学习,其中的典型代表是文献[46]提出的RESACL模型。在RESCAL模型中,知识库中的三元组集合被表示为一个三阶张量,如果该三元组存在,张量中对应位置的元素被置1,否则置为0。通过张量分解算法,可将张量中每个三元组(h,r,t)对应的张量值解为双线性模型中的知识表示形式lh的T次幂×Mr×lt并使|Xhrt-lh的T次幂×Mr×l|尽量小。

    6)翻译模型

    文献[47]受到平移不变现象的启发,提出了TransE模型,即将知识库中实体之间的关系看成是从实体间的某种平移,并用向量表示。关系lr可以看作是从头实体向量到尾实体向量lt的翻译。对于知识库中的每个三元组(h,r,t),TransE都希望满足以下关系|lh+lt≈lt|:,其损失函数为:fr(h,t)=|lh+lr-lt|L1/L2, 该模型的参数较少,计算的复杂度显著降低。与此同时,TransE模型在大规模稀疏知识库上也同样具有较好的性能和可扩展性。

    2.2 复杂关系模型

    知识库中的实体关系类型也可分为1-to-1、1-to-N、N-to-1、N-to-N4种类型[47],而复杂关系主要指的是1-to-N、N-to-1、N-to-N的3种关系类型。由于TransE模型不能用在处理复杂关系上[39],一系列基于它的扩展模型纷纷被提出,下面将着重介绍其中的几项代表性工作。

    1)TransH模型

    文献[48]提出的TransH模型尝试通过不同的形式表示不同关系中的实体结构,对于同一个实体而言,它在不同的关系下也扮演着不同的角色。模型首先通过关系向量lr与其正交的法向量wr选取某一个超平面F, 然后将头实体向量lh和尾实体向量lt法向量wr的方向投影到F, 最后计算损失函数。TransH使不同的实体在不同的关系下拥有了不同的表示形式,但由于实体向量被投影到了关系的语义空间中,故它们具有相同的维度。

    2)TransR模型

    由于实体、关系是不同的对象,不同的关系所关注的实体的属性也不尽相同,将它们映射到同一个语义空间,在一定程度上就限制了模型的表达能力。所以,文献[49]提出了TransR模型。模型首先将知识库中的每个三元组(h, r,t)的头实体与尾实体向关系空间中投影,然后希望满足|lh+lt≈lt|的关系,最后计算损失函数。

    文献[49]提出的CTransR模型认为关系还可做更细致的划分,这将有利于提高实体与关系的语义联系。在CTransR模型中,通过对关系r 对应的头实体、尾实体向量的差值lh-lt进行聚类,可将r分为若干个子关系rc 。

    3)TransD模型

    考虑到在知识库的三元组中,头实体和尾实体表示的含义、类型以及属性可能有较大差异,之前的TransR模型使它们被同一个投影矩阵进行映射,在一定程度上就限制了模型的表达能力。除此之外,将实体映射到关系空间体现的是从实体到关系的语 义联系,而TransR模型中提出的投影矩阵仅考虑了不同的关系类型,而忽视了实体与关系之间的交互。因此,文献[50]提出了TransD模型,模型分别定义了头实体与尾实体在关系空间上的投影矩阵。

    4)TransG模型

    文献[51]提出的TransG模型认为一种关系可能会对应多种语义,而每一种语义都可以用一个高斯分布表示。TransG模型考虑到了关系r 的不同语义,使用高斯混合模型来描述知识库中每个三元组(h,r,t)头实体与尾实体之间的关系,具有较高的实体区分度。

    5)KG2E模型

    考虑到知识库中的实体以及关系的不确定性,文献[52]提出了KG2E模型,其中同样是用高斯分布来刻画实体与关系。模型使用高斯分布的均值表示实体或关系在语义空间中的中心位置,协方差则表示实体或关系的不确定度。

    知识库中,每个三元组(h,r,t)的头实体向量与尾实体向量间的

    微信图片_20170930160102.png

    关系r可表示为:

    微信图片_20170930160147.png

    5.3 知识融合

    通过知识提取,实现了从非结构化和半结构化数据中获取实体、关系以及实体属性信息的目标。但是由于知识来源广泛,存在知识质量良莠不齐、来自不同数据源的知识重复、层次结构缺失等问题,所以必须要进行知识的融合。知识融合是高层次的知识组织[53],使来自不同知识源的知识在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等步骤[54],达到数据、信息、方法、经验以及人的思想的融合,形成高质量的知识库。

    3.1 实体对齐

    实体对齐 (entity alignment) 也称为实体匹配 (entity matching)或实体解析(entity resolution)或者实体链接(entity linking),主要是用于消除异构数据中实体冲突、指向不明等不一致性问题,可以从顶层创建一个大规模的统一知识库,从而帮助机器理解多源异质的数据,形成高质量的知识。

    在大数据的环境下,受知识库规模的影响,在进行知识库实体对齐时,主要会面临以下3个方面的挑战[55]:1) 计算复杂度。匹配算法的计算复杂度会随知识库的规模呈二次增长,难以接受;2) 数据质量。由于不同知识库的构建目的与方式有所不同,可能存在知识质量良莠不齐、相似重复数据、孤立数据、数据时间粒度不一致等问题[56];3) 先验训练数据。在大规模知识库中想要获得这种先验数据却非常困难。通常情况下,需要研究者手工构造先验训练数据。

    基于上述,知识库实体对齐的主要流程将包括[55]:1) 将待对齐数据进行分区索引,以降低计算的复杂度;2) 利用相似度函数或相似性算法查找匹配实例;3) 使用实体对齐算法进行实例融合;4) 将步骤2)与步骤3)的结果结合起来,形成最终的对齐结果。对齐算法可分为成对实体对齐与集体实体对齐两大类,而集体实体对齐又可分为局部集体实体对齐与全局集体实体对齐。

    1)成对实体对齐方法

    ① 基于传统概率模型的实体对齐方法

    基于传统概率模型的实体对齐方法主要就是考虑两个实体各自属性的相似性,而并不考虑实体间的关系。文献[57]将基于属性相似度评分来判断实体是否匹配的问题转化为一个分类问题,建立了该问题的概率模型,缺点是没有体现重要属性对于实体相似度的影响。文献[58]基于概率实体链接模型,为每个匹配的属性对分配了不同的权重,匹配准确度有所提高。文献[59]还结合贝叶斯网络对属性的相关性进行建模,并使用最大似然估计方法对模型中的参数进行估计。

    ② 基于机器学习的实体对齐方法

    基于机器学习的实体对齐方法主要是将实体对齐问题转化为二分类问题。根据是否使用标注数据可分为有监督学习与无监督学习两类,基于监督学习的实体对齐方法主要可分为成对实体对齐、基于聚类的对齐、主动学习。

    通过属性比较向量来判断实体对匹配与否可称为成对实体对齐。这类方法中的典型代表有决策树 [60]、支持向量机[61]、集成学习[62]等。文献[63]使用分类回归树、线性分析判别等方法完成了实体辨析。文献[64]基于二阶段实体链接分析模型,提出了一种新的SVM分类方法,匹配准确率远高于TAILOR中的混合算法。

    基于聚类的实体对齐算法,其主要思想是将相似的实体尽量聚集到一起,再进行实体对齐。文献[65]提出了一种扩展性较强的自适应实体名称匹配与聚类算法,可通过训练样本生成一个自适应的距离函数。文献[66]采用类似的方法,在条件随机场实体对齐模型中使用监督学习的方法训练产生距离函数,然后调整权重,使特征函数与学习参数的积最大。

    在主动学习中,可通过与人员的不断交互来解决很难获得足够的训练数据问题,文献[67]构建的ALIAS系统可通过人机交互的方式完成实体链接与去重的任务。文献[68]采用相似的方法构建了ActiveAtlas系统。

    2)局部集体实体对齐方法

    局部集体实体对齐方法为实体本身的属性以及与它有关联的实体的属性分别设置不同的权重,并通过加权求和计算总体的相似度,还可使用向量空间模型以及余弦相似性来判别大规模知识库中的实体的相似程度[69],算法为每个实体建立了名称向量与虚拟文档向量,名称向量用于标识实体的属性,虚拟文档向量则用于表示实体的属性值以及其邻居节点的属性值的加权和值[55]。为了评价向量中每个分量的重要性,算法主要使用TF-IDF为每个分量设置权重,并为分量向量建立倒排索引,最后选择余弦相似性函数计算它们的相似程度[55]。该算法的召回率较高,执行速度快,但准确率不足。其根本原因在于没有真正从语义方面进行考虑。

    3)全局集体实体对齐方法

    ① 基于相似性传播的集体实体对齐方法

    基于相似性传播的方法是一种典型的集体实体对齐方法,匹配的两个实体与它们产生直接关联的其他实体也会具有较高的相似性,而这种相似性又会影响关联的其他实体[55]。

    相似性传播集体实体对齐方法最早来源于文献[70-71]提出的集合关系聚类算法,该算法主要通过一种改进的层次凝聚算法迭代产生匹配对象。文献[72]在以上算法的基础上提出了适用于大规模知识库实体对齐的算法SiGMa,该算法将实体对齐问题看成是一个全局匹配评分目标函数的优化问题进行建模,属于二次分配问题,可通过贪婪优化算法求得其近似解。SiGMa方法[55]能够综合考虑实体对的属性与关系,通过集体实体的领域,不断迭代发现所有的匹配对。

