精华内容
下载资源
问答
  • 如何计算计划完成程度
    千次阅读 多人点赞
    2022-03-31 17:56:46

    当前,人工智能基础性算法理论研究创新日益活跃,深度神经网络日趋成熟,各大厂商纷纷投入到深度神经网络算法的工程实现并发力建设算法模型工具,进一步将其封装为软件框架供开发者使用,这个过程中AI框架应运而生。

    随着人工智能的不断发展,新的趋势不断涌现,比如超大规模模型的出现(GPT-3等)。AI框架已经从最初的萌芽阶段发展到了如今的深化阶段。这一阶段,AI框架正向着全场景支持,超大规模AI,安全可信等特性深化探索,不断实现新的突破与此同时,传统科学计算方式在处理气象,生物制药这类没有方程式可寻的领域问题显得力不从心。故传统科学计算领域亟需AI技术的加持,用大数据去驱动计算。目前AI在生物制药和气象领域都已经取得了一些颠覆性的突破,比如蛋白质结构预测台风公里级风速预报都已经可以通过AI计算出来。

    昇思MindSpore框架是华为2020年开源的的一款全场景AI计算框架,它旨在提供友好设计、高效运行、简捷部署的开发体验,目前应用于医疗制药、气候电子制造等多个领域。该框架提供面向端边云场景的主流硬件支持,并针对昇腾硬件平台提供深度优化能力。该框架是目前国内唯一一个可以把AI和科学计算这种复杂的计算模式全部计算起来的框架。 

    MindSporeAI时代的基石是如何炼成的?

    昇思MindSpore自2020年开源以来,不断的进行版本迭代开发。目前已经更新到了最新的1.6版本,框架的功能也不断被完善,各种关键特性不断出现。面对纷繁复杂的场景,各种不同的终端昇思MindSpore框架支持全场景协同的解决方案;面对传统科学计算领域不能求解的复杂问题昇思MindSpore框架推出了AI+科学计算的解决方案;

    • 全场景协同,端、边、云全场景无缝部署

    昇思 MindSpore在框架的设计上进行了分层设计,采用统一的端云统一内核(MindIR),将端云共用的数据结构和模块解耦出来,在满足端侧轻量化的同时,保持了端云架构的一致性,真正实现一次训练无缝部署、端云训练共模型。

    针对IOT设备,昇思MindSpore 设计了MindSpore for micro方案,MindSpore for micro通过CodeGen方式,将模型中的算子序列从运行时卸载到编译是,并且仅生成将模型执行的代码。它不仅避免了运行时解释的时间,而且还释放了内存使用量,以允许更大的模型运行。

    • 全流程极简,高效执行,安全可信

    自研的Compiler AI编译器基于端云统一的MindIR实现三大功能,包括硬件无关的优化(类型推导、高阶高维自动微分、表达式化简等);硬件相关优化(自动异构并行、内存优化、图算融合、流水线执行等);部署推理相关的优化(量化、剪枝等)。

    安全可信组件Armour则通过数据脱敏,差分隐私训练等方式保证了数据安全,通过丰富的人工智能鲁棒性检测工具保证了模型安全。

    AI框架的核心就是微分,自动微分已经比较完善了。昇思MindSpore框架与一般的AI框架相比可以实现高阶高维自动微分,从而在计算高阶微分时可以轻松解决复杂度及误差增加的问题。同时,昇思MindSpore还支持全自动异构并行,在进行分布式训练时自动实现数据并行,模型算子并行,优化器并行等等。

    昇思MindSpore团队为了解决传统科学计算领域的痛点,发挥其在大规模,多种设备训的练上的优势。该团队计划面向八大科学计算行业打造MindScience系列套件。这些行业套件包括了业界领先的数据集、基础模型、预置高精度模型和前后处理工具,加速了科学行业应用开发。具体如下表所示:

    与此同时,昇思MindSpore社区生态也在繁荣发展。截止到目前,昇思MindSpore在码云(Gitee)千万开源项目中活跃度排名第一,累计下载量超过130万;服务于5000家企业,涵盖政府、金融、制造、交通、能源、终端等端边云全场景行业;高校及科研机构基于昇思贡献顶会论文300+;100+高校参与社区模型众智活动,为昇思贡献代码,目前已支持300+主流模型,支撑全场景应用。

    AI框架之力初显:它山之石可以攻玉

    传统科学计算方法通过数值迭代的方式解决问题,面临着维度灾难引起的计算量指数上升的问题,导致在复杂问题或者场景中“算不起”,甚至是“算不动”。而科学计算的诸多领域仍然存在着大量待求解的问题,因为机理不清楚,或者完全没有方程,又或者是计算过于复杂,以至于传统算法难以求解。而AI框架依赖于以神经网络为代表的具有“万能逼近”性质的数据工具从数据中挖掘规律,用数据驱动计算,可以大大提高科学计算的性能。而恰好,昇思MindSpore在大规模,多种设备的训练上又有独特的优势。比如:昇思MindSpore推出的分子制药研发套件MindSPONG 实现了分子动力学模拟,蛋白质折叠训推一体。

    蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。蛋白质由很多氨基酸长链组成,这些氨基酸通过折叠成精确的3D结构来完成无数的任务,这些结构控制着与其他分子互动的方式,决定了其功能以及它在疾病中的功能紊乱程度。所以,传统的药物研发一般是通过大批量筛选,寻找易与目标蛋白质分子紧密结合、易合成且没有毒副作用的化合物来完成。这种大批量筛选的方式存在着很大的盲目性,存在研发周期过长,研发成本过高的问题。研发人员如果可以提前预测蛋白质结构则可以大大减少寻找药物的盲目性,从而缩短药物研发的时间,降低研发成本。

    在过去,因蛋白质构象数量巨大、计算过程及其复杂,通过AI来对蛋白质结构进行预测一直存在精度不足的缺陷,故传统获取蛋白质空间结构的方法仍然以冷冻电镜等实验技术为主。单个蛋白质的观测成本高达数月以及几百万元。直至AlphaFold2的出现,才使得这一问题迎来了曙光。AlphaFold2 在国际蛋白质结构预测竞赛CASP14上实现了前所未有的结构预测精度。这一成就也被 Nature 誉为“前所未有的进步”。

    但是,AlphaFold2本身模型本身存在内存需求大,数据处理繁琐,控制编译复杂等特点,对基础 AI 框架存在着巨大挑战。故2021年9月昇思MindSpore联合高毅勤课题组(北京大学、深圳湾实验室)推出了分子制药研发套件MindSPONGE,该套件是第一个根植于AI框架的分子模拟工具,其采用模块化的设计思路,可以快速构建分子模拟流程。

    蛋白质结构预测工具依托昇思MindSpore,可对氨基酸序列长度2000+的蛋白质结构解析,能覆盖约99%以上的蛋白序列。该工具的模型部分与AlphaFold2相同,在多序列比对阶段,采用了MMseqs2 进行序列检索,相比原版算法端到端的速度有2-3倍提升。

    近期,昇思MindSpore,高毅勤课题组(北京大学、深圳湾实验室)联合团队使用该工具全面打通了AlphaFold2的训练。采用昇腾基础软硬件之后,通过软硬件协同优化大大提高了蛋白质预测的计算效率。在混合精度下,单步迭代时间由 20 秒缩短到 12 秒,性能提升超过 60%。依托昇思 MindSpore 内存复用能力, 训练序列长度由 384 提升至 512。MindSpore在CASP14验证集上TM-score得分87.2,超过了JAX(AlphaFold2的AI框架)的87.02

    除了在生命科学领域的蛋白质结构预测及折叠问题上有重大突破以外,昇思MindSpore电磁仿真套件MindSpore Elec也取得了重大突破。

    麦克斯韦提出了位移电流假说(变化的电场能够产生磁场),完善了电生磁的理论。并最终将电磁场理论以简洁、对称和完美的数学形式表示出来,即麦克斯韦方程组。随着计算机技术的发展,人们采用数值计算的方式去求解麦克斯韦方程组以模拟电磁场在空间中的分布。这样既节省了实验成本,又可以通过仿真设计出更加符合需求的电子设备。传统的电磁计算方法包括精确的全波方法和高频近似方法。虽然较好地辅助了电子产品的设计,但是该方法仍存在许多缺陷,如需要进行复杂的网格剖分、迭代计算,计算过程复杂、计算周期长。神经网络具有万能逼近和高效推理能力,这使得神经网络在求解微分方程时具有潜在的优势。为此,昇思MindSpore推出了AI电磁仿真套件MindSpore Elec。

    MindSpore Elec内置有前后处理工具(数据构建及转换、结果可视化)、AI电磁模型库(物理方程驱动和标签数据驱动)以及优化策略(数据压缩、动态自适应加权等),具体模块和功能如下:

    MindSpore Elec套件在AI电磁仿真上相比传统的电磁计算方法在性能上有了质的飞跃。MindSpore Elec在物理驱动的AI电磁仿真上比原始的PINNs方法,性能提升15倍以上;与Benchamrk(传统的数值方法)的相对误差在5%左右;在手机电磁仿真的场景中,仿真精度媲美传统科学计算软件,同时性能提升10倍。

    未来的十年将会是AI发展的黄金十年,而作为最为核心的AI技术之一,深度学习算法框架的发展牵动着业内每一个参与者的心。中国AI深度学习框架的发展必将迎来大爆发。昇思MindSpore必将扮演着重要的引领者角色,尤其是在AI+科学计算领域,昇思MindSpore可以充分发挥其大规模,多设备训练上的优势,不断完善科学计算套件,通过AI电磁仿真突破产品设计仿真性能瓶颈;通过实现药物分子预训练模型,加速分子生成,降低实验成本。这些科学计算套件必将助力各行业发展。

    更多相关内容
  • 什么是边缘计算

    万次阅读 多人点赞 2018-07-07 16:59:44
    什么是边缘计算 为什么需要边缘计算 什么是边缘计算 边缘计算的优点 案例研究 云卸载 视频分析 智能家居 智慧城市 边缘协作 机遇和挑战 编程可行性 命名 数据抽象 服务管理 私密性 最优化方法 小结 ...

    注:本篇翻译自施巍松教授的论文《Edge Computing : Vision and Challenges》

    目录

    摘要

    物联网技术的快速发展和云服务的推动使得云计算模型已经不能很好的解决现在的问题,于是,这里给出一种新型的计算模型,边缘计算。边缘计算指的是在网络的边缘来处理数据,这样能够减少请求响应时间、提升电池续航能力、减少网络带宽同时保证数据的安全性和私密性。这篇文章会通过一些案例来介绍边缘计算的相关概念,内容包括云卸载、智能家居、智慧城市和协同边缘节点实现边缘计算。希望这篇文章能够给你一些启发并让更多的人投入边缘计算的研究中来。

    简介

    云计算自从它与2005年提出之后,就开始逐步的改变我们生活、学习、工作的方式。生活中经常用到的google、facebook等软件提供的服务就是典型的代表。并且,可伸缩的基础设施和能够支持云服务的处理引擎也对我们运营商业的模式产生了一定的影响,比如,hadoop、spark等等。
    物联网的快速发展让我们进入了后云时代,在我们的日常生活中会产生大量的数据。思科估计到2019年会有将近500亿的事物连接到互联网。物联网应用可能会要求极快的响应时间,数据的私密性等等。如果把物联网产生的数据传输给云计算中心,将会加大网络负载,网路可能造成拥堵,并且会有一定的数据处理延时。
    随着物联网和云服务的推动,我们假设了一种新的处理问题的模型,边缘计算。在网络的边缘产生、处理、分析数据。接下来的文章会介绍为什么需要边缘计算,相关定义。有关云卸载和智慧城市的一些研究,有关边缘计算下的编程、命名、数据抽象、服务管理、数据私密和安全性的问题也会在下文讨论。

    什么是边缘计算

    在网络边缘产生的数据正在逐步增加,如果我们能够在网络的边缘结点去处理、分析数据,那么这种计算模型会更高效。许多新的计算模型正在不断的提出,因为我们发现随着物联网的发展,云计算并不总是那么高效的。接下来文章中将会列出一些原因来证明为什么边缘计算能够比云计算更高效,更优秀。
    ##为什么需要边缘计算

    • 云服务的推动:云中心具有强大的处理性能,能够处理海量的数据。但是,将海量的数据传送到云中心成了一个难题。云计算模型的系统性能瓶颈在于网络带宽的有限性,传送海量数据需要一定的时间,云中心处理数据也需要一定的时间,这就会加大请求响应时间,用户体验极差。

    • 物联网的推动:现在几乎所有的电子设备都可以连接到互联网,这些电子设备会后产生海量的数据。传统的云计算模型并不能及时有效的处理这些数据,在边缘结点处理这些数据将会带来极小的响应时间、减轻网络负载、保证用户数据的私密性。

    • 终端设备的角色转变:终端设备大部分时间都在扮演数据消费者的角色,比如使用智能手机观看爱奇艺、刷抖音等。然而,现在智能手机让终端设备也有了生产数据的能力,比如在淘宝购买东西,在百度里搜索内容这些都是终端节点产生的数据。

    下面两幅图,图1是传统云计算模型下的范式,最左侧是服务提供者来提供数据,上传到云中心,终端客户发送请求到云中心,云中心响应相关请求并发送数据给终端客户。终端客户始终是消费者的角色。
    图2是现在物联网快速发展下的边缘计算范式。边缘结点(包括智能家电、手机、平板等)产生数据,上传到云中心,服务提供商也产生数据上传到云中心。边缘结点发送请求到云中心,云中心返还相关数据给边缘结点。
    这里写图片描述
    图1 云计算范式
    这里写图片描述
    图2 边缘计算范式

    什么是边缘计算

    边缘计算指的是在网络边缘结点来处理、分析数据。这里,我们给出边缘结点的定义,边缘结点指的就是在数据产生源头和云中心之间任一具有计算资源和网络资源的结点。比如,手机就是人与云中心之间的边缘结点,网关是智能家居和云中心之间的边缘结点。在理想环境中,边缘计算指的就是在数据产生源附近分析、处理数据,没有数据的流转,进而减少网络流量和响应时间。

    边缘计算的优点

    • 在人脸识别领域,响应时间由900ms减少为169ms
    • 把部分计算任务从云端卸载到边缘之后,整个系统对能源的消耗减少了30%-40%。
    • 数据在整合、迁移等方面可以减少20倍的时间。

    案例研究

    云卸载

    在传统的内容分发网络中,数据都会缓存到边缘结点,随着物联网的发展,数据的生产和消费都是在边缘结点,也就是说边缘结点也需要承担一定的计算任务。把云中心的计算任务卸载到边缘结点这个过程叫做云卸载。
    举个例子,移动互联网的发展,让我们得以在移动端流畅的购物,我们的购物车以及相关操作(商品的增删改查)都是依靠将数据上传到云中心才能得以实现的。如果将购物车的相关数据和操作都下放到边缘结点进行,那么将会极大提高响应速度,增强用户体验。通过减少延迟来提高人与系统的交互质量。

