精华内容
下载资源
问答
  • Java面试题大全(2020版)

    万次阅读 多人点赞 2019-11-26 11:59:06
    AIO:Asynchronous IO 是 NIO 的升级,也叫 NIO2,实现了异步非堵塞 IO ,异步 IO 的操作基于事件和回调机制。 17. Files的常用方法都有哪些? Files.exists():检测文件路径是否存在。 Files.createFile():创建...

    发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~

    本套Java面试题大全,全的不能再全,哈哈~

    博主已将以下这些面试题整理成了一个Java面试手册,是PDF版的。

    关注博主的微信公众号:Java团长,然后回复“面试手册”即可获取~

    一、Java 基础

    1. JDK 和 JRE 有什么区别?

    • JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。
    • JRE:Java Runtime Environment 的简称,java 运行环境,为 java 的运行提供了所需环境。

    具体来说 JDK 其实包含了 JRE,同时还包含了编译 java 源码的编译器 javac,还包含了很多 java 程序调试和分析的工具。简单来说:如果你需要运行 java 程序,只需安装 JRE 就可以了,如果你需要编写 java 程序,需要安装 JDK。

    2. == 和 equals 的区别是什么?

    == 解读

    对于基本类型和引用类型 == 的作用效果是不同的,如下所示:

    • 基本类型:比较的是值是否相同;
    • 引用类型:比较的是引用是否相同;

    代码示例:

    String x = "string";
    String y = "string";
    String z = new String("string");
    System.out.println(x==y); // true
    System.out.println(x==z); // false
    System.out.println(x.equals(y)); // true
    System.out.println(x.equals(z)); // true

    代码解读:因为 x 和 y 指向的是同一个引用,所以 == 也是 true,而 new String()方法则重写开辟了内存空间,所以 == 结果为 false,而 equals 比较的一直是值,所以结果都为 true。

    equals 解读

    equals 本质上就是 ==,只不过 String 和 Integer 等重写了 equals 方法,把它变成了值比较。看下面的代码就明白了。

    首先来看默认情况下 equals 比较一个有相同值的对象,代码如下:

    class Cat {
        public Cat(String name) {
            this.name = name;
        }
    
        private String name;
    
        public String getName() {
            return name;
        }
    
        public void setName(String name) {
            this.name = name;
        }
    }
    
    Cat c1 = new Cat("王磊");
    Cat c2 = new Cat("王磊");
    System.out.println(c1.equals(c2)); // false

    输出结果出乎我们的意料,竟然是 false?这是怎么回事,看了 equals 源码就知道了,源码如下:

    public boolean equals(Object obj) {
        return (this == obj);
    }

    原来 equals 本质上就是 ==。

    那问题来了,两个相同值的 String 对象,为什么返回的是 true?代码如下:

    String s1 = new String("老王");
    String s2 = new String("老王");
    System.out.println(s1.equals(s2)); // true

    同样的,当我们进入 String 的 equals 方法,找到了答案,代码如下:

    public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String)anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                        return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }

    原来是 String 重写了 Object 的 equals 方法,把引用比较改成了值比较。

    总结 :== 对于基本类型来说是值比较,对于引用类型来说是比较的是引用;而 equals 默认情况下是引用比较,只是很多类重新了 equals 方法,比如 String、Integer 等把它变成了值比较,所以一般情况下 equals 比较的是值是否相等。

    3. 两个对象的 hashCode()相同,则 equals()也一定为 true,对吗?

    不对,两个对象的 hashCode()相同,equals()不一定 true。

    代码示例:

    String str1 = "通话";
    String str2 = "重地";
    System.out.println(String.format("str1:%d | str2:%d",  str1.hashCode(),str2.hashCode()));
    System.out.println(str1.equals(str2));

    执行的结果:

    str1:1179395 | str2:1179395

    false

    代码解读:很显然“通话”和“重地”的 hashCode() 相同,然而 equals() 则为 false,因为在散列表中,hashCode()相等即两个键值对的哈希值相等,然而哈希值相等,并不一定能得出键值对相等。

    4. final 在 java 中有什么作用?