    ② 基于概率模型的集体实体对齐方法基于概率模型的集体实体对齐方法主要采用统计关系学习进行计算与推理,常用的方法有LDA模型[73]、CRF模型[74]、Markov逻辑网[75]等。

    文献[73]将LDA模型应用于实体的解析过程中,通过其中的隐含变量获取实体之间的关系。但在大规模的数据集上效果一般。文献[74]提出了一种基于图划分技术的CRF实体辨析模型,该模型以观察值为条件产生实体判别的决策,有利于处理属性间具有依赖关系的数据。文献[66]在CRF实体辨析模型的基础上提出了一种基于条件随机场模型的多关系的实体链接算法,引入了基于canopy的索引,提高了大规模知识库环境下的集体实体对齐效率。文献[75]提出了一种基于Markov逻辑网的实体解析方法。通过Markov逻辑网,可构建一个Markov网,将概率图模型中的最大可能性计算问题转化为典型的最大化加权可满足性问题,但基于Markov网进行实体辨析时,需要定义一系列的等价谓词公理,通过它们完成知识库的集体实体对齐。

    3.2 知识加工

    通过实体对齐,可以得到一系列的基本事实表达或初步的本体雏形,然而事实并不等于知识,它只是知识的基本单位。要形成高质量的知识,还需要经过知识加工的过程,从层次上形成一个大规模的知识体系,统一对知识进行管理。知识加工主要包括本体构建与质量评估两方面的内容。

    1)本体构建

    本体是同一领域内不同主体之间进行交流、连通的语义基础,其主要呈现树状结构,相邻的层次节点或概念之间具有严格的“IsA”关系,有利于进行约束、推理等,却不利于表达概念的多样性。本体在知识图谱中的地位相当于知识库的模具,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

    展开全文
  • 人工智能时代,所需要了解人工智能的基本常识

    万次阅读 多人点赞 2018-12-10 22:49:44
    国内对于人工智能的讨论大多是不成体系的碎片式,很难从中深入了解人工智能的发展脉络和技术体系,也很难有实际... 、概述  近几年各界对人工智能的兴趣激增,自2011年以来,开发与人工智能相关的产品和技术...

      国内对于人工智能的讨论大多是不成体系的碎片式,很难从中深入了解人工智能的发展脉络和技术体系,也很难有实际借鉴意义。人工智能的历史、核心技术和应用情况进行了详细说明,尤其是其中重要的认知技术。这份报告将有助于我们对人工智能和认知技术进行深入了解,也有助于各行业的公司考量人工智能应用的实际价值。

      一、概述

      近几年各界对人工智能的兴趣激增,自2011年以来,开发与人工智能相关的产品和技术并使之商业化的公司已获得超过总计20亿美元的风险投资,而科技巨头更是投资数十亿美元收购那些人工智能初创公司。相关报道铺天盖地,而巨额投资、计算机导致失业等问题也开始浮现,计算机比人更加聪明并有可能威胁到人类生存这类论断更是被媒体四处引用并引发广泛关注。

      IBM承诺拨出10亿美元来使他们的认知计算平台Watson商业化。

      谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了8个机器人公司和1个机器学习公司。

      Facebook聘用了人工智能学界泰斗YannLeCun来创建自己的人工智能实验室,期望在该领域获得重大突破。

      牛津大学的研究人员发表了一篇报告表明,美国大约47%的工作因为机器认知技术自动化而变得岌岌可危。

      纽约时报畅销书《TheSecondMachineAge》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。

      硅谷创业家ElonMusk则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。

      著名理论物理学家StephenHawking认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”

      即便有如此多炒作,但人工智能领域却也不乏显著的商业行为,这些活动已经或者即将对各个行业和组织产生影响。商业领袖需要透彻理解人工智能的含义以及发展趋势。

      二、人工智能与认知科技

      揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。

      1、人工智能的定义

      人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的NilsNilsson先生写到:“人工智能缺乏通用的定义。”一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。对于我们来说,一种实用的定义即为——人工智能是对计算机系统如何能够履行那些只有依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定义从而直接探讨它的实际应用。值得一提的是,随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能实现的任务的集合。”

      2、人工智能的历史

      人工智能并不是一个新名词。实际上,这个领域在20世纪50年代就已经开始启动,这段探索的历史被称为“喧嚣与渴望、挫折与失望交替出现的时代”——最近给出的一个较为恰当的评价。

      20世纪50年代明确了人工智能要模拟人类智慧这一大胆目标,从此研究人员开展了一系列贯穿20世纪60年代并延续到70年代的研究项目,这些项目表明,计算机能够完成一系列所本只属于人类能力范畴之内的任务,例如证明定理、求解微积分、通过规划来响应命令、履行物理动作,甚至是模拟心理学家、谱曲这样的活动。

      但是,过分简单的算法、匮乏的难以应对不确定环境(这种情形在生活中无处不在)的理论,以及计算能力的限制严重阻碍了我们使用人工智能来解决更加困难和多样的问题。伴随着对缺乏继续努力的失望,人工智能于20世纪70年代中期逐渐淡出公众视野。

      20世纪80年代早期,日本发起了一个项目,旨在开发一种在人工智能领域处于领先的计算机结构。西方开始担心会在这个领域输给日本,这种焦虑促使他们决定重新开始对人工智能的投资。20世纪80年代已经出现了人工智能技术产品的商业供应商,其中一些已经上市,例如Intellicorp、Symbolics、和Teknowledge。

      20世纪80年代末,几乎一半的“财富500强”都在开发或使用“专家系统”,这是一项通过对人类专家的问题求解能力进行建模,来模拟人类专家解决该领域问题的人工智能技术。

      对于专家系统潜力的过高希望彻底掩盖了它本身的局限性,包括明显缺乏常识、难以捕捉专家的隐性知识、建造和维护大型系统这项工作的复杂性和成本,当这一点被越来越多的人所认识到时,人工智能研究再一次脱离轨道。

      20世纪90年代在人工智能领域的技术成果始终处于低潮,成果寥寥。反而是神经网络、遗传算法等科技得到了新的关注,这一方面是因为这些技术避免了专家系统的若干限制,另一方面是因为新算法让它们运行起来更加高效。

      神经网络的设计受到了大脑结构的启发。遗传算法的机制是,首先迭代生成备选解决方案,然后剔除最差方案,最后通过引入随机变量来产生新的解决方案,从而“进化”出解决问题的最佳方案。

      3、人工智能进步的催化剂

      截止到21世纪前10年的后期,出现了一系列复兴人工智能研究进程的要素,尤其是一些核心技术。下面将对这些重要的因素和技术进行详细说明。

      1)摩尔定律

      在价格、体积不变的条件下,计算机的计算能力可以不断增长。这就是被人们所熟知的摩尔定律,它以Intel共同创办人GordonMoore命名。GordonMoore从各种形式的计算中获利,包括人工智能研究人员使用的计算类型。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。举个梦幻般的例子,现在最新一代微处理器的性能是1971年第一代单片机的400万倍。

      2)大数据

      得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据的价值的不断认识,用来管理和分析数据的新技术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴露在数据的海洋中,使它们得到不断优化,或者称之为“训练”——现在这样的条件随处可得。

      3)互联网和云计算

      和大数据现象紧密相关,互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式——有时显式有时隐式——来帮助人工智能系统进行训练。比如,有些研究人员使用类似MechanicalTurk这样基于云计算的众包服务来雇佣成千上万的人来描绘数字图像。这就使得图像识别算法可以从这些描绘中进行学习。谷歌翻译通过分析用户的反馈以及使用者的无偿贡献来提高它自动翻译的质量。

      4)新算法

      算法是解决一个设计程序或完成任务的路径方法。最近几年,新算法的发展极大提高了机器学习的能力,这些算法本身很重要,同时也是其他技术的推动者,比如计算机视觉(这项科技将会在后文描述)。机器学习算法目前被开源使用,这种情形将促成更大进步,因为在开源环境下开发人员可以补足和增强彼此的工作。

      4、认知技术

      我们将区分人工智能领域和由此延伸的各项技术。大众媒体将人工智能刻画为跟人一样聪明的或比人更聪明的计算机的来临。而各项技术则在以往只有人能做到的特定任务上面表现得越来越好。我们称这些技术为认知技术(下图),认知技术是人工智能领域的产物,它们能完成以往只有人能够完成的任务。而它们正是商业和公共部门的领导者应该关注的。下面我们将介绍几个最重要的认知技术,它们正被广泛采纳并进展迅速,也获得大量投资。

      一文了解人工智能的基本常识

      1)计算机视觉

      是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

      计算机视觉有着广泛应用。其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被Facebook用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

      机器视觉作为一个相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,计算机视觉领域的初创公司自2011年起已经吸引了数亿美元的风投资本。

      2)机器学习

      指的是计算机系统无需遵照显式的程序指令而只是依靠暴露在数据中来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于做预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越好。

      机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探、以及公共卫生。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在2011-2014年中这段时间内就已吸引了近十亿美元的风险投资。谷歌也在2014年斥资4亿美金收购Deepmind这家研究机器学习技术的公司。

      3)自然语言处理

      是指计算机拥有的人类般文本处理的能力,比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本,例如自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;或者在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅能针对简单的文本匹配与模式进行操作。请思考一个老生常谈的例子,它可以体现自然语言处理面临的一个挑战。在句子“光阴似箭(Timeflieslikeanarrow)”中每一个单词的意义看起来都很清晰,直到系统遇到这样的句子“果蝇喜欢香蕉(Fruitflieslikeabanana)”,用“水果(fruit)”替代了“时间(time)”,并用“香蕉(banana)”替代“箭(arrow)”,就改变了“飞逝/飞着的(like)”与“像/喜欢(like)”这两个单词的意思。