    视频分析

    随着移动设备的增加,以及城市中摄像头布控的增加,利用视频来达成某种目的成为一种合适的手段,但是云计算这种模型已经不适合用于这种视频处理,因为大量数据在网络中的传输可能会导致网络拥塞,并且视频数据的私密性难以得到保证。
    因此,提出边缘计算,让云中心下放相关请求,各个边缘结点对请求结合本地视频数据进行处理,然后只返回相关结果给云中心,这样既降低了网络流量, 也在一定程度上保证了用户的隐私。
    举例而言,有个小孩儿在城市中丢失,那么云中心可以下放找小孩儿这个请求到各个边缘结点,边缘结点结合本地的数据进行处理,然后返回是否找到小孩儿这个结果。相比把所有视频上传到云中心,并让云中心去解决,这种方式能够更快的解决问题。

    智能家居

    物联网的发展让普通人家里的电子器件都变得活泼了起来,仅仅让这些电子器件连上网络是不够的,我们需要更好的利用这些电子元件产生的数据,并利用这些数据更好的为当前家庭服务。考虑到网络带宽和数据私密保护,我们需要这些数据最好仅能在本地流通,并直接在本地处理即可。我们需要网关作为边缘结点,让它自己消费家庭里所产生的数据。同时由于数据的来源有很多(可以是来自电脑、手机、传感器等任何智能设备),我们需要定制一个特殊的OS,以至于它能把这些抽象的数据揉和在一起并能有机的统一起来。

    智慧城市

    边缘计算的设计初衷是为了让数据能够更接近数据源,因此边缘计算在智慧城市中有以下几方面优势:

    • 海量数据处理:在一个人口众多的大城市中,无时无刻不在产生着大量的数据,而这些数据如果通通交由云中心来处理,那么将会导致巨大的网络负担,资源浪费严重。如果这些数据能够就近进行处理,在数据源所在的局域网内进行处理,那么网络负载就会大幅度降低,数据的处理能力也会有进一步的提升。
    • 低延迟:在大城市中,有很多服务是要求具有实时特性的,这就要求响应速度能够尽可能的进一步提升。比如医疗和公共安全方面,通过边缘计算,将减少数据在网络中传输的时间,简化网络结构,对于数据的分析、诊断和决策都可以交由边缘结点来进行处理,从而提高用户体验。
    • 位置感知:对基于位置的一些应用来说,边缘计算的性能要由于云计算。比如导航,终端设备可以根据自己的实时位置把相关位置信息和数据交给边缘结点来进行处理、边缘结点基于现有的数据进行判断和决策。整个过程中的网络开销都是最小的。用户请求得以极快的得到响应。
      ##边缘协作
      由于数据隐私性问题和数据在网络中传输的成本问题,有一些数据是不能由云中心去处理的,但是这些数据有时候又需要多个部门协同合作才能发挥它最大的作用。于是,我们提出了边缘协同合作的概念,利用多个边缘结点协同合作,创建一个虚拟的共享数据的视图,利用一个预定义的公共服务接口来将这些数据进行整合,同时,通过这个数据接口,我们可以编写应用程序为用户提供更复杂的服务。
      举个多个边缘结点协同合作共赢的例子。比如流感爆发的时候,医院作为一个边缘结点与药房、医药公司、政府、保险行业等多个节点进行数据共享,把当前流感的受感染人数、流感的症状、治疗流感的成本等共享给以上边缘结点。药房通过这些信息有针对性的调整自己的采购计划,平衡仓库的库存;医药公司则能通过共享的数据得知哪些为要紧的药品,提升该类药品生产的优先级;政府向相关地区的人们提高流感警戒级别,此外,还可以采取进一步的行动来控制流感爆发的蔓延;保险公司根据这次流感程度的严峻性来调整明年该类保险的售价。总之,边缘结点中的任何一个节点都在这次数据共享中得到了一定的利益。

    机遇和挑战

    以上是边缘计算在解决相关问题的潜力和展望,接下来会分析在实现边缘计算的过程中将要面临的机遇和挑战。

    编程可行性

    在云计算平台编程是非常便捷的,因为云有特定的编译平台,大部分程序都可以在云上跑。但是边缘计算下的编程就会面临一个问题,平台异构问题,每一个网络的边缘都是不一样的,有可能是ios系统,也有可能是安卓或者linux等等,不同平台下的编程又是不同的。因此我们提出了计算流的概念,计算流是数据传播路径上的函数序列/计算序列,可以通过应用程序指定计算发生在数据传播路径中的哪个节点。计算流可以帮助用户确定应该完成哪些功能/计算,以及在计算发生在边缘之后如何传播数据。通过部署计算流,可以让计算尽可能的接近数据源。

    命名

    命名方案对于编程、寻址、事物识别和数据通信非常重要,但是在边缘计算中还没有行之有效的数据处理方式。边缘计算中事物的通信是多样的,可以依靠wifi、蓝牙、2.4g等通信技术,因此,仅仅依靠tcp/ip协议栈并不能满足这些异构的事物之间进行通信。边缘计算的命名方案需要处理事物的移动性,动态的网络拓扑结构,隐私和安全保护,以事物的可伸缩性。传统的命名机制如DNS(域名解析服务)、URI(统一资源标志符)都不能很好的解决动态的边缘网络的命名问题。目前正在提出的NDN(命名分发网络)解决此类问题也有一定的局限性。在一个相对较小的网络环境中,我们提出一种解决方案,如图3所示,我们描述一个事物的时间、地点以及正在做的事情,这种统一的命名机制使得管理变得非常容易。当然,当环境上升到城市的高度的时候,这种命名机制可能就不是很合适了,还可以进行进一步的讨论。
    这里写图片描述
    图3 命名机制

    数据抽象

    在物联网环境中会有大量的数据生成,并且由于物联网网络的异构环境,生成的数据是各种格式的,把各种各样的数据格式化对边缘计算来说是一个挑战。同时,网络边缘的大部分事物只是周期性的收集数据,定期把收集到的数据发送给网关,而网关中的存储是有限的,他只能存储最新的数据,因此边缘结点的数据会被经常刷新。利用集成的数据表来存储感兴趣的数据,表内部的结构可以如图4所示,用id、时间、名称、数据等来表示数据。
    这里写图片描述
    图4 相应表结构
    如果筛选掉过多的原始数据,将导致边缘结点数据报告的不可靠,如果保留大量的原始数据,那么边缘结点的存储又将是新的问题;同时这些数据应该是可以被引用程序读写和操作的,由于物联网中事物的异构性,导致数据库的读写和操作会存在一定的问题。

    服务管理

    边缘结点的服务管理我们认为应该有以下四个特征,,包括差异化、可扩展性、隔离性和可靠性,进而保证一个高效可靠的系统。

    • 差异化:随着物联网的发展,会有这种各样的服务,不同的服务应该有差异化的优先级。比如,有关事物判断和故障警报这样的关键服务就应该高于其它一般服务,有关人类身体健康比如心跳检测相关的服务就要比娱乐相关服务的优先级要高一些。
    • 可扩展性:物联网中的物品都是动态的,向物联网中添加或删除一件物品都不是那么容易的,服务缺少或者增加一个新的结点能否适应都是待解决的问题,这些问题可以通过对边缘os的高扩展和灵活的设计来解决。
    • 隔离性:所谓隔离性是指,不同的操作之间互不干扰。举例而言,有多个应用程序可以控制家庭里面的灯光,有关控制灯光的数据是共享的,当有某个应用程序不能响应时,使用其他的应用程序依然能够控制灯光。也就是说这些应用程序之间是相互独立的,互相并没有影响;隔离性还要求用户数据和第三方应用是隔离的,也就是说应用不应该能够跟踪用户的数据并记录下来,为了解决该问题,应当添加一种全新的应用访问用户数据的方式。
    • 可靠性:可靠性可以从服务、系统和数据三方面来谈论
      • 从服务方面来说,网络拓扑中任意节点的丢失都有可能导致服务的不可用,如果边缘系统能够提前检测到具有高风险的节点那么就可以避免这种风险。较好的一种实现方式是使用无线传感器网络来实时监测服务器集群。
      • 从系统角度来看,边缘操作系统是维护整个网络拓扑的重要一部分内容。节点之间能够互通状态和诊断信息。这种特征使得在系统层面部署故障检测、节点替换、数据检测等十分的方便。
      • 从数据角度来看,可靠性指的是数据在传感和通信方面是可靠地。边缘网络中的节点有可能会在不可靠的时候报告信息,比如当传感器处于电量不足的时候就极有可能导致传输的数据不可靠。为解决此类问题可能要提出新的协议来保证物联网在传输数据时的可靠性。

    私密性

    现存的提供服务的方法是手机终端用户的数据并上传到云端,然后利用云端强大的处理能力去处理任务,在数据上传的过程中,数据很容易被别有用心的人收集到。为了保证数据的私密性,我们可以从以下这些方面入手。
    1,在网络的边缘处理用户数据,这样数据就只会在本地被存储、分析和处理。
    2,对于不同的应用设置权限,对私密数据的访问加以限制。
    3,边缘的网络是高度动态化的网络,需要有效的工具保护数据在网络中的传输。

    最优化指标

    在边缘计算当中,由于节点众多并且不同节点的处理能力是不同的,因此,在不同的节点当中选择合适的调度策略是非常重要的。接下来从延迟、带宽、能耗和花费这四个方面来讨论最优化的指标。

    • 延迟: 很明显云中心具有强大的处理能力,但是网络延迟并不单单是处理能力决定的,也会结合数据在网路中传输的时间。拿智慧城市距离来说,如果要寻找丢失的小孩儿信息,在本地的手机处理,然后把处理结果返回给云明显能加快响应速度。当然,这种事情也是相对而言的,我们需要放一个逻辑判断层,来判断把任务交给哪一个节点处理合适,如果此时手机正在打游戏或者处理其他非常重要的事情,那么手机就不是很适合处理这种任务,把这种任务交给其他层次来处理会更好些。
    • 带宽:高带宽传输数据意味着低延迟,但是高带宽也意味着大量的资源浪费。数据在边缘处理有两种可能,一种是数据在边缘完全处理结束,然后边缘结点上传处理结果到云端;另外一种结果是数据处理了一部分,然后剩下的一部分内容将会交给云来处理。以上两种方式的任意一种,都能极大的改善网路带宽的现状,减少数据在网络中的传输,进而增强用户体验。
    • 能耗:对于给定的任务,需要判定放在本地运算节省资源还是传输给其他节点计算节省资源。如果本地空闲,那么当然在本地计算是最省资源的,如果本地正在忙碌状态,那么把计算任务分给其他节点会更合适一些。权衡好计算消耗的能源和网络传输消耗的能源是一件非常重要的事情。一般当网络传输消耗的资源远小于在本地计算消耗的能源时,我们会考虑使用边缘计算把计算任务卸载到其他空闲的节点上,帮助实现负载均衡,保证每一个结点的高性能。
    • 花费:目前在边缘计算上的花费包括但不限于边缘结点的构建和维护、新型模型的开发等。利用边缘计算的模型,大型的服务提供商在处理相同工作的情况下能够获取到更大的利润。

    小结

    物联网的发展和云计算的推动使得边缘计算的模型出现在社区之中。在边缘结点处理数据能够提高响应速度,减少带宽,保证用户数据的私密性。这篇文章当中,我们提出了边缘计算可能在以后的生活中一些相关场景的运用,也提到了边缘计算以后发展的展望和挑战。希望以后有更多的同僚能够关注到这么一个领域。

    展开全文
  • 此文觉得非常有逻辑性,而且有很多量子计算方面的常识介绍。大部分资料都是网络公开的,这里做了一个汇集。因此,转发到博客里。 文章目录 (一)量子是个啥? (二)各种量子技术都是啥? (三)量子计算机有啥用?...

    写在前面

    此文觉得非常有逻辑性,而且有很多量子计算方面的常识介绍。大部分资料都是网络公开的,这里做了一个汇集。因此,转发到博客里。

    文章目录

    (一)量子是个啥?

    (二)各种量子技术都是啥?

    (三)量子计算机有啥用?

    (四)量子计算机怎么做?

    (五)当前量子计算实验研究的各路高手都是谁?

    (六)量子计算到底难在哪?进展到哪一步了?

    (七)量子计算何时商业化?

    (八)中国的量子计算处于什么水平?

    (九)结束语:我们为什么研究量子计算?

    前言

    首先也最重要的是,我们在谈论任何科技进展的时候都必须分清三个概念:科学事实、理论构想、未来展望。

    科学事实必须是清晰、准确、可重复的实验结果。确凿的实验事实是最扎实的科学知识。例如,氢原子有一个质子和一个电子,正常人有23对染色体等等。当前量子计算机的研究也是建立在非常坚实的实验基础之上——后面会讲到,在过去的二十多年里,科学家已经在量子物理的两条新战线上分别取得了里程碑式的重大进展。

    理论构想是依据已知科学事实、通过逻辑推演得出的预言或设计。再精妙的理论构想也要经过实验检验之后才能被称为事实。例如,1916年,爱因斯坦在广义相对论的基础上提出了引力波的预言;但是这个构想直到1974年天体物理学家 Russell Hulse 和 Joseph Taylor 用 Arecibo 射电望远镜发现脉冲双星 PSR 1913 16 后才首次得到明确验证(敲黑板,并不是最近的 LIGO 实验)。不过,不是所有的理论家都像爱因斯坦一样伟大。科学史上,优美的理论预言最终没能通过实验的检验是再常见不过的事。

    另一类未能实现的理论构想存在于工程设计中。很多童鞋可能都知道达·芬奇的“飞机”设计手稿,这里我们说另外一个例子——英国数学家和工程师 Charles Babbage 最早在1837年设计出了一种叫分析机 (Analytical Engine) 的机械计算机。用现代的计算理论看,分析机就是一台图灵完备 (Turing-complete) 的通用计算机,它有内存、有算数逻辑单元、有指令集、有条件与循环控制,编程方式很接近今天的汇编语言,理论上可以用纯机械方式完成现代电子计算机的所有运算。1843年,英国数学家 Ada Lovelace(著名诗人拜伦的女儿)为分析机编写了一段伯努利数的计算程序,被认为是地球上的第一只程序猿。但是,分析机的复杂与精密程度超过了十九世纪机械工程的水平,Babbage 生前也没能为此得到足够的经济支持,于是这个原本可以成为人类第一台通用计算机的伟大设计就永远地停留在了图纸上,直到一百年后电子计算机问世。

    其实,今天我们研究的量子计算机很像当年 Babbage 的分析机——都是非常精妙的理论构想,但在工程实践上都超前于时代,并且量子计算机的超前程度要远大于分析机。今天的“量子算法”研究者也很像当年的 Ada Lovelace——在给一台现实中还不存在的机器写程序。探索未来是基础研究非常迷人的地方;但我们同是要明白,不是所有构想都能成为现实,量子计算机从理论设计到真正问世中间有很长很长的路要走。

    未来展望不用多说,举一个例子就够了:“二十一世纪是生命科学的世纪。”

    事实、理论和展望在科研中都是必要的,但它们可靠性依次显著降低。科技炒作的核心手段之一就是在宣传中把构想当作事实,把主观展望当作客观结论。当下关于量子计算的种种“大新闻”大多如此。所以请大家在阅读下文的时候特别注意三者的区别。分清这几个概念,在我看来是比具体知识更重要的科学素养的体现。

    (一)量子是个啥?