      自然语言处理,像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一串给定字符或单词表达某一特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。

      因为语境对于理解“timeflies(时光飞逝)”和“fruitflies(果蝇)”的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈、自动发现民事诉讼或政府调查中的某些含义、以及自动书写诸如企业营收和体育运动的公式化范文等。

      4)机器人技术

      将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、致动器、以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如无人机,还有可以在车间为人类分担工作的“cobots”,还包括那些从玩具到家务助手的消费类产品。

      5)语音识别技术

      主要是关注自动且准确的转录人类的语音。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪音、区分同音异形异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列和语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。比如Domino’sPizza最近推出了一个允许用户通过语音下单的移动APP。

      上面提到的认知技术进步飞快并吸引了大量投资,其他相对成熟的认知技术仍然是企业软件系统的重要组成部分。这些日渐成熟的认知技术包括决策最优化——自动完成对复杂决策或者在资源有限的前提下做出最佳权衡;规划和调度——使设计一系列行动流程来满足目标和观察约束;规则导向系统——为专家系统提供基础的技术,使用知识和规则的数据库来自动完成从信息中进行推论的处理过程。

      三、认知技术的广泛使用

      各种经济部门已经把认知技术运用到了多种商业职能中。

      1)银行业

      自动欺诈探测系统使用机器学习可以识别出预示着欺诈性付款行动的行为模式;借助语音识别技术能够自动完成电话客服;声音识别可以核实来电者的身份

      2)医疗健康领域

      美国有一半的医院采用自动语音识别来帮助医生自动完成医嘱抄录,而且使用率还在迅速增长;机器视觉系统自动完成乳房X光检查和其他医学影响的分析;IBM的Watson借助自然语言处理技术来阅读和理解大量医学文献,通过假设自动生成来完成自动诊断,借助机器学习可以提高准确率。

      3)生命科学领域

      机器学习系统被用来预测生物数据和化合物活动的因果关系,从而帮助制药公司识别出最有前景的药物。

      4)媒体与娱乐行业

      许多公司正在使用数据分析和自然语言生成技术,自动起草基于数据的的公文材料,比如公司营收状况、体育赛事综述等。

      5)石油与天然气

      厂商将机器学习广泛运用在矿藏资源定位、钻井设备故障诊断等众多方面。

      6)公共部门

      出于监控、合规和欺诈检测等特定目的,公共部门也已经开始使用认知技术。比如,乔治亚州正在通过众包的形式来进行财政披露和竞选捐助表格的数字化,在这个过程中他们就采用了一套自动手写识别系统。

      7)零售商

      零售商利用机器学习来自动发现有吸引力的交叉销售定价和有效的促销活动。

      8)科技公司

      它们正利用机器视觉、机器学习等认知技术来改进产品或者开发全新产品,比如Roomba机器人吸尘器,Nest智能恒温器。

      上述例子表明,认识技术的潜在商业收益远大于自动化带来的成本节约,这主要体现在:

      更快的行动与决策(比如,自动欺诈检测,计划和调度)

      更好的结果(比如,医学诊断、石油探测、需求预测)

      更高的效率(亦即,更好的利用高技能人才和昂贵设备)

      更低的成本(比如,自动电话客服减少了劳动成本)

      更大的规模(亦即,开展人力无法执行的大规模任务)

      产品与服务创新(从增加新功能到创造新产品)

      四、认知技术影响力与日俱增的原因

      在未来五年,认知技术在商业领域的影响力将显著增长。原因有二,首先,近些年来,技术性能有了实质进步,并处于持续研发状态。其次,数亿美元已经投入到技术商业化中,许多公司正致力于为各商业部门的广泛需求提供定制化开发和打包方案,以使这些技术更易购买和配置。虽然并非所有的技术提供商都能幸存,但他们的努力将共同推动市场前进。技术性能的改善和商业化正在共同扩大着认知技术的应用范围,这种情况在未来几年都将持续下去。

      1、技术提升扩展了应用范围

      认知技术大踏步前进的例子非常多。比如Google的语音识别系统,一份报告显示,Google用了不到两年时间就将语音识别的精准度从2012年的84%提升到如今的98%。计算机视觉技术也取得了突飞猛进的发展。如果以计算机视觉技术研究者设置的技术标准来看,自2010年到2014年,图像分类识别的精准度提高了4倍。Facebook的DeepFace技术在同行评审报告(译者注:同行评审,是一种学术成果审查程序,即一位作者的学术著作或计划被同一领域的其他专家学者评审。)被高度肯定,其脸部识别率的准确度达到97%。2011年,IBM为了让Watson在智力节目《危险边缘》中获胜,曾对Watson进行优化,提升两倍的答案精确度。现在,IBM又宣称如今的Watson比当时“智能”了2400%。

      随着技术的改进和提高,技术应用的范围也在不断扩大。比如,在语音识别方面,机器曾经需要大量训练才能在有限词库里勉强识别出来,由语音识别技术延伸出的医疗应用程序也很难得到真正普及。而现在,每个月互联网上都会有数以百万次的语音搜索。另外,计算机视觉技术过去被狭隘的理解为部署在工业自动化方面,但现在,我们早已看到这一技术被广泛运用到监控、安全以及各种各样的消费应用里。IBM如今正拓展Watson在竞赛游戏之外的应用,从医疗诊断到医学研究再到财务建议以及自动化的呼叫中心。

      并不是所有的认知技术都有如此令人瞩目的发展。机器翻译有了一定发展,但幅度很小。一份调查发现,从2009年到2012年,将阿拉伯语翻译到英语的精确度仅仅提升了13%。尽管这些技术还不完美,但他们已经可以影响到专业机构的工作方式。很多专业翻译人员依靠机器翻译提升翻译精准度,并把一些常规翻译交给机器,自己专注在更具挑战性的任务上。

      很多公司正努力将认知技术做进一步研发,并逐步将其融入到更多产品尤其是企业级产品里,以方便企业用户购买和部署。

      2、对商业化进行的大规模投资

      从2011年到2014年5月,超过20亿美元的风险投资流入到基于认知技术研究的产品和服务里。与此同时,超过100家的相关公司被兼并或收购,其中一些被互联网巨头如亚马逊、苹果、Google、IBM或Facebook收购。所有这些投资都在培育一个多样化的公司图谱,这些公司正在加速认知技术的商业化进程。

      在这里,我们并不会提供关于某公司在认知技术商业化方面的细节,我们希望说明,认知技术产品拥有丰富的多样性。下面就是致力于认知技术商业化的公司名单,这个名单既不是完整无缺也非固定不变,而是一个动态的,用于推动和培育市场的指标。

      数据管理和分析工具主要使用自然语言处理、机器学习等认知技术。这些工具利用自然语言处理来从非结构化的文本中提取出意思,或者借助机器学习帮助分析人员从大规模数据集中发现深层含义。这个领域的公司包括ContextRelevant(译者注:美国的一家大数据挖掘和分析公司)、PalantirTechnologies(译者注:这家公司称要将数据、技术、人类和环境连接起来)、以及Skytree(译者注:一家借助机器学习进行市场分析并提供决策依据的大数据公司)。

      认知技术的各个部分可以被整合到各种应用和商业决策中,分别起到增加功能和提高效率的作用。例如,Wise.io公司提供一套模块来促进商业决策,比如客户支持、营销和销售,这里面会用到机器学习模型来预测哪些客户比较容易流失,以及哪些潜在客户更加容易转化。Nuance公司通过提供一种语音识别技术来帮助开发者进行需要语音控制的移动APP的开发。

      单点解决方案。众多认知技术成熟的标志是它们正在被不断的嵌入到特定商业问题的解决方案中。这些解决方案的设计初衷是要比公司原有的解决方案更加有效,并且几乎不需要认知技术方面的专业人员。普及度比较高的应用领域包括广告、营销和销售自动化、预测以及规划。

      技术平台。平台的目的是为建立高度定制化的商业解决方案提供基础。它们会提供一系列功能,包括数据管理、机器学习工具、自然语言处理、知识表示和推理、以及将这些定制化软件整合在一起的统一框架。

      3、新兴应用

      如果这些技术的表现和商业化趋势继续发展,我们就能够大胆预测认知技术的应用将更加广泛,被接受程度也会大大增加。数亿美金的投资涌入这些基于机器学习、自然语言处理、机器视觉或者机器人技术的公司,这预示着许多新应用即将投入市场。在商业机构依托认知技术构建自动化业务流程、增强产品和服务方面,我们也看到了巨大空间。

      五、认知技术在企业的应用路径

      认知技术将在接下来几年里变得流行。在未来2-5年,技术层面的进步和商业化将扩大认知技术对企业的影响。越来越多的企业会找到一些创新性应用来显著改善他们自身的表现或者创造新功能,以增强他们的竞争地位。企业的IT部门现在可以行动起来,增加对这些技术的了解,评估出适用这些技术的机会,将这些技术可能带来的价值向领导进行汇报。高级商务和公共部门的领导应该思考认知技术将对他们的部门以及整个公司产生何种影响,这些技术将如何激发创新并提升经营表现。


    1.人工智能大发展时代,如何利用大数据改变现有商业模式?

    http://www.duozhishidai.com/article-17554-1.html

    2.人工智能来势凶猛,人工智能最热门的技术趋势是什么

    http://www.duozhishidai.com/article-923-1.html

    3.今年人工智能领域,十项中外人工智能领域富有突破性的技术

    http://www.duozhishidai.com/article-17560-1.html

     

    展开全文
  • 图像分割综述

    万次阅读 多人点赞 2019-07-09 22:03:48
    图像分割是计算机视觉研究中的个经典难题,已经成为图像理解领域关注的个热点,图像分割是图像分析的第步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之。所谓图像分割...

    本文作者净浩泽,公众号:计算机视觉life,编辑成员

    图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。

    本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。

    传统分割方法

    这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。
    1.基于阈值的分割方法
    阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。
    阈值法特别适用于目标和背景占据不同灰度级范围的图。
    图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。

    如图所示即为对数字的一种阈值分割方法。
    阀值分割方法的优缺点:

    • 计算简单,效率较高;
    • 只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感,鲁棒性不高。
      从前面的介绍里我们可以看出,阈值分割方法的最关键就在于阈值的选择。若将智能遗传算法应用在阀值筛选上,选取能最优分割图像的阀值,这可能是基于阀值分割的图像分割法的发展趋势。
      2.基于区域的图像分割方法
      基于区域的分割方法是以直接寻找区域为基础的分割技术,基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。
      区域生长
      区域生长是从一组代表不同生长区域的种子像素开始,接下来将种子像素邻域里符合条件的像素合并到种子像素所代表的生长区域中,并将新添加的像素作为新的种子像素继续合并过程,知道找不到符合条件的新像素为止(小编研一第一学期的机器学习期末考试就是手写该算法 T.T),该方法的关键是选择合适的初始种子像素以及合理的生长准则。
      区域生长算法需要解决的三个问题:
      (1)选择或确定一组能正确代表所需区域的种子像素;
      (2)确定在生长过程中能将相邻像素包括进来的准则;
      (3)指定让生长过程停止的条件或规则。
      区域分裂合并
      区域生长是从某个或者某些像素点出发,最终得到整个区域,进而实现目标的提取。而分裂合并可以说是区域生长的逆过程,从整幅图像出发,不断的分裂得到各个子区域,然后再把前景区域合并,得到需要分割的前景目标,进而实现目标的提取。其实如果理解了上面的区域生长算法这个区域分裂合并算法就比较好理解啦。
      四叉树分解法就是一种典型的区域分裂合并法,基本算法如下:
      (1)对于任一区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等分;
      (2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(RiURj)=TURE满足,就将它们合并起来;
      (3)如果进一步的分裂或合并都不可能,则结束。
      其中R代表整个正方形图像区域,P代表逻辑词。
      区域分裂合并算法优缺点:
      (1)对复杂图像分割效果好;
      (2)算法复杂,计算量大;
      (3)分裂有可能破怪区域的边界。
      在实际应用当中通常将区域生长算法和区域分裂合并算法结合使用,该类算法对某些复杂物体定义的复杂场景的分割或者对某些自然景物的分割等类似先验知识不足的图像分割效果较为理想。
      分水岭算法
      分水岭算法是一个非常好理解的算法,它根据分水岭的构成来考虑图像的分割,现实中我们可以想象成有山和湖的景象,那么一定是如下图的,水绕山山围水的景象。
      分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
      分水岭对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化都有可能产生过度分割的现象,但是这也同时能够保证得到封闭连续边缘。同时,分水岭算法得到的封闭的集水盆也为分析图像的区域特征提供了可能。

    3.基于边缘检测的分割方法

    基于边缘检测的图像分割算法试图通过检测包含不同区域的边缘来解决分割问题。它可以说是人们最先想到也是研究最多的方法之一。通常不同区域的边界上像素的灰度值变化比较剧烈,如果将图片从空间域通过傅里叶变换到频率域,边缘就对应着高频部分,这是一种非常简单的边缘检测算法。
    边缘检测技术通常可以按照处理的技术分为串行边缘检测和并行边缘检测。串行边缘检测是要想确定当前像素点是否属于检测边缘上的一点,取决于先前像素的验证结果。并行边缘检测是一个像素点是否属于检测边缘高尚的一点取决于当前正在检测的像素点以及与该像素点的一些临近像素点。
    最简单的边缘检测方法是并行微分算子法,它利用相邻区域的像素值不连续的性质,采用一阶或者二阶导数来检测边缘点。近年来还提出了基于曲面拟合的方法、基于边界曲线拟合的方法、基于反应-扩散方程的方法、串行边界查找、基于变形模型的方法。

    边缘检测的优缺点:
    (1)边缘定位准确;
    (2)速度快;
    (3)不能保证边缘的连续性和封闭性;
    (4)在高细节区域存在大量的碎边缘,难以形成一个大区域,但是又不宜将高细节区域分成小碎片;
    由于上述的(3)(4)两个难点,边缘检测只能产生边缘点,而非完整意义上的图像分割过程。这也就是说,在边缘点信息获取到之后还需要后续的处理或者其他相关算法相结合才能完成分割任务。
    在以后的研究当中,用于提取初始边缘点的自适应阈值选取、用于图像的层次分割的更大区域的选取以及如何确认重要边缘以去除假边缘将变得非常重要。

    结合特定工具的图像分割算法

    基于小波分析和小波变换的图像分割方法

    小波变换是近年来得到的广泛应用的数学工具,也是现在数字图像处理必学部分,它在时间域和频率域上都有量高的局部化性质,能将时域和频域统一于一体来研究信号。而且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像分割方面的得到了应用,
    二进小波变换具有检测二元函数的局部突变能力,因此可作为图像边缘检测工具。图像的边缘出现在图像局部灰度不连续处,对应于二进小波变换的模极大值点。通过检测小波变换模极大值点可以确定图像的边缘小波变换位于各个尺度上,而每个尺度上的小波变换都能提供一定的边缘信息,因此可进行多尺度边缘检测来得到比较理想的图像边缘。

    上图左图是传统的阈值分割方法,右边的图像就是利用小波变换的图像分割。可以看出右图分割得到的边缘更加准确和清晰
    另外,将小波和其他方法结合起来处理图像分割的问题也得到了广泛研究,比如一种局部自适应阈值法就是将Hilbert图像扫描和小波相结合,从而获得了连续光滑的阈值曲线。

    基于遗传算法的图像分割

    ​ 遗传算法(Genetic Algorithms,简称GA)是1973年由美国教授Holland提出的,是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法。是仿生学在数学领域的应用。其基本思想是,模拟由一些基因串控制的生物群体的进化过程,把该过程的原理应用到搜索算法中,以提高寻优的速度和质量。此算法的搜索过程不直接作用在变量上,而是在参数集进行了编码的个体,这使得遗传算法可直接对结构对象(图像)进行操作。整个搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。搜索过程采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则,而且对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其他辅助信息,适应范围广。
    ​ 遗传算法擅长于全局搜索,但局部搜索能力不足,所以常把遗传算法和其他算法结合起来应用。将遗传算法运用到图像处理主要是考虑到遗传算法具有与问题领域无关且快速随机的搜索能力。其搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,能有效的加快图像处理的速度。但是遗传算法也有其缺点:搜索所使用的评价函数的设计、初始种群的选择有一定的依赖性等。要是能够结合一些启发算法进行改进且遗传算法的并行机制的潜力得到充分的利用,这是当前遗传算法在图像处理中的一个研究热点。

    基于主动轮廓模型的分割方法

    ​ 主动轮廓模型(active contours)是图像分割的一种重要方法,具有统一的开放式的描述形式,为图像分割技术的研究和创新提供了理想的框架。在实现主动轮廓模型时,可以灵活的选择约束力、初始轮廓和作用域等,以得到更佳的分割效果,所以主动轮廓模型方法受到越来越多的关注。
    ​ 该方法是在给定图像中利用曲线演化来检测目标的一类方法,基于此可以得到精确的边缘信息。其基本思想是,先定义初始曲线C,然后根据图像数据得到能量函数,通过最小化能量函数来引发曲线变化,使其向目标边缘逐渐逼近,最终找到目标边缘。这种动态逼近方法所求得的边缘曲线具有封闭、光滑等优点。

    ​ 传统的主动轮廓模型大致分为参数主动轮廓模型和几何主动轮廓模型。参数主动轮廓模型将曲线或曲面的形变以参数化形式表达,Kass等人提出了经典的参数活动轮廓模型即“Snake”模型,其中Snake定义为能量极小化的样条曲线,它在来自曲线自身的内力和来自图像数据的外力的共同作用下移动到感兴趣的边缘,内力用于约束曲线形状,而外力则引导曲线到特征此边缘。参数主动轮廓模型的特点是将初始曲线置于目标区域附近,无需人为设定曲线的的演化是收缩或膨胀,其优点是能够与模型直接进行交互,且模型表达紧凑,实现速度快;其缺点是难以处理模型拓扑结构的变化。比如曲线的合并或分裂等。而使用水平集(level set)的几何活动轮廓方法恰好解决了这一问题。

    基于深度学习的分割

    1.基于特征编码(feature encoder based)

    在特征提取领域中VGGnet和ResNet是两个非常有统治力的方法,接下来的一些篇幅会对这两个方法进行简短的介绍

    a.VGGNet

    ​ 由牛津大学计算机视觉组合和Google DeepMind公司研究员一起研发的深度卷积神经网络。它探索了卷积神经网络的深度和其性能之间的关系,通过反复的堆叠33的小型卷积核和22的最大池化层,成功的构建了16~19层深的卷积神经网络。VGGNet获得了ILSVRC 2014年比赛的亚军和定位项目的冠军,在top5上的错误率为7.5%。目前为止,VGGNet依然被用来提取图像的特征。