    量子不是一种粒子,它在多数情况下是一个形容词而不是名词。它也不是指分立、不连续,而是一套自然规律的总称——这套规律是人类现有认识范围内物质世界的“基本法”。

    用个类比:古时侯人们就懂得万物生长靠太阳、种田栽树要浇水施肥,这些都是农作物生长的规律;而现在我们知道,这些绿色植物生命活动的本质是细胞中的光合作用、呼吸作用等一系列生物化学过程。物理世界也是如此。我们日常生活中接触到的各种力、热、电、光现象大多可以用建立于十七到十九世纪的经典物理学解释;但进入二十世纪后,科学家们发现世界是由原子组成的,如果想从分子、原子水平的上更本质地理解自然现象,就必须引入一套与经典物理很不一样的新规律,这就是量子力学。引用当代最知名的理论物理学家 Sheldon Cooper 博士的话:

    Quantum physics makes me so happy. It’s like looking at the universe naked.
    量子物理是人类迄今为止建立的最基础、最精确的科学理论,现代物理学的主体就是量子力学在各种不同物质尺度上的具体延伸和应用。然而,依人们日常的经验和直觉来看,这套规律非常诡异,尤其是下面三点:

    量子叠加 (quantum superposition):在量子世界中,物体可以同时处于不同状态的叠加上。从另一个角度说就是“波粒二象性”。
    量子纠缠 (quantum entanglement):在量子世界中,相互作用的物体之间存在着一种不受距离限制的、用任何经典规律都无法解释的关联。这种关联携带着信息,使得发生纠缠的各个物体处于一种不可分割的整体状态,不能分别描述。著名的“薛定谔猫态”就是思想实验中一只猫和一个放射性原子的纠缠态(猫也因此成为了量子物理学家的图腾,喵星人表示很无辜)。控制和利用量子纠缠,是量子信息处理的物理本质。
    量子测量 (quantum measurement):量子世界中不存在安静的暗中观察者,测量不是被动地读取信息,而会根本地改变被测物体的状态。它最简单的表现就是“海森堡不确定关系”。量子测量的这种必须干扰被测物体的诡异属性使得人们从量子系统中获取信息变得极其困难。实际中,我们制造量子计算机遇到的大部分难题最终都能归结到量子测量。

    量子在不少人的印象中可能非常前沿甚至有点玄妙;但熟悉现代物理的童鞋都知道,量子力学正式建立距今已有九十多年,是一套相当成熟的科学理论。那么今天的科学家又在研究什么?按照理论造一台量子计算机不就完了?

    不是这样的。科学家对任何一种自然现象的研究必须经过“发现-理解-控制”三个阶段之后才有可能将其转化为实际应用。以我们比较熟悉电磁学为例:人们在古代就发现了雷电、磁石,在近代又发现了电流磁效应、电磁感应、电磁波…;经过库伦、安培、法拉第、麦克斯韦等几代科学家的努力,人们逐渐理解了各种电磁现象的内在规律,并最终形成了统一电、磁、光的经典电磁理论;与此同时,科学家们发明了莱顿瓶、伏打电堆、螺线管、电动机、发电机、天线等最基本的物理装置来控制电磁场,使得人们最终可以利用这种自然力进行工程实践,才有了后来的电气革命和信息革命。

    那我们对量子的研究走到哪一步了?量子的概念主要起源于19世纪末、20世纪初的一系列原子物理发现;量子力学在1925年后建立并迅速成熟,但是这套完备的理论建立在一些诡异的基本原理之上,人们对这些基本原理的理解至今还很欠缺;不过真正要命的是,尽管量子力学可以用来解释和预测海量的自然现象,“如何控制量子物体”的研究却一度进展地相当缓慢——在1990年代之前,科学家都几乎没有控制单量子态的能力。由此导致的结果是,人类对量子力学的应用至今仍非常初级。类比来说,晶体管、激光、核磁共振、原子钟这些发明对量子原理的开发程度,大概也就和指南针对电磁原理的开发程度差不多。简言之,相比于对微观世界的认识,人类在实验上控制、测量量子系统的能力还很落后,这至今仍是量子技术发展的最大瓶颈。

    (二)各种量子技术都是啥?

    A. 涉及量子原理的经典机器

    这一类发明大多在上世纪中期出现,包括晶体管、激光、原子钟、核磁共振等等。

    “涉及量子原理”是指这些仪器的核心工作原理都源自原子尺度上的、必须用量子力学解释的物质性质——半导体的能带、原子的受激辐射、超精细能级结构、原子核的自旋磁矩等。

    那为什么说它们是“经典机器”?这是因为这些仪器只是在微观组成上涉及量子力学,人机交互的过程是完全经典的。例如,晶体管的功能来源于半导体中电子和空穴的运动;但是人使用晶体管不是去控制每一个电子和空穴,而是控制各个接口电压、电流的输入输出。这里的电压、电流都是有大量微观粒子参与的、完全经典的物理量,观测不到什么量子涨落 (quantum fluctuation)、不可同时测量之类的怪事。电路中的晶体管也不会处于开和关的量子叠加,晶体管之间也不会发生量子纠缠… 所以,晶体管只是在工作的微观原理上涉及量子现象,人使用晶体管的过程、用晶体管设计电子电路的方法则完全不涉及量子物理。

    把晶体管、激光这类发明称为量子技术很容易让我们落入逻辑滑坡——万物的微观组成都是量子的,半导体是,木头、棉线也是,那照着么说木工、针线活也都算是量子技术咯?因此,活在21世纪,我们需要明白:尽管微观组成不同,激光器和缝纫机一样属于经典机器,真正的“量子机器”是我们需要依据量子力学原理来控制、使用的机器,比如——

    B. 量子通信 (quantum communication)

    激光、晶体管不算量子机器的本质上是因为人们在这些仪器中控制的只是大量微观粒子的集体运动,而不能对单个原子、电子或光子的量子态进行单独操控。人类在单量子态水平上的第一种工程实践直到上世纪末才出现,那就是量子通信。

    量子通信直白地说就是“量子电报”。传统电报机收发的是经典电磁波,信息加载在电磁波的幅度、频率或者相位上;“量子电报机”收发的是单个光学频率的光子,信息加载在光子的不同量子态上。量子通信的物理基础就是单光子的产生、操纵、传输和测量。

    量子通信最早的理论方案在1984年和1991年被分别提出,1992年第一次得到了实验的原理性验证,随后在科学家们的努力下向着距离更长、装置更简单实用的方向发展。此中贡献尤其大的是瑞士日内瓦大学的 Nicolas Gisin,他领导的实验室除了一系列使用纠缠光子实现量子通信的标志性实验外,最重要的是在1997年发明了不用纠缠光子的“plug & play”实验方案,成为实用量子通信的经典方法。1995年, Gisin 实验室借用瑞士电信公司跨日内瓦湖的湖底光纤,在日内瓦和尼永 (Nyon) 两个相距23公里的城市之间实现了第一次长距离户外量子通信。Gisin 与同事创办的 ID Quantique 公司于2003年实现了量子通信的商业化。2007的瑞士大选中,日内瓦大学与 ID Quantique 为日内瓦州的电子选票传输提供了量子加密,这是量子通信技术第一次被官方公开使用。此外,美国的 MagiQ Technologies 和法国的 Smart Quantum 公司等也很早都开始提供商业化的量子加密服务。

    那么,这种收发单个光子的“量子电报机”究竟强大在哪?人群中对此流传着几个误解:

    误解一(低级错误):量子通信可以超光速

    不可以。所有利用了量子纠缠的量子通信方案同时还都需要一个经典信道的辅助,而经典通信不可以超光速。

    误解二(中级错误):量子通信比经典通信更快

    不是。量子通信的主要意义不是加速,而是保密。它传递的不是信息正文,而是加密密钥(也就是余则成藏在抽屉里的密码本)。量子通信的实际应用通常也被称为量子密码学 (quantum cryptography) 或量子密钥分发 (quantum key distribution)。经过量子加密的信息正文依然是由普通通信方式传递的。

    误解三(高级错误):量子通信是绝对保密的

    并不是。正确的说法是:在理想条件下,量子通信在信息传输过程中是无条件安全的。特别地,这种的安全保障并非来自加密的数学复杂度,而是测量必须干扰量子态、未知量子态不可复制等基本物理原理——这是量子加密与经典加密最本质的区别。

    然而,量子通信的安全性只是理想条件下的数学结论——假设光子传输过程中没有损耗、假设单光子态的制备、测量是完美的等等,很显然这些条件在实际中都不成立。在2008年到2010年间,就至少有三个利用由实际中非理想条件导致的安全漏洞攻击 ID Quantique 或 MagiQ 商用量子通信系统的实验取得了成功,从事实上证明了第一代量子加密技术绝非不可破解。现实条件下量子通信的安全问题和优化方式目前仍是一个活跃的研究领域。

    更重要的是,量子通信的安全范围仅限于光子的传输过程中;而一个完整的通信过程至少包括编码、发送、传输、接收、解码几个步骤,量子力学定律可以保证密钥在理想的量子信道中不被窃听,但对收发两端的经典安全问题无能为力。这一点其实让量子通信的实用价值大打折扣——在现代保密系统中,安全隐患不仅出现在传输过程中,还经常出现在收发两端。所以,尽管物理学家一直在大力宣传量子通信,不少信息安全专家却对此持有怀疑——不可否认,量子通信是非常有趣的物理实验,但它在现实中真正对信息安全有多大提高还存在疑问。鉴于这些实际问题,尽管量子通信的基础研究在1990年代就已非常火热(瑞士之外比较有代表性的还有奥地利维也纳大学、美国 Los Alamos 国家实验室、伊利诺伊大学、IBM 实验室、英国电信实验室等),进入新世纪之后却逐渐降温,除了小范围之外没有得到大规模的应用和政府支持,直到2017年中国的量子保密通信“京沪干线”开通。

    如此说来,量子通信的意义到底在哪?我认为客观地说,量子通信的基础研究意义大于实用价值。且不谈量子加密在实际中的安全问题,保密通信本身在科技发展的大局中也只是一件小事。但是,量子加密技术的基础是1980年代以来一轮量子物理的重大进展——利用光学光子研究量子纠缠。这轮研究的主要动机是对量子力学基本问题的探索——在此之前,人们对量子力学诡异属性的理解主要限于量子叠加,对更加诡异的量子纠缠、特别是纠缠和测量结合后出现的一些严重挑战经典世界观的深刻问题主要限于哲学讨论,而缺乏科学实验。这其中最著名的就是量子非定域性 (quantum non-locality) 检验,它将直接判明经典世界观中的局域因果性 (local casuality) 和客观实在性 (objective reality) 是否在真实世界中同时存在。对此的实验探索起源于1970年代的美国,但最关键的工作主要出现在欧洲——除 Nicolas Gisin 外,最具代表性的还有法国光学研究所 (Institut d’optique) 的 Alain Aspect 和奥地利维也纳大学的 Anton Zeilinger 等。这一领域的科学家们在二三十年间通过一系列基本而巧妙的光子实验极大地深化了人类对于量子纠缠的理解,让量子力学通过了最严苛的检验;同时积累了大量制备、操纵、测量单光子的实验技术,并开始思考量子纠缠的实际应用,直接导致了量子通信技术的诞生。这在我的理解中是当代量子科技的第一个里程碑。即使当前实用价值有限,理解和控制量子纠缠都是构造更复杂量子机器的必要前提,比如——

    C. 量子计算 (quantum computing)

    量子计算机不是“下一代计算机”,不是电子计算机的升级版,而是科学家构想中的一种高度复杂、高度可控的人造量子系统,兼具信息处理的功能。量子计算机是人类当前设想中最复杂、实现难度最大的量子机器,一旦建成对科学和社会的影响也最深远。

    量子计算是本文之后全部内容的主角。

    此外,量子技术还包括量子仿真(quantum simulation)、量子传感 (quantum sensing) 等。

    (三)量子计算机有啥用?

    先澄清一种流言:量子计算机一旦做成,直接秒杀经典计算机。

    正确的说法是:理论构想中的大型、通用、容错量子计算机会在几类特定问题上有超出经典机器的计算能力。

    量子计算机和“摩尔定律”到没到头关系不大。

    量子计算机并不是一种更快的计算机。它在逻辑、输出方式等方面与经典计算机根本不同,其中最本质的就是量子纠缠的存在。在量子信息学的观点中,量子纠缠是与物质、能量、信息并列的一种自然资源,利用好这种资源能使量子计算机发挥出巨大威力。但是,如何用它设计更快的算法,在理论上就是很大的挑战。目前,对绝大多数计算问题,理论家们都还没有找到超过经典算法的量子算法;但在一些特殊问题上确实有了新的发现。哪些问题呢?最早发现的主要有两类:一类可以归结为质因数分解(Shor 算法),比已知最快经典算法有指数加速(准确说是超多项式加速);另一类可以归结为无序搜索(Grover 算法),比经典算法有多项式加速。

    Shor 算法和 Grover 算法分别于1994年和1996年被提出,可以说是它们的发现引起了科学界对量子计算的真正重视——尽管量子计算的初步概念在80年代初就已出现,但十几年来都只是很小圈子内的理论游戏,被认为既无法实现也没有用处;Shor 算法和 Grover 算法终于为量子计算机找到了可能的实际应用。其中 Shor 算法的影响尤其大——现代密码学中,几类常用的公钥系统包括 RSA (Rivest–Shamir–Adleman) 和 ECC (elliptic-curve cryptography) 等的基本加密原理都可归结为大数分解的计算复杂度。因此量子计算机一旦出现,将给现有的信息安全带来巨大威胁。

    不过这种威胁并不紧急——想运行 Shor 算法破解密码需要有至少上百万个量子比特的通用、容错量子计算机,这其中的任何一个词在短时间内都无法实现。并且,关于量子计算机无法破解的“后量子时代加密技术”的研究也已经有了不少成果。所以,单是破密码这类“黑客活动”并不会赋予量子计算机科技革命式的重要意义。在 Shor 和 Grover 算法提出后的十来年里,再没有第三类重要的量子算法被发现,量子计算理论的发展一度走向平缓。

    但新的突破在2008年出现—— Aram Harrow、Avinatan Hassidim 和 Seth Lloyd 提出了 HHL 算法:在一系列前提假设下,量子计算机可以在对数复杂度内求解一些特殊的线性方程组。这让这个领域又一次火了起来——与 Shor 算法只有“黑客应用”不同,线性方程组在现代计算中可以说是无处不在。特别地,它是很多拟合、推断、优化问题的基础。HHL 的各种衍生算法与这些年人工智能的热潮结合,让这类研究有了个不能更时髦的名字——量子机器学习,这也让量子计算机第一次拥有了商业价值。更好的是,一些量子机器学习算法只需要有50到100个量子比特的小型量子计算机就能展现出优势,这在当前实验发展的趋势下并非遥不可及。在潜在利润的驱动下,从2011年开始,特别是2014年之后,各大商业公司开始纷纷关注量子计算。这也是量子计算开始在各种媒体上频繁出镜的时候。

    该说但是的时候又到了。HHL 算法与之前的 Shor 算法和 Grover 算法有根本的不同——严格地说 HHL 不是一个具体算法,而是一个在特殊假设和限制条件下的算法模版,或者说是一个完整算法的一部分。它没有回答数据应该怎样读入读出,没有回答如何才能让量子计算机按照给定的参数演化,并且有非常苛刻的适用范围。任何一个细节条件不满足,量子加速都会消失。以 HHL 为模版设计一个具体算法就需要填补上这些细节,但极少有实际问题满足全部的限制条件,且满足这些条件的特殊问题很多时候都有更好的经典算法(各种量子机器学习算法中声称的加速绝大多数都是在用特殊条件下的量子算法和通用的经典算法做比较)。当前量子机器学习的研究多是在抽象地发掘量子算法在某些计算步骤中的优势,而少有人下大功夫考虑具体问题和完整的计算过程。简言之,理论家们找到了算法模版,但还没有明确落实可以使用这套模版的具体问题,也没有可以运行这套算法的机器。因此,现在我们的结论只能是:量子算法有希望加速机器学习中的某些步骤,但具体该怎样做还有待研究。

    以上似乎有些悲观:量子计算机短时间内在传统的计算问题上还没有清晰明确的应用。但其实从物理学家的视角看,量子计算机最有价值的潜在应用并不是传统意义上的计算,而是量子仿真 (quantum simulation)——自然界中原子、分子的微观过程遵守的都是量子力学;可由于量子纠缠的存在,再强大的经典计算机也不能对规模稍大的量子系统(比如几十个原子)进行严格求解,而只能借助近似(密度泛函、Monte Carlo 等),这就是现代计算物理、计算化学的核心。然而,量子计算机就是一台自带量子纠缠的机器,最适合在编程之后模拟待研究的复杂量子系统,也就是用量子机器求解量子问题。最原始的量子仿真在近二十年里已经是冷原子物理的重要方向,但它真正发挥出威力还是要等量子计算机的出现。那时,凡是涉及大量微观粒子的研究,例如凝聚态物理、量子化学、分子生物学都将发生很深刻的变革;相应的应用学科,例如材料合成、药物研发等,也都会有很本质的改变。

    说了这么多,量子计算机到底有啥用?量子计算起源于好奇心驱动的思维游戏,近二十年有了坚实的实验进展,但它在短期内还将是一种基础研究,没有立即可操作的实际应用。可从长远来说,它将给给现有的计算理论带来深刻变革,将极大加深人类对物质与信息的理解;特别地,它将是一种前所未有的计算微观世界的强大工具。类比来说,量子计算机像是计算机中的火箭。火箭再强大,也不能取代火车、汽车、自行车,因为它们的根本用途不同。同理,量子计算机价值的并不是取代经典计算机,甚至主要不在于加速传统计算,而是在于一些经典计算机不能解决的特殊问题,比如复杂微观系统的模拟。量子计算并不是“后摩尔时代”的计算,它与传统的微电子是两个目标不同、平行发展的领域,不可以相互替代。未来量子计算机的第一波应用也将是对科学的意义大于对商业,对科学家的意义大于对普通人。

    所以,现在的程序员们大可继续安居乐业。研究奇怪的新机器就交给一小撮量子发烧友就好啦~

    (四)量子计算机怎么做?

    量子计算机是用“原子”和光子做的。更确切说,是直接用“原子”和光子做的。这里的“原子”既可以是天然原子,也可以是固体系统中的“人造原子”;光子有的在光学频率,有的在微波频率。

    量子计算机运行的物理过程,就是单量子尺度上的原子-光子相互作用。这是人类有史以来最精巧的物理实验之一。

    量子力学主要是微观粒子的科学。但是在它创立之初,科学家们没有能力在实验上控制单个微观粒子,以至于玻尔、海森堡、薛定谔、爱因斯坦这一代前辈们只能在脑子里做单个粒子的思想实验,例如关着一个光子的盒子、观测单个电子的显微镜之类。真的在实验中做到这些一度被认为是根本不可能的。

    1971年在巴黎高等师范学院,一位叫 Serge Haroche 的博士生用光学泵浦 (optical pumping) 方向的课题参加答辩。一位评委问他:“你的实验中有大量的原子和光子,为什么要用量子理论去描述呢?” Haroche 回答:“老师,有一天我会用一个光子做这个实验。”

    这是 Serge Haroche 在他的 Nobel Lecture 上讲的。2012年,他与 David Wineland(美国国家标准与技术研究所 NIST)因为首先实现单个原子和光子之间的非破坏测量与控制获得诺贝尔物理学奖。Haroche 的实验系统叫腔量子电动力学 (cavity quantum electrodynamics)——让处于极高激发态的原子一个个地飞过微波腔,与腔中囚禁的一个或几个光子相互作用,用原子控制和测量光子的量子态;Wineland 的实验系统叫离子阱 (ion trap)——用激光冷却和射频电场囚禁一个或几个带电离子,再用电磁场和激光对离子进行量子操纵和测量。

    在这里插入图片描述
    腔量子电动力学实验概念图(巴黎高等师范学院 Serge Haroche 实验室)

    在这里插入图片描述

    Paul 离子阱实验概念图(奥地利因斯布鲁克大学 Rainer Blatt 实验室)

    腔量子电动力学和离子阱实验刚开始时,量子计算的概念还很不受重视。它们本来也只是纯粹的基础物理研究。但是到了90年代后期,大家开始意识到单量子态的操纵和测量就是量子计算的基础。随后,物理学家又在几类不同的物质系统(超导量子电路、半导体量子点、固体缺陷等等)中实现了非常可靠单量子态控制,宣告了量子计算实验研究的开始——在我的理解中这是当代量子科技的第二个里程碑。如果把未来的“量子工程”比作建高楼,那么这一步就好比是学会了烧砖。人类从此可以开始以高度可控的方式操纵量子世界的基本单元,逐渐构建复杂的人造量子系统。

    每一种高度可控的单量子系统理论上都有可以作为量子计算机的基本组成。然而在实际中,不同的物理方案的差别很大。目前最领先的量子计算实验系统只有两种——一个是离子阱,另一个是超导量子电路。

    用电磁场囚禁带电离子的研究从1950年代就已经开始。Paul 阱和 Penning 阱的发明人—— Wolfgang Paul(德国波恩大学)和 Hans Dehmelt(美国西雅图华盛顿大学)在1989年分享了诺贝尔物理学奖。1970年代,原子的激光冷却技术出现并迅速应用于离子阱;1989年,David Wineland 实验室首次实现了汞离子的基态冷却,离子阱走入量子时代。早期,离子阱主要的发展动力是精密测量,例如测量电子反常磁矩、提供超高精度频率标准(原子钟)等。直到1995年,科学家们才意识到这是一个非常理想的量子计算平台。21世纪的头十年里,离子阱几乎在各类量子计算实验系统中保持绝对领先,它最明显的优势有:

    干净:单个或几个离子是干净的无杂质系统,量子相干时间很长。
    精密:离子的量子逻辑门和测量的保真度 (fidelity) 很高。
    容易多体纠缠:任意两个离子之间都可以相互作用(产生纠缠)。另外,自然中的同种原子是完全相同的,离子阱也特别适合模拟量子多体系统。
    而然它的劣势也是明显的:

    慢:天然原子与光子的相互作强度有限,导致离子的控制和测量都很慢(大概比超导量子电路慢一千倍)。
    实验手段复杂:冷原子类实验都需要非常精巧复杂的激光、真空和电磁场装置。
    集成困难:离子依靠电磁场“悬浮”在阱中。同一个阱中最多也就囚禁十几到几十个完全可控的离子,直接大规模集成几乎没有可能。
    在离子阱的研究者试图攻克这些难题的时候,一种很不一样的系统开始逆袭。

    量子理论自创立之初就一直有个重大疑问:这套理论究竟是只适用于微观粒子,还是也适用于宏观物体?这与量子纠缠一样都是历史遗留问题,长期只有理论争辩而没有实验进展。1982年,一支伯克利加州大学的三人小组——英国物理教授 John Clarke、法国博士后 Michel Devoret 和美国博士生 John Martinis,开始用一种叫 Josephson 结的超导体-绝缘体-超导体三明治结构试图观测宏观量子现象;几年之后,他们通过宏观量子隧穿和微波谱的测量得到了明确结论——在极低温下,Josephson 结的宏观相位遵守量子力学规律。特别的是,这里的宏观量子现象不是指“大量量子力学粒子组成的宏观物体(例如超导体)”,而是一个必须用量子力学描述的宏观自由度(Josephson 结相位)。尽管这个人造器件中有几百亿甚至更多的原子,它们的一个集体运动自由度却是量子的,我们可以像控制单个原子一样控制这个超导器件。因此,这类包含 Josephson 结的宏观量子器件也被称为超导人造原子 (superconducting artificial atom),它们组成的电路就是超导量子电路 (superconducting quantum circuits)。

    2000年前后,世界各地的多个实验团队( 法国 Saclay 原子能研究所、日本 NEC 基础研究室、荷兰 Delft 理工学院、美国国家标准与技术研究所 NIST 等)先后实现了几类不同超导人造原子的量子叠加。2004年,耶鲁大学 Robert Schoelkopf 实验室首先观察到单个微波光子与超导人造原子的相互作用,这类实验系统被称为电路量子电动力学 (circuit quantum electrodynamics)。2007年和2009年,耶鲁大学 Robert Schoelkopf 实验室和 Michel Devoret 实验室发明了两种目前最重要的超导人造原子——transmon 和 fluxonium。接二连三的重要进展让超导量子电路在十年内迅速成为最有希望的量子计算系统之一。

    在这里插入图片描述
    一些重要的超导人造原子:
    左上:超导电荷量子比特(日本 NEC 基础研究室蔡兆申实验室)
    左下:超导磁通量子比特(荷兰 Delft 理工学院 Hans Mooij 实验室)
    中上:超导相位量子比特(圣芭芭拉加州大学 John Martinis 实验室)
    中下:quantronium 人造原子(法国 Saclay 原子能研究所 Michel Devoret 实验室)
    右上:transmon 人造原子(耶鲁大学 Robert Schoelkopf 实验室)
    右下:fluxonium 人造原子(耶鲁大学 Michel Devoret 实验室)

    在这里插入图片描述

    电路量子电动力学实验概念图(耶鲁大学 Robert Schoelkopf 实验室)

    超导量子电路最大优势在于它是一套可以在宏观尺度上对光子和“原子”进行相互控制和测量的“人造工具箱”。它的各种参数和性质不是由大自然设定,而是可以通过设计在很大范围内进行调整,让科学家可以通过工程方法解决各种实验问题。这使得它相比天然原子

    快:通过器件设计可以增大“原子”-光子相互作用强度,实现纳秒速度的量子逻辑门。
    实验手段简化:超导量子电路需要在 20 mK(绝对零度之上0.02摄氏度)以下的极低温工作,这用目前已经商品化的稀释制冷机 (dilution refrigerator) 很容易实现,无需各种复杂的激光冷却和囚禁装置。
    作为固体器件,很容易通过现代微纳加工进行大规模集成。
    但是超导量子电路也有不少缺点。人造原子终究没有天然原子干净完美,超导量子电路在量子相干时间、逻辑门准确度、频率稳定性等方面一直都不如离子阱。但科学家们一直在不断通过新的器件设计来试图解决这些问题——超导人造原子的相干性在十几年内已经提高了十万倍(从最初的几纳秒到现在的上百微秒)。这几年来,超导量子电路已经成为最受关注的量子计算技术,在学界和业界都很受青睐。

    除此之外,比较热门的量子计算实验系统还有固体缺陷(金刚石色心、碳化硅色心等)、半导体量子点等。但是,离子阱和超导量子电路目前处于明显的领先状态,我认为有两个根本原因:

    基本组成简单。人们对单个原子的结构和低温超导体的性质已经相当清楚。
    控制方法成熟。激光和微波技术都已经经过了半个多世纪的发展,激光冷却和稀释制冷目前也都相当成熟。
    这使得物理学家不再需要花很大精力研究“原子”和光子本身,而是可以把它们作为可靠的基本工具来构造更复杂的量子系统。而很多关于固体缺陷和量子点的研究重点还是制备、控制方法和基本物理性质,它们是非常有价值的物理和材料研究,但是在量子计算的水平上暂时与离子阱和超导量子电路不处在同一个发展阶段。此外,中性原子、线性光学等系统在基本的原理验证上有一定意义,但一般认为在实用方面的发展空间比较有限。

    最后需要单独一提的是“拓扑量子计算 (topological quantum computing)”,它基于一种理论预言中的非阿贝尔任意子 (non-Abelian anyon)——Majorana 费米子。过去五年间,已有多个实验室在固体系统中观察到了 Majorana 费米子存在的迹象,但至今仍未确定,也无法对其进行任何量子操作。准确地说,当前的“拓扑量子计算”是一种以量子计算为潜在应用的凝聚态物理研究,而非真正的量子计算研究,处于基本单元尚未发现的最初构想阶段。这个方向近几年热度很高,但它还属于基础的凝聚态物理,暂时不应该和其他量子计算实验系统并列起来,相互比较没有太大意义。

    不同实验系统之间孰优孰劣一直是大家津津乐道的话题。然而绝大多数宣传(包括学术论文和报告)的基本思路就是以己之长比他人之短,为自己的方案吸引关注、申请经费,撕来撕去没有什么客观结论。从我自己的角度认为,

    所有实验系统都为量子计算的原理验证做出了贡献
    离子阱和超导量子电路暂时领先
    超导量子电路更接近一种灵活实用的工程系统,未来的设计空间和发展潜力更大(当然这属于展望,我很有可能是错的~)

    (五)当前量子计算实验研究的各路高手都是谁?