    ​ VGGNet的优缺点

    1. 由于参数量主要集中在最后的三个FC当中,所以网络加深并不会带来参数爆炸的问题;
    2. 多个小核卷积层的感受野等同于一个大核卷积层(三个3x3等同于一个7x7)但是参数量远少于大核卷积层而且非线性操作也多于后者,使得其学习能力较强
    3. VGG由于层数多而且最后的三个全连接层参数众多,导致其占用了更多的内存(140M)
    b.ResNet

    ​ 随着深度学习的应用,各种深度学习模型随之出现,虽然在每年都会出现性能更好的新模型,但是对于前人工作的提升却不是那么明显,其中有重要问题就是深度学习网络在堆叠到一定深度的时候会出现梯度消失的现象,导致误差升高效果变差,后向传播时无法将梯度反馈到前面的网络层,使得前方的网络层的参数难以更新,训练效果变差。这个时候ResNet恰好站出来,成为深度学习发展历程中一个重要的转折点。
    ​ ResNet是由微软研究院的Kaiming He等四名华人提出,他们通过自己提出的ResNet Unit成功训练出来152层的神经网络并在ILSVRC2015比赛中斩获冠军。ResNet语义分割领域最受欢迎且最广泛运用的神经网络.ResNet的核心思想就是在网络中引入恒等映射,允许原始输入信息直接传到后面的层中,在学习过程中可以只学习上一个网络输出的残差(F(x)),因此ResNet又叫做残差网络。、

    使用到ResNet的分割模型:

    • Efficient Neural Network(ENet):该网络类似于ResNet的bottleNeck方法;
    • ResNet-38:该网络在训练or测试阶段增加并移除了一些层,是一种浅层网络,它的结构是ResNet+FCN;
    • full-resolution residual network(FRRN):FRRN网络具有和ResNet相同优越的训练特性,它由残差流和池化流两个处理流组成;
    • AdapNey:根据ResNet-50的网络进行改进,让原本的ResNet网络能够在更短的时间内学习到更多高分辨率的特征;
      ……
      ResNet的优缺点:
      1)引入了全新的网络结构(残差学习模块),形成了新的网络结构,可以使网络尽可能地加深;
      2)使得前馈/反馈传播算法能够顺利进行,结构更加简单;
      3)恒等映射地增加基本上不会降低网络的性能;
      4)建设性地解决了网络训练的越深,误差升高,梯度消失越明显的问题;
      5)由于ResNet搭建的层数众多,所以需要的训练时间也比平常网络要长。

    2.基于区域选择(regional proposal based)

    Regional proposal 在计算机视觉领域是一个非常常用的算法,尤其是在目标检测领域。其核心思想就是检测颜色空间和相似矩阵,根据这些来检测待检测的区域。然后根据检测结果可以进行分类预测。
    在语义分割领域,基于区域选择的几个算法主要是由前人的有关于目标检测的工作渐渐延伸到语义分割的领域的,接下来小编将逐步介绍其个中关系。

    Stage Ⅰ: R-CNN

    伯克利大学的Girshick教授等人共同提出了首个在目标检测方向应用的深度学习模型:Region-based Convolutional Neural Network(R-CNN)。该网络模型如下图所示,其主要流程为:先使用selective search算法提取2000个候选框,然后通过卷积网络对候选框进行串行的特征提取,再根据提取的特征使用SVM对候选框进行分类预测,最后使用回归方法对区域框进行修正。

    R-CNN的优缺点:

    • 是首个开创性地将深度神经网络应用到目标检测的算法;
    • 使用Bounding Box Regression对目标检测的框进行调整;
    • 由于进行特征提取时是串行,处理耗时过长;
    • Selective search算法在提取每一个region时需要2s的时间,浪费大量时间
    Stage Ⅱ:Fast R-CNN

    ​ 由于R-CNN的效率太低,2015年由Ross等学者提出了它的改进版本:Fast R-CNN。其网络结构图如下图所示(从提取特征开始,略掉了region的选择)Fast R-CNN在传统的R-CNN模型上有所改进的地方是它是直接使用一个神经网络对整个图像进行特征提取,就省去了串行提取特征的时间;接着使用一个RoI Pooling Layer在全图的特征图上摘取每一个RoI对应的特征,再通过FC进行分类和包围框的修正。

    Fast R-CNN的优缺点

    • 节省了串行提取特征的时间;
    • 除了selective search以外的其它所有模块都可以合在一起训练;
    • 最耗时间的selective search算法依然存在。
    Stage Ⅲ:Faster R-CNN

    2016年提出的Faster R-CNN可以说有了突破性的进展(虽然还是目标检测哈哈哈),因为它改变了它的前辈们最耗时最致命的部位:selective search算法。它将selective search算法替换成为RPN,使用RPN网络进行region的选取,将2s的时间降低到10ms,其网络结构如下图所示:

    Faster R-CNN优缺点:

    • 使用RPN替换了耗时的selective search算法,对整个网络结构有了突破性的优化;
    • Faster R-CNN中使用的RPN和selective search比起来虽然速度更快,但是精度和selective search相比稍有不及,如果更注重速度而不是精度的话完全可以只使用RPN;
    Stage Ⅳ:Mask R-CNN

    Mask R-CNN(终于到分割了!)是何恺明大神团队提出的一个基于Faster R-CNN模型的一种新型的分割模型,此论文斩获ICCV 2017的最佳论文,在Mask R-CNN的工作中,它主要完成了三件事情:目标检测,目标分类,像素级分割。
    恺明大神是在Faster R-CNN的结构基础上加上了Mask预测分支,并且改良了ROI Pooling,提出了ROI Align。其网络结构真容就如下图所示啦:

    Mask R-CNN的优缺点:

    • 引入了预测用的Mask-Head,以像素到像素的方式来预测分割掩膜,并且效果很好;
    • 用ROI Align替代了ROI Pooling,去除了RoI Pooling的粗量化,使得提取的特征与输入良好对齐;
    • 分类框与预测掩膜共享评价函数,虽然大多数时间影响不大,但是有的时候会对分割结果有所干扰。
    Stage Ⅴ:Mask Scoring R-CNN

    最后要提出的是2019年CVPR的oral,来自华中科技大学的研究生黄钊金同学提出的
    MS R-CNN,这篇文章的提出主要是对上文所说的Mask R-CNN的一点点缺点进行了修正。他的网络结构也是在Mask R-CNN的网络基础上做了一点小小的改进,添加了Mask-IoU。
    黄同学在文章中提到:恺明大神的Mask R-CNN已经很好啦!但是有个小毛病,就是评价函数只对目标检测的候选框进行打分,而不是分割模板(就是上文提到的优缺点中最后一点),所以会出现分割模板效果很差但是打分很高的情况。所以黄同学增加了对模板进行打分的MaskIoU Head,并且最终的分割结果在COCO数据集上超越了恺明大神,下面就是MS R-CNN的网络结构啦~

    MS R-CNN的优缺点:

    • 优化了Mask R-CNN中的信息传播,提高了生成预测模板的质量;
    • 未经大批量训练的情况下,就拿下了COCO 2017挑战赛实例分割任务冠军;
    • 要说缺点的话。。应该就是整个网络有些庞大,一方面需要ResNet当作主干网络,另一方面需要其它各种Head共同承担各种任务。

    3.基于RNN的图像分割

    Recurrent neural networks(RNNs)除了在手写和语音识别上表现出色外,在解决计算机视觉的任务上也表现不俗,在本篇文章中我们就将要介绍RNN在2D图像处理上的一些应用,其中也包括介绍使用到它的结构或者思想的一些模型。
    RNN是由Long-Short-Term Memory(LSTM)块组成的网络,RNN来自序列数据的长期学习的能力以及随着序列保存记忆的能力使其在许多计算机视觉的任务中游刃有余,其中也包括语义分割以及数据标注的任务。接下来的部分我们将介绍几个使用到RNN结构的用于分割的网络结构模型:

    1.ReSeg模型

    ReSeg可能不被许多人所熟知,在百度上搜索出的相关说明与解析也不多,但是这是一个很有效的语义分割方法。众所周知,FCN可谓是图像分割领域的开山作,而RegNet的作者则在自己的文章中大胆的提出了FCN的不足:没有考虑到局部或者全局的上下文依赖关系,而在语义分割中这种依赖关系是非常有用的。所以在ReSeg中作者使用RNN去检索上下文信息,以此作为分割的一部分依据。

    该结构的核心就是Recurrent Layer,它由多个RNN组合在一起,捕获输入数据的局部和全局空间结构。
    优缺点:

    • 充分考虑了上下文信息关系;
    • 使用了中值频率平衡,它通过类的中位数(在训练集上计算)和每个类的频率之间的比值来重新加权类的预测。这就增加了低频率类的分数,这是一个更有噪声的分割掩码的代价,因为被低估的类的概率被高估了,并且可能导致在输出分割掩码中错误分类的像素增加。
    2.MDRNNs(Multi-Dimensional Recurrent Neural Networks)模型

    传统的RNN在一维序列学习问题上有着很好的表现,比如演讲(speech)和在线手写识别。但是 在多为问题中应用却并不到位。MDRNNs在一定程度上将RNN拓展到多维空间领域,使之在图像处理、视频处理等领域上也能有所表现。
    该论文的基本思想是:将单个递归连接替换为多个递归连接,相应可以在一定程度上解决时间随数据样本的增加呈指数增长的问题。以下就是该论文提出的两个前向反馈和反向反馈的算法。