    离子阱和超导量子电路作为最领先的实验系统,已经开始出现“巨头垄断”的趋势——在长期的经验积累下,个别超一流实验室已经和其他竞争者拉开了一个身位。这种优势并不只是技术领先,更重要的是所挑战问题的难度、复杂性和前瞻性。这些超一流实验室全都在美国和欧洲。

    目前,全世界大概有三十几个离子阱实验室。积累最深、影响力最大的除诺奖得主 David Wineland 外,还有美国马里兰大学的 Christopher Monroe 团队和奥地利因斯布鲁克大学的 Rainer Blatt 团队。这两个实验室在实现多体量子纠缠、尝试量子纠错以及离子阱技术实用化等方面都走在全世界的最前列。

    超导量子电路实验室全世界也已经有了几十个。其中处于最核心位置的有两个,分别在美国东西海岸——东海岸的耶鲁大学和西海岸的圣芭芭拉加州大学/Google。它们各自的掌门人就是当年伯克利宏观量子隧穿三人小组中的两位年轻人。

    1984年,Michel Devoret 在两年博士后之后回到法国,在法国原子能研究所 (CEA Saclay) 建立了自己的实验室。与法国物理学家 Daniel Esteve 和 Christan Urbina 一起,他们的 Quantronics 实验室在九十年成为世界著名的介观超导结构单电子输运研究组,致力于探索宏观电路的量子效应,最终在1998年在2002年分别发明了超导电荷量子比特 (Cooper pair box) 和 quantronium 人造原子。2002年,Devoret 与因研究分数量子霍尔效应闻名的理论物理学家 Steven Girvin 一起加入耶鲁大学,与当时年轻的助理教授 Robert Schoelkopf 组成了密切合作至今的“三驾马车”。耶鲁团队2004年发明了电路量子电动力学结构,成为当前超导量子电路最核心的控制和测量方法;2007年发明 transmon 人造原子;2009年发明 fluxonium 人造原子;2010年发明量子极限放大器,实现 single-shot 量子非破坏测量;2010年首创三维电路量子电动力学;2013年提出 cat-code 量子纠错码;2016年实现超导电路的远程量子纠缠 (remote entanglement)…… 可以说,耶鲁团队在过去15年间贡献了当前超导量子计算主要的电路结构与控制、测量方法,并且目前在逻辑量子比特、远程量子纠缠、量子极限测量等方面都在领跑世界。

    1987年,John Martinis 博士毕业,在 Michel Devoret 实验室做过博士后之后,加入美国国家标准和技术研究所 (NIST) ,成为低温超导器件的专家,并在2002年发明超导相位量子比特。2004年,Maritnis 加入圣芭芭拉加州大学 (UCSB),此后十年与同门师弟、纳米力学专家 Andrew Cleland 密切合作,实现了多种量子电路构架,在材料、工艺等工程细节方面尤其精湛,特别注重实验设计的实用性。2014年,Martinis 实验室全员被 Google 收购,开始着力于具有一定规模的实用量子芯片的研究,目前在平面量子电路的复杂度和技术质量上保持领先。

    除了两大领头羊外,全世界还有十来个原创能力较强的超导量子电路实验室。其中,美国伯克利加州大学、芝加哥大学、普林斯顿大学、马里兰大学、瑞士苏黎世联邦理工学院、荷兰 Delft 理工学院、法国原子能研究所、巴黎高等师范学院的实验室都是由耶鲁团队曾经的学生和博士后带领。此外,美国 IBM Watson 研究中心和麻省理工学院林肯实验室各有一支人数很多、工程执行力很强的研究团队。日本理化研究所 (RIKEN)、瑞典 Chalmers 理工学院也有竞争力较强的实验室。

    其它量子计算系统也都有各自的超一流实验室,例如(不完整名单)

    金刚石、碳化硅色心:德国斯图加特大学 Jörg Wrachtrup、荷兰 Delft 理工学院 Ronald Hanson、美国芝加哥大学 David Awschalom、哈佛大学 Mikhail Lukin……

    半导体量子点:美国普林斯顿大学 Jason Petta、哈佛大学 Amir Yacoby、荷兰 Delft 理工学院 Lieven Vandersypen……

    “拓扑量子计算”:荷兰 Delft 理工学院/微软 Leo Kouwenhoven、丹麦哥本哈根大学/微软 Charles Marcus……

    不过与离子阱和超导量子电路非常关注量子系统的设计、控制和测量不同,量子点与“拓扑量子计算”当前最关键的主要还是材料和工艺,更接近基础的凝聚态物理;固体色心除了量子信息,还在纳米光子学、材料和生物成像等方面有不少应用。所以这些系统还没有那么“巨头垄断”,一流研究组比较多,新实验室的发展机会也更多。

    (六)量子计算到底难在哪?进展到哪一步了?

    在这里插入图片描述
    这是2013年 Michel Devoret 和 Robert Schoelkopf 发表在 Science 上的“量子计算台阶图”。下一层实验是上一层实验的基础;但这并不是一个直线升级过程——为了上一个新台阶,在它之下的所有台阶都必须不断优化。所以,我们站的越高工作量就越大,量子计算机越往后做越难。

    图上的前三层大致对应量子力学的三大诡异属性——叠加、纠缠、测量。到目前,主要的量子计算实验系统(不计“拓扑量子计算”)都已经站上了前两层。但不是每种系统都站上了第三层。

    迄今为止,没有任何一种系统完成了第四层(量子纠错、逻辑量子比特)。

    开头说过,人们研究量子计算遇到的麻烦大多都能归结到各种形式的量子测量。

    对经典计算机来说,数据输出是很直接的——按高低电平区分二进制数就好。然而,量子计算的过程一般只涉及几个基本能量量子,比如一次电路量子电动力学色散读出 (dispersive readout) 一般只用5到10个微波光子,如此微弱的信号如何测量?要知道,世界上最好的半导体微波放大器(液氦温度下工作的高电子迁移率晶体管 HEMT)放大一个光子大概要添20个光子的噪声。另外,单量子水平的测量一般都要改变粒子的量子态,甚至直接毁灭粒子(比如光电倍增管的原理就是通过光电效应将入射光子转化为电流并放大,但测量之后被测光子直接被吸收)。总之,想从量子系统中高效地读出信息是件非常困难的事。

    对量子计算来说,最理想的测量是 single-shot 量子非破坏测量 (quantum non-demolition measurement)——测量不毁灭被测粒子、第一次测量后粒子状态不再改变、每次测量结果都可分辨。对于离子阱和金刚石色心,这可以通过激光荧光 (laser-induced fluorescence) 实现。但超导人造原子只有微波跃迁,且微波光子的能量只有光学光子的十万分之一,单光子探测非常困难。2010年后,这个问题终于由电路量子电动力学色散读出加量子极限放大器 (quantum limited amplifier) 解决——后者是也是一类极低温下工作的超导电路,放大一个光子只添一个光子的噪声,这是量子涨落导致的海森堡极限。对量子极限放大器的发明贡献最大的是耶鲁大学 Michel Devoret 实验室和伯克利加州大学 Irfan Siddiqi 实验室。这让超导量子电路成为第一个站上台阶图第三层的人造系统。

    第四层(逻辑量子比特)困难就更大了,原因还是量子测量——理论构想中,我们总希望人是量子计算机的唯一观察者。可实际上,环境无时无刻不在对量子系统进行测量。这种测量会导致量子计算机与环境产生纠缠,不再保持理想的量子纯态,逐渐失去量子相干性,这个过程叫量子系统的退相干 (decoherence)。从信息的角度讲,量子信息会逐渐丢失在环境中而不是进入我们的测量装置,实验者是在与环境抢信息。量子信息丢失的时间就是这个系统的相干时间 (coherence time)。目前,最好的超导人造原子的相干时间大多在10到100微秒之间。也就是说,直接用它们做成的量子计算机最多只能连续工作万分之一到十万分之一秒。

    任何量子系统都无法避免退相干。更麻烦的是,相干性与可控性之间有密切联系——相干时间越长,表明系统与环境越隔绝,但这同时意味着它和人也越隔绝,对它的控制和测量也越难。我们总是希望量子计算机与环境隔离,但容易被人控制,这本身就是矛盾的。现实中,不同物理系统的相干时间会有很多数量级的差别,但相干时间越长的系统逻辑操作也越慢(比如天然原子、离子),在相干时间内能完成的运算量差别并不大。所以,不谈控制、测量的速度和精度、单纯强调某种系统相干时间长是没有意义的。

    由于退相干,量子计算机一度被认为永远不可能做成,直到量子纠错 (quantum error-correction) 概念的出现。

    纠错在经典信息技术中就很常见。最简单地,我们可以对信息复制多个副本来防止个别副本的误码,这与重要文件一式多份防止篡改同理。但是,未知的量子态是不可复制的,我们不能为量子信息制作多个副本。新的思路在1995年出现——我们可以把一量子比特信息分散存储在几个高度纠缠的量子比特里,通过测量错误征状 (error syndrome) 来查错纠错。单独的天然或人造原子称为物理量子比特,多个物理量子比特纠缠形成容错的逻辑量子比特。经过量子纠错,逻辑量子比特的寿命会远超过物理量子比特的相干时间,这才是真正计算意义上的量子比特。

    到目前,任何实验系统都没能做出逻辑量子比特。没有量子纠错的“量子计算机”就只能在相干时间内做一些最简单的运算。Google、IBM 等公司近两年一直在比拼芯片上“量子比特”的数量,但它们都只是寿命几十微秒的物理量子比特,逻辑量子比特的数量都是零。

    量子纠错是人们研究量子计算机迄今为止遇到的最难的问题。在我的理解中,它的实现将是当代量子科技的第三个里程碑——人类从此有方法保护在自然界中转瞬即退相干的量子态,就好比从原始人从采集到种植、从狩猎到畜牧;在工程上,它将为大型通用量子计算机提供基本逻辑单元。当下量子计算最大的挑战就是实现逻辑量子比特,而不是在一块芯片上集成多少物理量子比特。

    量子纠错理论在90年代末就达到了第一个高潮,其中最重要的成果是 stabilizer code。然而问题远没有这么简单:查错、纠错的过程都是复杂的多比特量子操作,本身就会引入错误。stabilizer code 只有在量子逻辑门本身精度非常高的情况下才会有效,否则就是纠错过程中出的错要比不纠错还多。举例来说,如果用三级 Steane 7比特纠错码级联(432个物理量子比特编码一个逻辑量子比特),对一个130位的整数分解质因数需要大概一百万个物理量子比特,且比特和逻辑门的出错率不能超过百万分之一。这在短期内是任何技术都无法企及的。所以,stabilizer code 尽管非常简洁通用,但受到当前实验水平的限制,不是实现逻辑量子比特的首选。

    新一代的量子纠错方法通过放弃通用性来降低对实验精度的要求——纠错码不再是抽象的数学方法,而是为特定实验系统、特定电路结构专门设计。但这带来一个结果:不同团队就如何爬第四个及之后各个台阶的路线出现了明显的分歧;即使做同一种物理系统,也会因为不同的实验方案选择不同的纠错码。在超导量子计算领域,目前主要的路线有两条:一是平面结构、单片集成、使用 surface code 纠错;另一条路线是三维结构、模块化集成、使用玻色纠错码。以下将它们简称为 Google/UCSB 路线和耶鲁路线。

    A. Google/UCSB 路线

    Surface code 本质是一种拓扑纠错码,它用超导量子电路的具体实现方案由UCSB(现Google)团队与理论合作者在2012年提出。它的基本物理组成非常简单:近邻耦合的超导人造原子按照平面方格(国际象棋棋盘)排列即可。它对量子操作精度的要求远低于 stabilizer code,当前最好的实验水平几乎已经达到。这种路线受到很多团队、特别是商业公司实验室的欢迎,Google、IBM、Intel、Regetti Computing 都选择平面集成大量 transmon 人造原子,其中 John Martinis 带领的 Google 团队在工作质量和思路创新上明显领先。

    但是 surface code 的劣势也是非常明显的。它的基本单元很简单,但代价是系统极其复杂,电路规模巨大。目前,Google 9比特芯片中的两比特逻辑门保真度 (fidelity) 约是99.3%,要提高到99.5%以上才有用 surface code 进行量子纠错的可能。但即使逻辑门保真度再提高十倍(这非常非常困难),实现一个逻辑量子比特也需要几千个物理量子比特,质因数分解一个5位数需要约四千万个物理量子比特,分解一个600位数需要约十亿个物理量子比特!要知道微电子学经过了半个多世纪的发展,今天的 Intel Core i7 芯片上才有十亿个晶体管。并且量子电路的集成并不像经典电路一样直接——芯片做大会大大增加量子比特之间的串扰和噪声,想维持小规模电路的质量非常困难。所以,通过 surface code 实现量子纠错,并不比大规模运行 Shor 算法这种遥远的宏伟目标简单多少。

    选择 surface code 的商业实验室都明白这一点。但他们在宣传上几乎都对此少谈或不谈,转而强调不经过量子纠错的小规模量子电路可能的实际应用。但如第(三)部分所说,50到100个相干时间几十微秒的物理量子比特是否真有实际应用现在还很不确定。于是这些团队再退而求其次,将近期目标设为实现 quantum supremacy——在实验上证明量子电路在解决某个特定问题时比所有经典计算机都快。2016年Google 团队在理论上提出,49个物理量子比特可以在随机量子电路的输出采样这个特殊问题上超过所有经典计算机,这离当前的技术前沿并不遥远。Quantum supremacy 一旦实现将会是量子计算威力的第一次真实展示,也因此成了各个商业实验室短期内竞争的焦点;但这个实验的象征意义远大于实际价值——这个量子电路算得更快的问题是专门为验证 quantum supremacy 设计的,并不是一个实际问题。Google 团队及其理论合作者也多次公开表示,quantum supremacy 只是通向实用量子计算的长征上的一个近期阶段性目标,目的在于演练对小规模量子系统的控制能力;仅实现 quantum supremacy 的芯片依然不能做任何有用的工作。

    B. 耶鲁路线

    2013年起,耶鲁团队与其理论合作者提出了另一种非常不同的量子纠错方案——用谐振腔内的微波光子作为逻辑量子比特,超导人造原子仅用来控制和测量微波光子,通过量子非破坏测量对微波光子的宇称 (parity) 做持续追踪来实现纠错。按编码逻辑量子比特的光子态的不同,具体的纠错方法有 cat code、pair-cat code、binomial code、GKP code 等很多种,统称为玻色纠错码(光子是一种玻色子)。以微波光子做逻辑量子比特有很多好处——谐振腔内光子的寿命长、能级多、误码原因简单(光子损耗)、与超导人造原子相互作用强… 更重要的是,这是一种高效利用硬件的纠错方案——一两个物理量子比特和一两个谐振腔就能构造一个逻辑量子比特,不像 surface code 需要成千上万个物理量子比特。过去五年里,耶鲁团队已经对 cat code 进行了大量实验,在2016年突破了量子纠错的 break-even point——第一次在实验中测得逻辑量子比特的相干时间长于它的所有物理组成;在2018年初实现了误码征状的容错测量,将逻辑量子比特的相干时间提高到1.9毫秒,遥遥领先于其他团队。另外,分别位于巴黎高等师范学院、芝加哥大学、清华大学的几个实验室也都在用相似电路结构进行玻色纠错码的实验研究。

    玻色纠错码的实现难度也很大。我们需要非常巧妙地设计系统中超导人造原子和微波光子之间的相互作用,来实现一些精巧的人造量子光学过程(例如四光子泵浦等)。另外,如何纠正多光子损耗、如何平衡各种玻色纠错码的利弊等问题都很挑战。但在当前进展下,这些难题很有希望在短期内被攻克,而不是非常遥远的目标。

    总结说,Google 路线是先集成、再纠错,基本单元简单,电路规模庞大,主要难度在于工程复杂性;耶鲁路线是先纠错、再集成,电路精简,主要难度在于精巧的量子光学过程。但无论哪条路线,最重要的都不是物理量子比特数量。

    耶鲁路线无需集成大量物理量子比特就有希望实现逻辑量子比特。Google 路线需要大规模平面集成,但比数量更重要的是质量——数量做大并非难事,真正困难的是如何在芯片做大的同时保证每个量子比特的相干时间以及量子逻辑门和量子测量的保真度。这也是 Google 团队过去几年工作最出色的地方:5比特、9比特芯片上每一个物理量子比特的质量几乎都与单独测量的时候一样高,并希望能延续到22比特 Foxtail 芯片。这个数字不是随便选的——与5比特、9比特的一字排开不同,22比特将采用双排排列,这是形成二维阵列的第一步,将带来很多芯片结构和工艺的新挑战。这就是量子电路研究,每往前一步都要无比谨慎,越往下走越难。John Martinis 一向以治学严谨甚至苛刻闻名,在他的领导下 Google 团队正在高质量、有章法地沿着自己提出的路线步步为营。然而不是所有团队都像这样扎实,这两年超导量子计算领域最流行的宣传卖点就是量子比特数,不考虑量子纠错方案、不强调控制和测量的精度,好像谁的芯片上物理量子比特多谁就领先了一步。各家 IT 巨头和创业公司动不动就在新闻或年会上“发布”一块多少比特的芯片,以证明自家的“进展”和“竞争力”,这样是纯粹的商业炒作,在科学上没有意义。2018年3月5日早上,Google 团队的 Julian Kelly 在美国物理学会三月年会一场邀请报告的最后简单展示了一下计划中的72比特 Bristlecone 芯片的设计版图(我就在会场),这根本不是那场报告的重点;但它立刻被宣传成“Google 发布72比特量子芯片”,甚至在半天内席卷中文媒体,朋友圈里排队转发,还引发了各种一本正经的对当下“量子争霸”的“战略评论”,实在让人觉得荒唐。看过这些乱象,我向大家推荐三条屡试不爽的经验判据:

    所有以量子比特数作为首要亮点的“进展”几乎都是炒作
    所有在新闻媒体上首发或大肆渲染的“进展”几乎都是炒作(包括麻省理工科技评论,那是一家独立运行的商业创投杂志,不是学术期刊)
    所有在朋友圈里大量转发、被非专业人群大量关注的“进展”几乎都是炒作

    量子纠错之上的各个台阶(逻辑量子比特的控制、纠缠、测量,到最终的容错量子计算)难度只会更大,具体有哪些挑战现在还无法预计,因为我们的实践还根本没有到那个阶段。不过在这方面耶鲁团队再次领先一步——2016实现两个谐振腔之间的纠缠、2017年底实现光子收发 (photon pitch-and-catch),2018年初通过量子隐形传态实现两比特逻辑门 (teleported CNOT gate)。这些都是直接对逻辑量子比特的操作,只是微波光子还未经量子纠错。耶鲁路线允许我们现在同时开始挑战第四、五、六个台阶,一系列结果还是非常振奋人心的。

    相信以上都看下来的童鞋已经明白,量子计算是一条越爬越陡的天梯,我们现在还只处于很初步的阶段。我们遇到的问题会越来越多、越来越难,但我们解决问题的能力也会越来越强。大型、通用、容错量子计算机什么时候做出来?任何明确答案都是不负责任的,因为它太难做、未知挑战太多、现在我们根本没法给出负责任的估计。用另一条经验判据结束这一部分:

    在现阶段,所有“多少年后做出量子计算机”的承诺都是炒作。

    (七)量子计算何时商业化?

    进军量子计算的商业公司很早就有了。2007年,在学术界还在研究基本的物理量子比特的时候,一家叫 D-Wave System 的神秘加拿大公司突然宣布自己做出了一台量子计算机的原型机 Orion。Orion 不是一台基于逻辑门的通用量子计算机,而是一台量子退火机 (quantum annealer)。它有16个超导量子比特,但不对量子比特做单独控制,而是用绝热演化的结果求解一些特定问题。之后,D-Wave 的退火机越做越大,2011年推出128比特的 D-Wave One,这是世界第一个量子计算商品,售价1000万美元,被军火巨头洛克希德·马丁 (Lockheed Martin) 公司买下;2013年推出512比特的 D-Wave Two,被 Google、NASA、USRA 联合买下;之后在2015和2017年又推出了1000比特和2048比特的 D-Wave 2X 和 D-Wave 2000Q,全都找到了买主。

    这些听上去很厉害的 D-Wave 机器到底有多强大?这在十年来一直争议不断。问题是,科学家甚至说不清 D-Wave 退火机到底是不是一台量子机器。D-Wave 机器里有没有量子纠缠?一些实验表明很可能有。那 D-Wave 机器有没有量子加速?绝大部分测试表明没有。特别在2015年,一支合作团队(包括 John Martinis 在内)用 D-Wave Two 最适合解决的专门问题对它的计算复杂度随问题规模的增长规律做了严谨的测试,结果是这台512比特的机器没有任何量子加速!这一大堆量子比特放在一起到底发生了什么?谁都说不清楚。不过测试 D-Wave 机器的过程很大程度上帮助科学家们明确了量子加速 (quantum speed-up) 的严格定义。另外一点是很有趣的:人们用一堆量子比特很容易地就造出了一台自己不理解的机器。直到现在,基于量子退火的绝热量子计算 (adiabatic quantum computing) 还是量子计算中的一个比较独立的分支,不少人都在继续发掘它的潜力,希望它能对解决一些特定的优化、仿真问题发挥作用。

    量子计算真正的商业热潮从2014年开始——Google 全员买下了 John Martinis 在圣芭芭拉加州大学的实验室,成为“ Google 量子人工智能实验室”的一部分,并立刻给这群低调的科学家配上了强大的宣传团队。各家 IT 巨头纷纷坐不住了,各种专营量子计算的创业公司也开始出现。

    目前,各种参与量子计算的商业公司主要分四类:

    第一类是 IT 或工业巨头,其中 IBM 和微软上场远比 Google 早。IBM 十多年前就在 Waston 研究中心建立了以耶鲁毕业生和博士后为骨干的、颇具规模的超导量子计算实验室和理论组。IBM 的量子实验室曾经专注于扎实的基础研究,领取政府经费,与大学实验室无异;直到几年前才开启商业竞争模式。

    微软很早就在圣芭芭拉加州大学内建立了 Station Q,专注于“拓扑量子计算”理论,也曾是完全的学术导向。这两年微软在荷兰 Delft 理工学院、丹麦哥本哈根大学、澳大利亚悉尼大学、美国马里兰大学、普渡大学、Redmond 总部都新建了 Station Q;最重要的是,把这一领域最有影响力的两位实验物理学家 Leo Kouwenhoven 和 Charles Marcus 收入麾下。

    Intel 2015年起也不甘落后,并且兵分两路,在 Delft 理工学院与 Leonardo DiCarlo 实验室(前耶鲁博士后)合作发展超导量子电路,同时与 Lieven Vandersypen 实验室合作发展硅量子点。

    通用汽车公司与波音公司联合所有的 Hughes Research Laboratories (HRL) 也已经在半导体量子点方向投入多年。

    ……

    第二类是大学教授兼职创办的新公司,支持与转化自己学术实验室的成果。

    2015年底,耶鲁超导量子计算实验室的领导者——Robert Schoelkopf 和 Michel Devoret 与研究员 Luigi Frunzio 创办 Quantum Circuits, Inc.,2017年11月完成 A 轮1800万美元融资。

    2016年,马里兰大学实验物理学家 Christopher Monroe 与杜克大学电子学家 Jungsang Kim 创办主攻离子阱的 IonQ, Inc.,2017年7月完成 B 轮2000万美元融资。

    2018年初,因斯布鲁克大学实验物理学家 Rainer Blatt、Thomas Monz 与理论物理学家 Peter Zoller 在政府和大学的支持下创办离子阱公司 Alpine Quantum Technologies,也已得到1200万美元经费。

    ……

    第三类是自主创业、有完整硬件实验室的新公司。其中最有名的是位于加州伯克利的 Rigetti Computing,由耶鲁博士毕业的 Chad Rigetti 在2013年创办,现在融资已接近7000万美元,员工近百人。

    第四类只做周边软件产品。这样的公司这两年出现了很多。

    这些“量子企业”到底多有希望?我的个人观点是:不同类别公司的性质是非常不同的。

    第二类(学术实验室 spin-off)会对当前的量子计算发展非常有帮助。量子实验正朝着越来越复杂的方向发展,除了核心的物理原理外还涉及大量的工程细节,其工作量已接近传统大学实验室的极限。此时,来自专业工程团队的支持,例如标准化的零件、加工工艺、专用的电子设备、控制程序将会极大地提高科研的效率。这类公司一方面解决实验中的工程问题,另一方面将学术实验室的成果做大做规范,这是一种非常良性的互动。不过,它们短期内一般没有很大的盈利计划,规模也很小。

    第一类和第三类公司都有很强的盈利目的,但都自建或接管强大的实验团队,身体力行做量子计算机,在工作和宣传方式上也都很类似。它们的主要区别在于承受风险的能力不同,巨头企业更能承受长期投入而不见回报的基础研究(当然这也很容易导致项目下马)。

    当前量子计算的主要瓶颈显著集中在物理实验,离开硬件基础提出的各种过于超前的软件概念实际意义非常有限。但这恰恰成为近几年量子商业热潮的焦点。第四类企业主营的有面向量子计算的编程语言、编译器、云服务,还有其它各种把信息技术概念前面加上量子两个字,组成一些听起来高大上、但实在不知道是什么意思的名词。这些开发成本低、周期快、新闻效应强(庞大的 IT 业界都能听懂),但其实与量子没有直接关系。在我看来,它们是纯粹的商业行为,重点是借当前的量子热潮用“概念”盈利,无关于量子计算的主要挑战和长期发展。换句话说,这些公司就没打算真做量子计算机。

    所以,量子计算商业化了吗?没法说,因为眼下的“量子产业”处于一种奇怪的形态。经过二十多年的发展,“量子硬件”仍明显在拖“量子软件”的后腿。可以预见至少在未来的一二十年里,量子计算的最大挑战还将集中于基本的物理实验和复杂、开放量子系统的物理理论,将长期是一种基础研究。但这几年它被突然推到了产业的浪潮里,人类历史上都几乎从没有过一种基础研究如此受到产业界关注。大家在物理实验还非常原始的情况下,拼命地寻找它可能的实际应用,开发各种周边产品和“服务”,配合及其高调的宣传,竭尽全力地寻找商机。产业界是现代科技发展的一大推动力,但我不认为眼下这种形式的“商业化”会明显促进量子计算的发展,也不认为这波热潮能持续多久。量子计算面临的不只是工程挑战,还有许多基本的科学问题,很有可能属于“世纪难题”。它与现实的距离比无人驾驶、电动车、商业航天等要远的多得多,我们千万不能用科技产品研发的思路理解量子计算机的研究。它的真正问世需要长期、稳定的支持,而不是利益驱动的商业炒作。

    (八)中国的量子计算处于什么水平?