    4.基于上采样/反卷积的分割方法

    卷积神经网络在进行采样的时候会丢失部分细节信息,这样的目的是得到更具特征的价值。但是这个过程是不可逆的,有的时候会导致后面进行操作的时候图像的分辨率太低,出现细节丢失等问题。因此我们通过上采样在一定程度上可以不全一些丢失的信息,从而得到更加准确的分割边界。
    接下来介绍几个非常著名的分割模型:

    a.FCN(Fully Convolutional Network)

    是的!讲来讲去终于讲到这位大佬了,FCN!在图像分割领域已然成为一个业界标杆,大多数的分割方法多多少少都会利用到FCN或者其中的一部分,比如前面我们讲过的Mask R-CNN。
    在FCN当中的反卷积-升采样结构中,图片会先进性上采样(扩大像素);再进行卷积——通过学习获得权值。FCN的网络结构如下图所示:

    当然最后我们还是需要分析一下FCN,不能无脑吹啦~
    优缺点:

    • FCN对图像进行了像素级的分类,从而解决了语义级别的图像分割问题;
    • FCN可以接受任意尺寸的输入图像,可以保留下原始输入图像中的空间信息;
    • 得到的结果由于上采样的原因比较模糊和平滑,对图像中的细节不敏感;
    • 对各个像素分别进行分类,没有充分考虑像素与像素的关系,缺乏空间一致性。
    2.SetNet

    SegNet是剑桥提出的旨在解决自动驾驶或者智能机器人的图像语义分割深度网络,SegNet基于FCN,与FCN的思路十分相似,只是其编码-解码器和FCN的稍有不同,其解码器中使用去池化对特征图进行上采样,并在分各种保持高频细节的完整性;而编码器不使用全连接层,因此是拥有较少参数的轻量级网络:

    图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。

    本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。

    SetNet的优缺点:

    • 保存了高频部分的完整性;
    • 网络不笨重,参数少,较为轻便;
    • 对于分类的边界位置置信度较低;
    • 对于难以分辨的类别,例如人与自行车,两者如果有相互重叠,不确定性会增加。
      以上两种网络结构就是基于反卷积/上采样的分割方法,当然其中最最最重要的就是FCN了,哪怕是后面大名鼎鼎的SegNet也是基于FCN架构的,而且FCN可谓是语义分割领域中开创级别的网络结构,所以虽然这个部分虽然只有两个网络结构,但是这两位可都是重量级嘉宾,希望各位能够深刻理解~

    5.基于提高特征分辨率的分割方法

    在这一个模块中我们主要给大家介绍一下基于提升特征分辨率的图像分割的方法。换一种说法其实可以说是恢复在深度卷积神经网络中下降的分辨率,从而获取更多的上下文信息。这一系列我将给大家介绍的是Google提出的DeepLab 。
    DeepLab是结合了深度卷积神经网络和概率图模型的方法,应用在语义分割的任务上,目的是做逐像素分类,其先进性体现在DenseCRFs(概率图模型)和DCNN的结合。是将每个像素视为CRF节点,利用远程依赖关系并使用CRF推理直接优化DCNN的损失函数。
    在图像分割领域,FCN的一个众所周知的操作就是平滑以后再填充,就是先进行卷积再进行pooling,这样在降低图像尺寸的同时增大感受野,但是在先减小图片尺寸(卷积)再增大尺寸(上采样)的过程中一定有一些信息损失掉了,所以这里就有可以提高的空间。
    接下来我要介绍的是DeepLab网络的一大亮点:Dilated/Atrous Convolution,它使用的采样方式是带有空洞的采样。在VGG16中使用不同采样率的空洞卷积,可以明确控制网络的感受野。

    图a对应3x3的1-dilated conv,它和普通的卷积操作是相同的;图b对应3x3的2-dilated conv,事迹卷积核的尺寸还是3x3(红点),但是空洞为1,其感受野能够达到7x7;图c对应3x3的4-dilated conv,其感受野已经达到了15x15.写到这里相信大家已经明白,在使用空洞卷积的情况下,加大了感受野,使每个卷积输出都包含了较大范围的信息。
    这样就解决了DCNN的几个关于分辨率的问题:
    1)内部数据结构丢失;空间曾计划信息丢失;
    2)小物体信息无法重建;
    当然空洞卷积也存在一定的问题,它的问题主要体现在以下两方面:
    1)网格效应
    加入我们仅仅多次叠加dilation rate 2的 3x3 的卷积核则会出现以下问题

    我们发现卷积核并不连续,也就是说并不是所有的像素都用来计算了,这样会丧失信息的连续性;
    2)小物体信息处理不当
    我们从空洞卷积的设计背景来看可以推测出它是设计来获取long-ranged information。然而空洞步频选取得大获取只有利于大物体得分割,而对于小物体的分割可能并没有好处。所以如何处理好不同大小物体之间的关系也是设计好空洞卷积网络的关键。

    6.基于特征增强的分割方法

    基于特征增强的分割方法包括:提取多尺度特征或者从一系列嵌套的区域中提取特征。在图像分割的深度网络中,CNN经常应用在图像的小方块上,通常称为以每个像素为中心的固定大小的卷积核,通过观察其周围的小区域来标记每个像素的分类。在图像分割领域,能够覆盖到更大部分的上下文信息的深度网络通常在分割的结果上更加出色,当然这也伴随着更高的计算代价。多尺度特征提取的方法就由此引进。
    在这一模块中我先给大家介绍一个叫做SLIC,全称为simple linear iterative cluster的生成超像素的算法。
    首先我们要明确一个概念:啥是超像素?其实这个比较容易理解,就像上面说的“小方块”一样,我们平常处理图像的最小单位就是像素了,这就是像素级(pixel-level);而把像素级的图像划分成为区域级(district-level)的图像,把区域当成是最基本的处理单元,这就是超像素啦。
    算法大致思想是这样的,将图像从RGB颜色空间转换到CIE-Lab颜色空间,对应每个像素的(L,a,b)颜色值和(x,y)坐标组成一个5维向量V[l, a, b, x, y],两个像素的相似性即可由它们的向量距离来度量,距离越大,相似性越小。
    算法首先生成K个种子点,然后在每个种子点的周围空间里搜索距离该种子点最近的若干像素,将他们归为与该种子点一类,直到所有像素点都归类完毕。然后计算这K个超像素里所有像素点的平均向量值,重新得到K个聚类中心,然后再以这K个中心去搜索其周围与其最为相似的若干像素,所有像素都归类完后重新得到K个超像素,更新聚类中心,再次迭代,如此反复直到收敛。
    有点像聚类的K-Means算法,最终会得到K个超像素。
    Mostahabi等人提出的一种前向传播的分类方法叫做Zoom-Out就使用了SLIC的算法,它从多个不同的级别提取特征:局部级别:超像素本身;远距离级别:能够包好整个目标的区域;全局级别:整个场景。这样综合考虑多尺度的特征对于像素或者超像素的分类以及分割来说都是很有意义的。
    接下来的部分我将给大家介绍另一种完整的分割网络:PSPNet:Pyramid Scene Parsing Network
    论文提出在场景分割是,大多数的模型会使用FCN的架构,但是FCN在场景之间的关系和全局信息的处理能力存在问题,其典型问题有:1.上下文推断能力不强;2.标签之间的关系处理不好;3.模型可能会忽略小的东西。
    本文提出了一个具有层次全局优先级,包含不同子区域时间的不同尺度的信息,称之为金字塔池化模块。
    该模块融合了4种不同金字塔尺度的特征,第一行红色是最粗糙的特征–全局池化生成单个bin输出,后面三行是不同尺度的池化特征。为了保证全局特征的权重,如果金字塔共有N个级别,则在每个级别后使用1×1 1×11×1的卷积将对于级别通道降为原本的1/N。再通过双线性插值获得未池化前的大小,最终concat到一起。其结构如下图:

    最终结果就是,在融合不同尺度的feature后,达到了语义和细节的融合,模型的性能表现提升很大,作者在很多数据集上都做过训练,最终结果是在MS-COCO数据集上预训练过的效果最好。

    为了捕捉多尺度特征,高层特征包含了更多的语义和更少的位置信息。结合多分辨率图像和多尺度特征描述符的优点,在不丢失分辨率的情况下提取图像中的全局和局部信息,这样就能在一定程度上提升网络的性能。

    7.使用CRF/MRF的方法

    首先让我们熟悉熟悉到底啥是MRF的CRF的。
    MRF全称是Marcov Random Field,马尔可夫随机场,其实说起来笔者在刚读硕士的时候有一次就有同学在汇报中提到了隐马尔可夫、马尔可夫链啥的,当时还啥都不懂,小白一枚(现在是准小白hiahia),觉得马尔可夫这个名字贼帅,后来才慢慢了解什么马尔科夫链呀,马尔可夫随机场,并且在接触到图像分割了以后就对马尔科夫随机场有了更多的了解。
    MRF其实是一种基于统计的图像分割算法,马尔可夫模型是指一组事件的集合,在这个集合中,事件逐个发生,并且下一刻事件的发生只由当前发生的事件决定,而与再之前的状态没有关系。而马尔可夫随机场,就是具有马尔可夫模型特性的随机场,就是场中任何区域都只与其临近区域相关,与其他地方的区域无关,那么这些区域里元素(图像中可以是像素)的集合就是一个马尔可夫随机场。
    CRF的全称是Conditional Random Field,条件随机场其实是一种特殊的马尔可夫随机场,只不过是它是一种给定了一组输入随机变量X的条件下另一组输出随机变量Y的马尔可夫随机场,它的特点是埃及设输出随机变量构成马尔可夫随机场,可以看作是最大熵马尔可夫模型在标注问题上的推广。
    在图像分割领域,运用CRF比较出名的一个模型就是全连接条件随机场(DenseCRF),接下来我们将花费一些篇幅来简单介绍一下。
    CRF在运行中会有一个问题就是它只对相邻节点进行操作,这样会损失一些上下文信息,而全连接条件随机场是对所有节点进行操作,这样就能获取尽可能多的临近点信息,从而获得更加精准的分割结果。
    在Fully connected CRF中,吉布斯能量可以写作:

    我们重点关注二元部分:

    其中k(m)为高斯核,写作:

    该模型的一元势能包含了图像的形状,纹理,颜色和位置,二元势能使用了对比度敏感的的双核势能,CRF的二元势函数一般是描述像素点与像素点之间的关系,鼓励相似像素分配相同的标签,而相差较大的像素分配不同标签,而这个“距离”的定义与颜色值和实际相对距离有关,这样CRF能够使图像尽量在边界处分割。全连接CRF模型的不同就在于其二元势函数描述的是每一个像素与其他所有像素的关系,使用该模型在图像中的所有像素对上建立点对势能从而实现极大地细化和分割。
    在分割结果上我们可以看看如下的结果图:

    可以看到它在精细边缘的分割比平常的分割方法要出色得多,而且文章中使用了另一种优化算法,使得本来需要及其大量运算的全连接条件随机场也能在很短的时间里给出不错的分割结果。
    至于其优缺点,我觉得可以总结为以下几方面:

    • 在精细部位的分割非常优秀;
    • 充分考虑了像素点或者图片区域之间的上下文关系;
    • 在粗略的分割中可能会消耗不必要的算力;
    • 可以用来恢复细致的局部结构,但是相应的需要较高的代价。
      OK,那么本次的推送就到这里结束啦,本文的主要内容是对图像分割的算法进行一个简单的分类和介绍。综述对于各位想要深入研究的看官是非常非常重要的资源:大佬们经常看综述一方面可以了解算法的不足并在此基础上做出改进;萌新们可以通过阅读一篇好的综述入门某一个学科,比如今天的内容就是图像分割。
      谢谢各位朋友们的观看!

    推荐阅读

    如何从零开始系统化学习视觉SLAM?
    从零开始一起学习SLAM | 为什么要学SLAM?
    从零开始一起学习SLAM | 学习SLAM到底需要学什么?
    从零开始一起学习SLAM | SLAM有什么用?
    从零开始一起学习SLAM | C++新特性要不要学?
    从零开始一起学习SLAM | 为什么要用齐次坐标?
    从零开始一起学习SLAM | 三维空间刚体的旋转
    从零开始一起学习SLAM | 为啥需要李群与李代数?
    从零开始一起学习SLAM | 相机成像模型
    从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
    从零开始一起学习SLAM | 神奇的单应矩阵
    从零开始一起学习SLAM | 你好,点云
    从零开始一起学习SLAM | 给点云加个滤网
    从零开始一起学习SLAM | 点云平滑法线估计
    从零开始一起学习SLAM | 点云到网格的进化
    从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
    从零开始一起学习SLAM | 掌握g2o顶点编程套路
    从零开始一起学习SLAM | 掌握g2o边的代码套路
    零基础小白,如何入门计算机视觉?
    SLAM领域牛人、牛实验室、牛研究成果梳理
    我用MATLAB撸了一个2D LiDAR SLAM
    可视化理解四元数,愿你不再掉头发
    最近一年语义SLAM有哪些代表性工作?
    视觉SLAM技术综述
    汇总 | VIO、激光SLAM相关论文分类集锦
    研究SLAM,对编程的要求有多高?
    2018年SLAM、三维视觉方向求职经验分享
    2018年SLAM、三维视觉方向求职经验分享
    深度学习遇到SLAM | 如何评价基于深度学习的DeepVO,VINet,VidLoc?
    视觉SLAM关键方法总结
    SLAM方向公众号、知乎、博客上有哪些大V可以关注?
    SLAM实验室
    SLAM方向国内有哪些优秀公司?
    SLAM面试常见问题
    SLAM相关领域数据集调研
    从零开始一起学习SALM-ICP原理及应用
    解放双手——相机与IMU外参的在线标定
    目标检测

    展开全文
  • 离散数学在计算机科学中的应用

    万次阅读 多人点赞 2018-02-03 11:56:44
    这次离散数学的最后题是:利用本学期学到的离散数学的知识阐释其在个软件工程中的应用。 下面说说离散数学的应用。 离散数学在数据结构中的应用 数据结构中将操作对象间的关系分为四类:集合、线性结构、树形...

    自从我们学院进行软件 工程认证后,期末考试的专业课全部是大题。这次离散数学的最后一题是:利用本学期学到的离散数学的知识阐释其在一个软件工程中的应用。

    下面说说离散数学的应用。

    离散数学在数据结构中的应用
    数据结构中将操作对象间的关系分为四类:集合、线性结构、树形结构、图状结构或网状结构。数据结构研究的主要内容是数据的逻辑结构,物理存储结构以及基本运算操作。其中逻辑结构和基本运算操作来源于离散数学中的离散结构和算法思考。离散数学中的集合论、关系、图论、树四个章节就反映了数据结构中四大结构的知识。如集合由元素组成,元素可理解为世上的客观事物。关系是集合的元素之间都存在某种关系。例如雇员与其工资之间的关系。图论是有许多现代应用的古老题目。瑞士数学家列昂哈德·欧拉在18世纪引进了图论的基本思想,他利用图解决了哥尼斯堡七桥问题。还可以用边上带权值的图来解决诸如寻找交通网络里两城市之间最短通路的问题。而树反映对象之间的关系,如组织机构图、家族图、二进制编码都是以树作为模型来讨论。

    离散数学在数据库中的应用
    数据库技术被广泛应用于社会各个领域,关系数据库已经成为数据库的主流,离散数学中的笛卡儿积是一个纯数学理论,是研究关系数据库的一种重要方法,显示出不可替代的作用。不仅为其提供理论和方法上的支持,更重要的是推动了数据库技术的研究和发展。关系数据模型建立在严格的集合代数的基础上,其数据的逻辑结构是一个由行和列组成的二维表来描述关系数据模型。在研究实体集中的域和域之间的可能关系、表结构的确定与设计、关系操作的数据查询和维护功能的实现、关系分解的无损连接性分析、连接依赖等问题都用到二元关系理论。

    离散数学在编译原理中的应用
    编译程序是计算机的一个十分复杂的系统程序。一个典型的编译程序一般都含有八个部分:词法分析程序、语法分析程序、语义分析程序、中间代码生成程序、代码优化程序、目标代码生成程序、错误检查和处理程序、各种信息表格的管理程序。离散数学里的计算模型章节里就讲了三种类型的计算模型:文法、有限状态机和图灵机。具体知识有语言和文法、带输出的有限状态机、不带输出的有限状态机、语言的识别、图灵机等。短语结构文法根据产生式类型来分类:0型文法、1型文法、2型文法、3型文法。以上这些在离散数学里讲述到的知识点在编译原理的词法分析及语法分析中都会用到。因此,离散数学也是编译原理的前期基础课程。

    离散数学在人工智能中的应用
    在人工智能的研究与应用领域中,逻辑推理是人工智能研究中最持久的子领域之一。逻辑是所有数学推理的基础,对人工智能有实际的应用。采用谓词逻辑语言的演绎过程的形式化有助于我们更清楚地理解推理的某些子命题。逻辑规则给出数学语句的准确定义。离散数学中数学推理和布尔代数章节中的知识就为早期的人工智能研究领域打下了良好的数学基础。许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中定理证明是一个极其重要的论题。在这里,推理机就是实现(机器)推理的程序。它既包括通常的逻辑推理,也包括基于产生式的操作。推理机是使用知识库中的知识进行推理而解决问题的。所以推理机也就是专家的思维机制,即专家分析问题、解决问题的方法的一种算法表示和机器实现。当然以上说的是专家系统,一般来说这种人工智能已经被基于统计学习的机器学习所取代。

    离散数学在计算机体系结构中的应用
    在计算机体系结构中,指令系统的设计和改进内容占有相当重要的地位,指令系统的优化意味着整个计算机系统性能的提高。指令系统的优化方法很多,一种方法是对指令的格式进行优化,一条机器指令是由操作码和地址码组成,指令格式的优化是指如何用最短的位数来表示指令的操作信息和地址信息,使程序中的指令的平均字长最短。为此可以用到哈夫曼的压缩概念,哈夫曼(Huffman)压缩是一种无损压缩法。Huffman压缩概念的基本思想是,当各种事件发生的概率不均等时,采用优化技术对发生概率最高的事件用最短的位数(时间)来表示(处理),而对出现概率较低的允许用较长的位数(时间)来表示(处理),就会导致表示(处理)的平均位数(时间)的缩短。利用哈夫曼算法,构造出哈夫曼树。方法是将指令系统的所有指令的使用频度进行统计,并按使用频度由小到大排序,每次选择其中最小的两个频度合并成一个频度是它们二者之和的新结点。再按该频度大小插入余下未参与结合的频度值中。如此继续进行,直到全部频度结合完毕形成根结点为止,之后,对每个结点向下延伸的两个分支,分别标注“1”或“0”,从根结点开始,沿线到达各频度结点所经过的代码序列就构成了该指令的哈夫曼编码。这样得到的编码系列就符合了指令使用概率低的指令编以长码,指令使用概率高的指令编以短码的初衷。