    与美国和欧洲相比,处于很初级的阶段。

    为什么?首先因为量子计算不是一个凭空出现的学科,它根源于物理和工程的长期发展之上。例如,离子阱的基础是现代原子物理;超导量子电路是介观凝聚态物理和量子光学的结合;低温物理有超过百年的历史,稀释制冷技术最早出现在1960年代,至今仍基本被欧洲垄断;我们每天实验用的电子设备很多都来自美国几十年前的军工研究… 在这样的积累下,量子计算非常自然地在欧美首先出现,并且持续积累、领先至今。对这一领域贡献最大的科学家们(第五部分中提到的各位)青年时代从事的都是相关方向的基础研究,一步步创造了各种理论与实验方法,建立起这个活跃的新学科。

    1996年,奥地利维也纳大学 Anton Zeilinger 实验室来了一位叫潘建伟的中国博士生。他参与了许多重要的光子纠缠实验,五年后回到中科大。十几年来,潘建伟的实验室在多光子纠缠方面有许多漂亮的基础工作,并且大力推广实用化量子通信。2016年,中国发射了第一颗量子通信卫星,并在2017年实验成功;同年,中国开通了超过2000公里的“量子保密通信京沪干线”。目前,中国是对量子通信技术投入最大的国家,实践上也最为领先。(关于量子通信的讨论见第二部分)

    但中国在量子计算方面就要落后的多。全世界顶级的量子计算实验室本来就很少,其中的中国人更少,不少实验室甚至从不招收未在欧美受过训练的中国学生(主要是出于对中国学生动手实验能力的不信任,不是什么涉密问题)。直到这几年才开始有训练有素的年轻科学家回到中国。例如在超导量子电路方面,John Martinis 的博士后王浩华老师回到浙江大学,Robert Schoelkopf 的博士后孙麓岩老师回到清华大学,成为两大阵营在中国的代表。其它实验系统也大多如此。所以说,专业的量子计算实验室在中国只是刚刚落地出现,经验积累、合作者水平、学生水平都比世界顶级组差一大截,当前的主要任务是训练团队和基本技术,模仿、追踪世界前沿,暂时不具备做出重大成果甚至引领方向的能力。这是所有后来者都必须经过的起步阶段,是最最正常不过的。

    最近,中国的量子计算已经有了非常可喜的进步。例如去年,浙江大学与中科大的联合团队按照 UCSB/Google 路线,平面集成了10个超导人造原子(物理量子比特)并实现了它们的量子纠缠。上周,清华孙麓岩老师的实验室在美国物理学会三月年会上展示了一个量子纠错实验,很接近耶鲁团队2016年发表的工作。这都是非常好的趋势,说明中国现在已经有了第一批专业的、有高质量产出的量子计算实验室。

    但是,有一点进步就开始浮夸宣传是非常危险的。

    去年五月,我的朋友圈里排队转发了一条“重大新闻”:中国研制出世界第一台量子计算机!打开一看,是中科大的五光子玻色采样实验。虽然这两年早已习惯了各种夸大宣传,但这个标题实在超出了我的想象力(正确的说是:中科大发表了一个有趣的量子光学实验)。这种宣传气势再与量子通信、“量子卫星”的新闻结合,甚至让很多在国外读博的同学都相信了中国的量子科技已经领先世界。最近,国内几家互联网巨头纷纷开始了自己的量子“战略布局”,但从新闻稿来看,除了一些“量子软件”概念外,看不到清晰的物理实验方案(与上一部分提到的第四类公司类似)。2015年,阿里巴巴与中科大建立了联合量子实验室,各方领导隆重出席,但新闻稿充满科学错误,“中国10亿人,每个人能分到10万台天河二号”之类的豪言无异于“亩产十万斤”。美国各家公司的宣传大战尽管都有夸大、避重就轻,但总体还是有尺度的;中国的浮夸宣传完全则看不到底线在哪儿。

    可喜的进步也被各种夸大。浙江大学与中科大的10比特芯片被重点强调比 UCSB/Google 多一比特,也开始加入没有意义的比特数大战(见第六部分最后的解释)。其实这个实验中量子比特的质量、控制精度、复杂度和 Google 比还都有差距,也没有明显的方法创新。这是一个非常好的、符合现阶段发展需求的追踪工作,但不应该继续夸大。很多貌似专业的知乎答主都说这项工作至少代表中国的量子计算进入了世界第一集团,我只能说这么认为的人大大低估了世界第一集团的水平。如果非要说这是一项“重大成果”,我只能说不同人对“重大成果”的定义很不一样。

    量子计算与科技创投、大型工程(比如土木、机械、航天)都不一样,它不是人到钱到说发展就发展,而是一个在优秀实验团队主导下漫长的积累过程。为此我的另一个担心是国内的人才储备:中国的基础教育乃至大学本科都是以书本为中心,非常轻视科学直觉和动手能力的培养,善于做题而不善于解决具体问题,这是大多数亚洲学生的通病。这一点不得到根本改变,中国的实验科学还将长期落后于欧美,包括量子计算在内。这是我在耶鲁实验室工作两年多的深刻体会。只有当高水平的实验训练成为了年轻学生不难得到的资源,中国的科学才真正有能力在质量上和西方竞争。

    (九)结束语:我们为什么要研究量子计算?

    最后,说几句个人观点,涉及到自己的科学史观。

    量子计算机能做什么?破密码、做优化、加速机器学习… 这些还都很不确定,在短期内也很难实现。那还费劲做这东西干嘛?我自己认为,量子计算的研究过程将是人类物质科学和工程的一次本质进步。

    在历史上,人类的大多数科技和产业革命都是物质科学(特别是物理学)推动的。变革产生的前提是人能发现新的自然现象、控制新的“自然力”、扩展在自然中的实践范围。学会工具、学会用火、农业出现、铁器出现、蒸汽革命、电气革命无不如此。但有一个例外,就是最近的信息革命。信息革命虽然以物理为基础(电磁场、半导体、激光),但核心不是物理,而是数字逻辑。随着信息技术的发展,软件与硬件逐渐分离——底层硬件逐渐标准化,一步步接近物理极限,方法越来越受限制;主要的创新集中于顶层软件,这种趋势在今天的互联网、人工智能的热潮中日益明显。其它学科也大多如此,机械、材料等传统的“硬工科”虽然也在发展,但很少有本质突破,对社会的影响也日趋有限。一个直接表现是,不同专业的同学集体转计算机,“硬工科”毕业的工作机会普遍没有那么好。

    而量子计算是物质科学引领科技发展的一次新尝试,它第一次试图在量子水平上构造、控制物质系统,在探索自然的同时极大地扩展了人类工程实践的范围,上次迈出这样一大步也许要追溯到电气和核能。人们现在拼命寻找的量子计算机的各种应用可能都不是最重要的,就像17世纪的人想象不到什么是手机一样,我们现在也根本不知道当人类能自如人造控制量子系统之后能做多么不可思议的事情。

    我认为量子计算是当前最重要的科技问题之一,尽管真正实用的量子计算机还比较遥远。说白了有点像那句话:

    We choose to go to the moon.

    本文转载于:
    http://www.360doc.com/content/19/0412/17/63402049_828316906.shtml

    展开全文
  • 基于获取的最佳信息,使用进度模型来确定各项目活动和里程碑的计划开始日期和计划完成日期。编制进度计划时,需要审查和修正持续时间估算、资源估算和进度储备,以制定项目进度计划,并在经批准后作为基准用于跟踪...

           制定进度计划是分析活动顺序、持续时间、资源需求和进度制约因素,创建进度模型,从而落实项目执行和监控的过程。本过程的主要作用是,为完成项目活动而制定具有计划日期的进度模型。本过程需要在整个项目期间开展。过程图如下所示:

           制定可行的项目进度计划是一个反复进行的过程。基于获取的最佳信息,使用进度模型来确定各项目活动和里程碑的计划开始日期和计划完成日期。编制进度计划时,需要审查和修正持续时间估算、资源估算和进度储备,以制定项目进度计划,并在经批准后作为基准用于跟踪项目进度。关键步骤包括定义项目里程碑、识别活动并排列活动顺序,以及估算持续时间。一旦活动的开始和完成日期得到确定,通常就需要由分配至各个活动的项目人员审查其被分配的活动。之后,项目人员确认开始和完成日期与资源日历没有冲突,也与其他项目或任务没有冲突,从而确认计划日期的有效性。最后分析进度计划,确定是否存在逻辑关系冲突,以及在批准进度计划并将其作为基准之前是否需要资源平衡。同时,需要修订和维护项目进度模型,确保进度计划在整个项目期间一直切实可行。

    输入:

    1、项目管理计划

    项目管理计划组件包括(但不限于):

           进度管理计划。进度管理计划规定了用于制定进度计划的进度计划编制方法和工具,以及推算进度计划的方法。

           范围基准。范围说明书、WBS 和 WBS 词典包含了项目可交付成果的详细信息,供创建进度模型时借鉴。

    2、项目文件

    可作为本过程输入的项目文件包括(但不限于):

           活动属性。活动属性提供了创建进度模型所需的细节信息。

           活动清单。活动清单明确了需要在进度模型中包含的活动。

           假设日志。假设日志所记录的假设条件和制约因素可能造成影响项目进度的单个项目风险。

           估算依据。持续时间估算所需的支持信息的数量和种类,因应用领域而异。不论其详细程度如何,支持性文件都应该清晰、完整地说明持续时间估算是如何得出的。

           持续时间估算。持续时间估算包括对完成某项活动所需的工作时段数的定量评估,用于进度计划的推算。

           经验教训。与创建进度模型有关的经验教训登记册可以运用到项目后期阶段,以提高进度模型的有效性。

           里程碑清单。里程碑清单列出特定里程碑的实现日期。

           项目进度网络图。项目进度网络图中包含用于推算进度计划的紧前和紧后活动的逻辑关系。

           项目团队派工单。项目团队派工单明确了分配到每个活动的资源。

           资源日历。资源日历规定了在项目期间的资源可用性。

           资源需求。活动资源需求明确了每个活动所需的资源类型和数量,用于创建进度模型。

           风险登记册。风险登记册中的所有已识别的会影响进度模型的风险的详细信息及特征。进度储备则通过预期或平均风险影响程度,反映了与进度有关的风险信息。

    3、协议

           在制定如何执行项目工作以履行合同承诺的详细信息时,供应商为项目进度提供了输入。

    4、事业环境因素

    5、组织过程资产

    工具与技术:

    1、进度网络分析

           进度网络分析是创建项目进度模型的一种综合技术,它采用了其他几种技术,例如关键路径法、资源优化技术和建模技术。其他分析包括(但不限于):

           a、当多个路径在同一时间点汇聚或分叉时,评估汇总进度储备的必要性,以减少出现进度落后的可能性。

           b、审查网络,看看关键路径是否存在高风险活动或具有较多提前量的活动,是否需要使用进度储备或执行风险应对计划来降低关键路径的风险。

           进度网络分析是一个反复进行的过程,一直持续到创建出可行的进度模型。

    2、关键路径法

           关键路径法用于在进度模型中估算项目最短工期,确定逻辑网络路径的进度灵活性大小。这种进度网络分析技术在不考虑任何资源限制的情况下,沿进度网络路径使用顺推与逆推法,计算出所有活动的最早开始、最早结束、最晚开始和最晚法完成日期,如图 6-16 所示。在这个例子中,最长的路径包括活动 A、C 和 D,因此,活动序列 A - C - D 就是关键路径。关键路径是项目中时间最长的活动顺序,决定着可能的项目最短工期。最长路径的总浮动时间最少,通常为零。由此得到的最早和最晚的开始和结束日期并不一定就是项目进度计划,而只是把既定的参数(活动持续时间、逻辑关系、提前量、滞后量和其他已知的制约因素)输入进度模型后所得到的一种结果,表明活动可以在该时段内实施。关键路径法用来计算进度模型中的关键路径、总浮动时间和自由浮动时间,或逻辑网络路径的进度灵活性大小。

           在任一网络路径上,进度活动可以从最早开始日期推迟或拖延的时间而不至于延误项目完成 日期或违反进度制约因素,就是总浮动时间或进度灵活性。正常情况下,关键路径的总浮动时间为零。在进行紧前关系绘图法排序的过程中,取决于所用的制约因素,关键路径的总浮动时间可能是正值、零或负值。总浮动时间为正值,是由于逆推计算所使用的进度制约因素要晚于顺推计算所得出的最早完成日期;总浮动时间为负值,是由于持续时间和逻辑关系违反了对最晚日期的制约因素。负值浮动时间分析是一种有助于找到推动延迟的进度回到正轨的方法的技术。进度网络图可能有多条次关键路径。许多软件允许用户自行定义用于确定关键路径的参数。为了使网络路径的总浮动时间为零或正值,可能需要调整活动持续时间(可增加资源或缩减范围时)、逻辑关系(针对选择性依赖关系时)、提前量和滞后量,或其他进度制约因素。一旦计算出总浮动时间和自由浮动时间,自由浮动时间就是指在不延误任何紧后活动最早开始日期或不违反进度制约因素的前提下,某 进度活动可以推迟的时间量。例如,图 6-16 中,活动 B 的自由浮动时间是 5 天。

    3、资源优化

           资源优化用于调整活动的开始和完成日期,以调整计划使用的资源,使其等于或少于可用的资源。资源优化技术是根据资源供需情况,来调整进度模型的技术,包括(但不限于):

           资源平衡。为了在资源需求与资源供给之间取得平衡,根据资源制约因素对开始日期和完成日期进行调整的一种技术。如果共享资源或关键资源只在特定时间可用,数量有限,或被过度分配,如一个资源在同一时段内被分配至两个或多个活动(见图 6-17),就需要进行资源平衡。也可以为保持资源使用量处于均衡水平而进行资源平衡。资源平衡往往导致关键路径改变。而可以用浮动时间平衡资源。因此,在项目进度计划期间,关键路径可能发生变化。

           资源平滑对进度模型中的活动进行调整,从而使项目资源需求不超过预定的资源限制的一种技术。相对于资源平衡而言,资源平滑不会改变项目关键路径,完工日期也不会延迟。也就是说,活动只在其自由和总浮动时间内延迟,但资源平滑技术可能无法实现所有资源的优化。

    4、数据分析

    可用作本过程的数据分析技术包括(但不限于):

           假设情景分析。假设情景分析是对各种情景进行评估,预测它们对项目目标的影响(积极或消极的)。假设情景分析就是对“如果情景 X 出现,情况会怎样?”这样的问题进行分析,即基于已有的进度计划,考虑各种各样的情景。例如,推迟某主要部件的交货日期,延长某设计工作的时间,或加入外部因素(如罢工或许可证申请流程变化等)。可以根据假设情景分析的结果,评估项目进度计划在不同条件下的可行性,以及为应对意外情况的影响而编制进度储备和应对计划。

           模拟。模拟是把单个项目风险和不确定性的其他来源模型化的方法,以评估它们对项目目标的潜在影响。最常见的模拟技术是蒙特卡罗分析(见 11.4.2.5 节),它利用风险和其他不确定资源计算整个项目可能的进度结果。模拟包括基于多种不同的活动假设、制约因素、风险、问题或情景,使用概率分布和不确定性的其他表现形式(见 11.4.2.4 节),来计算出多种可能的工作包持续时间。图 6-18 显示了一个项目的概率分布,表明实现特定目标日期(即项目完成日期)的可能性。在这个例子中,项目按时或在目标日期,即 5 月 13 日之前完成的概率是 10%,而在 5 月 28 日之前完成的概率是 90%。

    5、提前量和滞后量

           提前量和滞后量是网络分析中使用的一种调整方法,通过调整紧后活动的开始时间来编制一份切实可行的进度计划。提前量用于在条件许可的情况下提早开始紧后活动;而滞后量是在某些限制条件下,在紧前和紧后活动之间增加一段不需工作或资源的自然时间。

    6、进度压缩

           进度压缩技术是指在不缩减项目范围的前提下,缩短或加快进度工期,以满足进度制约因素、强制日期或其他进度目标。负值浮动时间分析是一种有用的技术。关键路径是浮动时间最少的方法。在违反制约因素或强制日期时,总浮动时间可能变成负值。图 6-19 比较了多个进度压缩技术,包括:

           赶工通过增加资源,以最小的成本代价来压缩进度工期的一种技术。赶工的例子包括:批准 加班、增加额外资源或支付加急费用,来加快关键路径上的活动。赶工只适用于那些通过增加资源就能缩短持续时间的,且位于关键路径上的活动。但赶工并非总是切实可行的,因它可能导致风险和/或成本的增加。