    补充
    离散数学在计算机研究中的作用越来越大,计算机科学中普遍采用离散数学中的一些基本概念、基本思想、基本方法,使得计算机科学越趋完善与成熟。离散数学在计算机科学和技术中有着广泛应用,除了在上述提到的领域中发挥了重要作用外,在其他领域也有着重要的应用,如离散数学中的数理逻辑部分在计算机硬件设计中的应用尤为突出,数字逻辑作为计算机科学的一个重要理论,在很大程度上起源于离散数学的数理逻辑中的命题与逻辑演算。利用命题中各关联词的运算规律把由高低电平表示的各信号之间的运算与二进制数之间的运算联系起来,使得我们可以用数学的方法来解决电路设计问题,使得整个设计过程变得更加直观,更加系统化。集合论在计算机科学中也有广泛的应用,它为数据结构和算法分析奠定了数学基础,也为许多问题从算法角度如何加以解决提供了进行抽象和描述的一些重要方法,在软件工程和数据库中也会用到。代数结构是关于运算或计算规则的学问,在计算机科学中,代数方法被广泛应用于许多分支学科,如可计算性与计算复杂性、形式语言与自动机、密码学、网络与通信理论、程序理论和形式语义学等,格与布尔代数理论成为电子计算机硬件设计和通讯系统设计中的重要工具,图论对开关理论与逻辑设计、计算机制图、操作系统、程序设计语言的编译系统以及信息的组织与检索起重要作用,其平面图、树的研究对集成电路的布线、网络线路的铺设、网络信息流量的分析等的实用价值显而易见

    展开全文
  • ubuntu使用教程

    万次阅读 多人点赞 2020-01-15 17:53:05
    Ubuntu(乌班图)是个基于Debian的以桌面应用为主的Linux操作系统,据说其名称来自非洲南部祖鲁语或科萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的种价值观。 Ubuntu的...
  • 浦发银行 信息科技岗 面经...1、即兴演讲(结构化面试 3面试官对6个学生):每人随机题,思考两分钟后,回答三分钟 今年即兴演讲环节已取消!!! 2、上机测试:三道编程题,较为基础,在线编译器只有C、C++和Ja...
  • 小疯手把手带你整合SpringMVC+Spring+MyBatis三大框架,俗称SSM,用它完全代替传统的SSH框架,把它们最优雅的一面发挥出来。整合配置结束后,会有个应用实例“图书管理系统”带给大家,希望能快速上手这个框架!
  • 软件测试面试题汇总

    万次阅读 多人点赞 2018-09-27 12:31:09
    转载自: ... 软件测试面试题汇总 测试技术面试题 ...........................................................................................................
  • 向量算法

    千次阅读 2019-06-05 22:31:07
    https://www.cnblogs.com/the-wolf-sky/articles/10192363.html...基于神经网络的表示一般称为向量、嵌入(word embdding)或分布式表示。 神经网络的向量和其他分布式类似,都基于分布式表达方式,核心依然是上...
  • 下面我提供种只要改就能用的方案: 如图,过时的ProgressDialog被划线: 你只要,把ProgressDialog改成AlertDialog就可以用了。不需要改函数,显示也没差别(本人deno亲测): 对比...
  • 英语写作: 替换

    千次阅读 2019-08-31 22:41:14
    经典替换: individuals, characters, folks 替换 people , persons. positive, favorable, rosy, promising, perfect, pleasurable, excellent, outstanding, superior 替换 good dreadful, unfavorable, poor, ...
  • 【JAVA面试】java面试题整理(3)

    千次阅读 2018-10-28 12:50:13
    把内存分成大小相同的两块,当块的内存用完了,就把可用对象复制到另块上,将使用过的次性清理掉 缺点:浪费了一半内存 标记-整理(Mark-Compact) 标记后,让所有存活的对象移到一端,然后...
  • 先谈谈同义挖掘的一些常用方法  ...在进行这些操作的过程中,同义的挖掘是个基础工作。下面简单介绍一下几个简单实用的算法。 词典 从百度词典、金山词霸的词条中抓取数据,根据原的描述...
  • Will的替代词汇_59

    千次阅读 2019-03-07 08:59:40
    今天我们将学习在条件句中使用 "can"、"must"、"may"和"might"来取代"will"。 "can"...(如果你愿意的话,你可以和我起来) If you a
  • SAP和Oracle的ERP是怎样被替代的?

    千次阅读 2021-10-04 00:16:45
    这其实也是所谓的中国ERP国产化替代的思路。 、大财务产品线 堆是:会计 堆是:预算与企业绩效管理 我看随着开放式银行、税务电子发票的发展,会出现新的增量蓝海市场,这个需要密切关注。 二、大合规产品线 ...
  • LibreSSL替代OpenSSL

    千次阅读 2018-05-31 19:50:27
    在获悉这消息的时候第时间我去看 LibreSSL 有没有受影响,正如所料——没有(见下图)!这让我觉得 LibreSSL 取代 OpenSSL 更加必要。关于 DROWN 溺亡漏洞如果还没了解过,可以参考:...
  • 用户在描述同个东西的时候,会有各种各样的描述。 在电商搜索环境中,同义分成好几类: 1. 品牌同义:nokia=诺基亚,Adidas=阿迪达斯 2. 产品同义:投影仪≈投影机,电话≈cell phone;automobile 和...
  • 破解替代加密法

    万次阅读 2020-03-02 22:00:19
    首先必须先找出字典文件里的每个单词的模式,把它们放置在个列表里排序好,以便获取匹配特定密的单词模式的所有候选单词。 计算字典文件里的每个单词的单词模式,保存到另个文件里,及 wordPatterns.py文件。 ...
  • 5)SuperSense(Pilehvar 2019),BOW的改进版本,使用预训练的有义嵌入来替代目标嵌入; 6)MS-LSTM(Kartsaklis,Pilehvar和Collier 2018),RNN的改进版本,它使用基于图的WordNet同义集嵌入和多义LSTM来...
  • 替代废除iframe方案

    万次阅读 2016-03-13 15:33:31
     页面引进Ajax get 2 二 Shadow DOM 2 2.1 还记得iframe们吗? 2 2.2 我的名字是DOM,Shadow DOM 2 2.3 事件的情况 4 2.4 家庭作业 6 三 其他实践参考 6 3.1 【shadow dom入UI】web ...
  • If 的替代词汇:unless、in case..._60

    千次阅读 2019-03-20 07:46:16
    条件句时种复合句,而 "if" 、"in case" 和 "unless" 这些单词都是连接。 现在我们来看其他复合句和连接的例子。 复合句是含有至少两个部分的句子,由连接连贯在一起。 我们来看一些连接的例子,...
  • 钱包的原理-助记

    万次阅读 2018-06-07 17:10:56
    经过前面几篇文章的解读,我们知道个私钥生成公钥,公钥生成地址,这三者是一一对应的,就是个私钥只有个公钥和个地址。但是我们在往交易所充币的时候,看到交易所为我们每个人生成一个独一无二的地址。这是...
  • if word in syn: # 如果句子中的在同义表某条目中,将该条目中它的同义添加到该的同义列表中 syn.remove(word) word_synonyms.extend(syn) candidate_synonym_list.append(word_synonyms) # 添加...
  • 在近几年来,人工智能这个越来越火了,人工智能(Artificial Intelligence),英文缩写为AI。毕竟现在是数字化,信息化的时代,人工智能越来越流行,越来越先进也是无可厚非的,但是现阶段,人工智能的发展还是...
  •  将用“向量”的方式表示可谓是将 Deep Learning 算法引入 NLP 领域的个核心技术。大多数宣称用了 Deep Learning 的论文,其中往往也用了向量。 本文目录: 0. 向量是什么 1. 向量的来历...
  • 心理辅导平台设计

    千次阅读 2017-12-04 10:22:57
    声明:作者对本文档保留所有权利。 原题目: 软件工程课程设计 ——心理学指导软件 学生学院 机电工程学院 ...2014年12月16日 目录、团队介绍 二、软件介绍 三、可行性分析 1.引言 2.可行性研究的前提
  • 深度学习:嵌入Embedding

    万次阅读 多人点赞 2017-07-26 11:08:06
    嵌入 嵌入其实就是将数据的原始表示表示成模型可处理的或者是更dense的低... 假设一共有个物体,每个物体有自己唯一的id,那么从物体的集合到有个trivial的嵌入,就是把它映射到中的标准基,这种嵌入叫做On...
  • 目前,向量(又叫嵌入word embedding)已经成为NLP领域各种任务的必备一步,而且随着bert elmo,gpt等预训练模型的发展,向量演变为知识表示方法,但其本质思想不变。学习各种向量训练原理可以很好地掌握NLP...
  • 屏蔽功能实现

    千次阅读 2013-11-20 23:27:26
    自己上学的时候,经常会看到贴吧里面屏蔽各种用户的发帖内容,当时...最近自己做的个项目中,需要对一些内容做屏蔽,自己又对这个问题做了次分析,最终形成下面的代码。 /** *@Description: 屏蔽功能实现

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 81,175
精华内容 32,470
关键字:

一的替代词