           快速跟进。一种进度压缩技术,将正常情况下按顺序进行的活动或阶段改为至少是部分并行开展。例如,在大楼的建筑图纸尚未全部完成前就开始建地基。快速跟进可能造成返工和风险增加,所以它只适用于能够通过并行活动来缩短关键路径上的项目工期的情况。以防进度加快而使用提前量通常增加相关活动之间的协调工作,并增加质量风险。快速跟进还有可能增加项目成本。

    7、项目管理信息系统

    8、敏捷发布规划

           敏捷发布规划基于项目路线图和产品发展愿景,提供了高度概括的发布进度时间轴(通常是 3 到 6 个月)。同时,敏捷发布规划还确定了发布的迭代或冲刺次数,使产品负责人和团队能够决定需要开发的内容,并基于业务目标、依赖关系和障碍因素确定达到产品放行所需的时间。

           对客户而言,产品功能就是价值,因此,该时间轴定义了每次迭代结束时交付的功能,提供了更易于理解的项目进度计划,而这些就是客户真正需要的信息。

           图 6-20 展示了产品愿景、产品路线图、发布规划和迭代计划之间的关系。

    输出:

    1、进度基准

           进度基准是经过批准的进度模型,只有通过正式的变更控制程序才能进行变更,用作与实际结果进行比较的依据。经相关方接受和批准,进度基准包含基准开始日期和基准结束日期。在监控过程中,将用实际开始和完成日期与批准的基准日期进行比较,以确定是否存在偏差。进度基准是项目管理计划的组成部分。

    2、项目进度计划

           项目进度计划是进度模型的输出,为各个相互关联的活动标注了计划日期、持续时间、里程碑和所需资源等星系。项目进度计划中至少要包括每个活动的计划开始日期与计划完成日期。即使在早期阶段就进行了资源规划,但在未确认资源分配和计划开始与完成日期之前,项目进度计划都只是初步的。一般要在项目管理计划(见 4.2.3.1 节)编制完成之前进行这些确认。还可以编制一份目标项目进度模型,规定每个活动的目标开始日期与目标完成日期。项目进度计划可以是概括(有时称为主进度计划或里程碑进度计划)或详细的。虽然项目进度计划可用列表形式,但图形方式更常见。可以采用以下一种或多种图形来呈现:

           横道图横道图也称为“甘特图”,是展示进度信息的一种图表方式。在横道图中,纵向列示活动,横向列示日期,用横条表示活动自开始日期至完成日期的持续时间。横道图相对易读,比较常用。它可能会包括浮动时间,也可能不包括,具体取决于受众。为了便于控制,以及与管理层进行沟通,可在里程碑或横跨多个相关联的工作包之间,列出内容更广、更综合的概括性活动,并在横道图报告中显示。见图 6-21 中的“概括性进度计划”部分,它按 WBS 的结构罗列相关活动。

           里程碑图。与横道图类似,但仅标示出主要可交付成果和关键外部接口的计划开始或完成日 期,见图 6-21 的“里程碑进度计划”部分

           项目进度网络图。这些图形通常用活动节点法绘制,没有时间刻度,纯粹显示活动及其相互关系,有时也称为“纯逻辑图”,如图 6-11 所示。项目进度网络图也可以是包含时间刻度的进度网络图,有时称为“逻辑横道图”,如图 6-21 中的详细进度计划所示。这些图形中有活动日期,通常会同时展示项目网络逻辑和项目关键路径活动等信息。本例子也显示了如何通过一系列相关活动来对每个工作包进行规划。项目进度网络图的另一种呈现形式是“时标逻辑图”,其中包含时间刻度和表示活动持续时间的横条,以及活动之间的逻辑关系。它们用于优化展现活动之间的关系,许多活动都可以按顺序出现在图的同一行中。

           图 6-21 是一个正在执行的示例项目的进度计划,工作进展是通过截止日期或状态日期表示的。针对一个简单的项目,图 6-21 给出了进度计划的三种形式:(1)里程碑进度计划,也叫里程碑图;(2) 概括性进度计划,也叫横道图;(3)详细进度计划,也叫项目进度关联横道图。图6-21 还直观地显示出项目进度计划不同详细程度的关系。

    3、进度数据

           项目进度模型中的进度数据是用以描述和控制进度计划的信息集合。进度数据至少包括进度里程碑、进度活动、活动属性,以及已知的全部假设条件与制约因素,而所需的其他数据因应用领域而异。经常可用作支持细节的信息包括(但不限于):

           a、按时段计列的资源需求,往往以资源直方图表示;

           b、备选的进度计划,如最好情况或最坏情况下的进度计划、经资源平衡或未经资源平衡的进度计划、有强制日期或无强制日期的进度计划;

           c、使用的进度储备。

           进度数据还可包括资源直方图、现金流预测,以及订购与交付进度安排等其他相关信息。

    4、项目日历

           在项目日历中规定可以开展进度活动的可用工作日和工作班次,它把可用于开展进度活动的时间段(按天或更小的时间单位)与不可用的时间段区分开来。在一个进度模型中,可能需要采用不止一个项目日历来编制项目进度计划,因为有些活动需要不同的工作时段。因此,可能需要对项目日历进行更新。

    5、变更请求

           修改项目范围或项目进度计划之后,可能会对范围基准和/或项目管理计划的其他组成部分提出变更请求,应该通过实施整体变更控制过程(见 4.6 节)对变更请求进行审查和处理。预防措施可包括推荐的变更,以消除或降低不利进度偏差的发生概率。

    6、项目管理计划更新

           项目管理计划的任何变更都以变更请求的形式提出,且通过组织的变更控制过程进行处理。可能需要变更请求的项目管理计划组成部分包括(但不限于):

           进度管理计划。可能需要更新进度管理计划,以反映制定和管理进度计划的方式的变更。

           成本基准。在针对范围、资源或成本估算的变更获得批准后,需要对成本基准做出相应的变更。有时成本偏差太过严重,以至于需要修订成本基准,以便为绩效测量提供现实可行的依据。

    7、项目文件更新

    可在本过程更新的项目文件包括(但不限于):

           活动属性。更新活动属性以反映在制定进度计划过程中所产生的对资源需求和其他相关内容的修改。

           假设日志。可能需要更新假设日志,以反映创建进度模型时发现的有关持续时间、资源使用、排序或其他信息的假设条件的变更。

           持续时间估算。资源的数量和可用性以及活动依赖关系可能会引起持续时间估算的变更。如果资源平衡分析改变了资源需求,就可能需要对持续时间估算做出相应的更新。

           经验教训登记册。在更新经验教训登记册时,可以增加能够有效和高效制定进度模型的技术。

           资源需求。资源平衡可能对所需资源类型与数量的初步估算产生显著影响。如果资源平衡分析改变了资源需求,就需要对资源需求做出相应的更新。

           风险登记册。可能需要更新风险登记册,以反映进度假设条件所隐含的机会或威胁。

    展开全文
  • 计算是思科创造的一个术语,由OpenFog Consortium支持,该联盟由Arm、思科、戴尔、英特尔、微软和普林斯顿大学边缘实验室于2015年成立。其使命宣言(部分)内容如下: 我们的工作将定义分布式计算、网络、存储、...
  • PMP项目管理13个计划

    千次阅读 2019-06-14 09:57:50
    1、变更管理计划 所属过程:制定项目管理计划 含义:定义管理项目变更的过程,用来明确如何对变更进行监控。为管理变更控制过程提供指导,记录变更控制委员会的情况。 内容:当项目需要变更的时候,如何进行变更。 2...
  • 接上文:SQL Server 执行计划操作符详解(2)——串联(Concatenation )
  • 计划评审技术(Programuation and Review Technique,简称PERT)CPM和PERT是50年代后期几乎同时出现的两种计划方法。随着科学技术和生产的迅速发展,出现了许多庞大而复杂的科研和工程项日,它们工序繁多,协作面广,...
  • 第一讲:高性能计算基础知识讲解

    万次阅读 2019-12-29 17:09:57
    回顾过去15年,HPC一直是增长最快的IT市场之一,其增长速度有时甚至超过了...首先,让我们从高性能计算概念开始,逐步深入到技术细节,掌握HPC关键技术和方案选型、设计等综合能力。 什么是高性能计算,涉及哪些...
  • 边缘计算和云计算的区别是什么?导言一、边缘计算和云计算的区别1. 整体与局部2. 实时与长期3. 分散与集中4.高能耗与低能耗二、边缘计算与云计算的联系1. 协同与互补2. 云边端三位一体 导言 简单地说,边缘计算是将...
  • 计算机软件质量保证计划示例

    千次阅读 2017-07-03 11:02:00
    计划名CADCSC软件质量保证计划  项目名中国控制系统CAD工程化软件系统  项目委托单位  代表签名年月日  项目承办单位  代表签名年月日  1引言  1.1目的  本计划的目的在于对所开发的CADCSC软件规定各种必要...
  • 2)查询实验教学计划的基本内容及总数(df.index,df.columns)3)查询实验教学计划中是否含有NaN数据?将含有NaN数据的行导出为数据文件pre.csv,判断采用何种数据清洗模式:填充、删除或手工填充;从“bankpep.csv...
  • 一个完整的测试计划模板

    万次阅读 多人点赞 2019-04-12 15:55:20
    按照测试计划的测试通过标准,完成测试。 需考虑的特殊事项 确定或说明那些将对功能测试的实施和执行造成影响的事项或因素。(内部的或外部的) 使用工具 Seleium + python + 火狐 易用性测试...
  • 学习的紧张程度是不用说的,大一、大二图书馆都是经常去的地方。此外还要认真听老师讲课,因为不像高中可以靠自学来完成学业,因此保证充沛的精神是必要的。因此建议不要参加太多的社团,一个就足够了,最好是团委...
  • 参考 信息系统项目管理师计算题详解:PERT(计划评审技术)计算 标准差和方差 参考:标准差和方差 方差 它是用来衡量离散程度。 概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。 统计中的方差...
  • 软件测试个人工作计划.docx

    千次阅读 2021-07-23 07:07:06
    二、目的:更好的协助软件测试工程师,按时甚至时提前完成测 试项目。三、工作计划一、协助测试员的导师,帮助刚入职的测试员进行工 作环境和工作内容,工作规范,规章制度的熟悉。二、帮助刚入职的测试员把测试时...
  • 边缘计算和云计算的关系

    千次阅读 2019-07-26 10:38:57
    边缘计算实际上属于一种分布式计算,利用靠近数据源的边缘地带来完成的运算程序,而不需要将大量数据上传到云端。边缘计算的运算既可以在大型运算设备内完成,也可以在中小型运算设备、本地端网络内完成。用于边缘...
  • 计算机等级考试--二级Java的知识点大全

    万次阅读 多人点赞 2019-03-16 20:42:59
    算法不等于程序,也不等于计算方法。 2、算法的基本特征: 1)确定性,算法中每一步骤都必须有明确定义,不允许有多义性; 2)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止; 3)可行性,...
  • 【高级开发必掌握SQL】SQL优化篇

    万次阅读 多人点赞 2022-08-15 19:04:39
    关于T+0 如果把数据都移到数据库外,那么是不是就无法完成实时数据计算了?毕竟数据总是在不断地产生。 没有问题。 对于全量T+0实时查询,SPL提供了多源混合计算的能力以满足这类场景。冷数据量大且不再变化使用SPL...
  • 它要求本科生个人或团队,在导师指导下, 自主完成创新性研究项目设计、研究条件准备和项目实施、研究报告撰写、成果(学术)交流等工作。 项目遵循“兴趣驱动、注重过程、鼓励创新”的实施原则,重点资助思路...
  • 量化的方法使计算广告学成为计算机科学与工程的一个崭新和重要的方向。 前言 所有能够传播信息的商品,其售价都会趋向其边际成本。 商业模式探索 电影的信息传播量很大,边际成本很低,与其售价不符,因此必定...
  • 边缘计算中任务卸载研究综述

    千次阅读 2021-06-23 00:53:54
    本文首发于《计算机科学》,边缘计算社区经过作者授权转发分享。刘通1,2 方璐1 高洪皓1,31 上海大学计算机工程与科学学院上海市2004442 上海智能计算系统工程技术研究中...
  • 软件工程基础 实验1《可行性研究与项目计划

    千次阅读 多人点赞 2019-08-04 18:42:04
    实验1《可行性研究与项目计划》 一、实验目的 ...提高工作效益,便于操作,能有效地对数据进行更新、查询,并能在一定程度上实现了自动化。图书管管理系统的主要功能为:书目管理、借阅证管理、...
  • 边缘计算的深刻详细解读

    千次阅读 2019-01-18 16:08:33
    物联网的快速发展和云服务的推动使得云计算模型已经不能很好的解决现在的问题,于是,这里给出一种新型的计算模型——边缘计算。简言之:物联网催生了边缘计算。   边缘计算指的是在网络的边缘来处理数据,这样...
  • Ray - 面向增强学习场景的分布式计算框架

    千次阅读 多人点赞 2018-05-23 11:57:02
    如果关注这个领域的同学可能知道,Ray其实在...Ray 是RISELab实验室(前身也就是开发Spark/Mesos等的AMPLab实验室)针对机器学习领域开发的一种新的分布式计算框架。按照官方的定义:“Ray is a flexible, high-perf...
  • 软件项目成本计划

    千次阅读 2020-04-10 19:23:01
    六、软件项目成本计划 6.1、项目规模估算方法 6.1.1、代码行估算法(误差较大) 软件项目规模: 即工作量,例如软件规划,软件管理,需求分析,系统设计,编码,测试,以及后期维护等任务。 规模单位: LOC(Loc of ...
  • 随着量子计算的快速发展,量子计算与云计算有机结合,产生了“量子计算云平台”,极大地克服了目前量子计算机制造成本昂贵、维护难度高、占用空间大等缺陷。量子计算云平台不仅可以推动量子软件及算法的研发,还对...
  • 这么说吧,假如你想写作文,如果你不会写字,组词,造句,我想你应该完全没法完成这个创作过程。很形象吧,但是也确实如此,仔细想一想,招你进去是要干活的,公司不会招聘一个只会 MATLAB 或者 python 都用不熟的...
  • 原因很简单,作为一个资历尚浅的研究生,是没有资格对计算广告这样一个伟大的行业、领域和学科来评头论足的。之所以这么做,一是总结自己已掌握的知识,二是降低同学们的学习成本。本人能力有限,更缺乏实践经验,...
  • 计算广告小窥[下]要啥自行车!

    千次阅读 2016-08-26 22:58:18
    一是总结自己已掌握的知识,二是降低同学们的学习成本。本人能力有限,更缺乏实践经验,文章内容多为书籍和论文的读后感,若有不当或者...在此,向编写《计算广告》的刘鹏和王超两位老师致谢,向各位paper作者致谢。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 92,936
精华内容 37,174
热门标签
关键字:

如何计算计划完成程度