    • final 修饰的类叫最终类,该类不能被继承。
    • final 修饰的方法不能被重写。
    • final 修饰的变量叫常量,常量必须初始化,初始化之后值就不能被修改。

    5. java 中的 Math.round(-1.5) 等于多少?

    等于 -1,因为在数轴上取值时,中间值(0.5)向右取整,所以正 0.5 是往上取整,负 0.5 是直接舍弃。

    6. String 属于基础的数据类型吗?

    String 不属于基础类型,基础类型有 8 种:byte、boolean、char、short、int、float、long、double,而 String 属于对象。

    7. java 中操作字符串都有哪些类?它们之间有什么区别?

    操作字符串的类有:String、StringBuffer、StringBuilder。

    String 和 StringBuffer、StringBuilder 的区别在于 String 声明的是不可变的对象,每次操作都会生成新的 String 对象,然后将指针指向新的 String 对象,而 StringBuffer、StringBuilder 可以在原有对象的基础上进行操作,所以在经常改变字符串内容的情况下最好不要使用 String。

    StringBuffer 和 StringBuilder 最大的区别在于,StringBuffer 是线程安全的,而 StringBuilder 是非线程安全的,但 StringBuilder 的性能却高于 StringBuffer,所以在单线程环境下推荐使用 StringBuilder,多线程环境下推荐使用 StringBuffer。

    8. String str="i"与 String str=new String("i")一样吗?

    不一样,因为内存的分配方式不一样。String str="i"的方式,java 虚拟机会将其分配到常量池中;而 String str=new String("i") 则会被分到堆内存中。

    9. 如何将字符串反转?

    使用 StringBuilder 或者 stringBuffer 的 reverse() 方法。

    示例代码:

    // StringBuffer reverse
    StringBuffer stringBuffer = new StringBuffer();
    stringBuffer.append("abcdefg");
    System.out.println(stringBuffer.reverse()); // gfedcba
    // StringBuilder reverse
    StringBuilder stringBuilder = new StringBuilder();
    stringBuilder.append("abcdefg");
    System.out.println(stringBuilder.reverse()); // gfedcba

    10. String 类的常用方法都有那些?

    • indexOf():返回指定字符的索引。
    • charAt():返回指定索引处的字符。
    • replace():字符串替换。
    • trim():去除字符串两端空白。
    • split():分割字符串,返回一个分割后的字符串数组。
    • getBytes():返回字符串的 byte 类型数组。
    • length():返回字符串长度。
    • toLowerCase():将字符串转成小写字母。
    • toUpperCase():将字符串转成大写字符。
    • substring():截取字符串。
    • equals():字符串比较。

    11. 抽象类必须要有抽象方法吗?

    不需要,抽象类不一定非要有抽象方法。

    示例代码:

    abstract class Cat {
        public static void sayHi() {
            System.out.println("hi~");
        }
    }

    上面代码,抽象类并没有抽象方法但完全可以正常运行。

    12. 普通类和抽象类有哪些区别?

    • 普通类不能包含抽象方法,抽象类可以包含抽象方法。
    • 抽象类不能直接实例化,普通类可以直接实例化。

    13. 抽象类能使用 final 修饰吗?

    不能,定义抽象类就是让其他类继承的,如果定义为 final 该类就不能被继承,这样彼此就会产生矛盾,所以 final 不能修饰抽象类,如下图所示,编辑器也会提示错误信息:

    14. 接口和抽象类有什么区别?

    • 实现:抽象类的子类使用 extends 来继承;接口必须使用 implements 来实现接口。
    • 构造函数:抽象类可以有构造函数;接口不能有。
    • main 方法:抽象类可以有 main 方法,并且我们能运行它;接口不能有 main 方法。
    • 实现数量:类可以实现很多个接口;但是只能继承一个抽象类。
    • 访问修饰符:接口中的方法默认使用 public 修饰;抽象类中的方法可以是任意访问修饰符。

    15. java 中 IO 流分为几种?

    按功能来分:输入流(input)、输出流(output)。

    按类型来分:字节流和字符流。

    字节流和字符流的区别是:字节流按 8 位传输以字节为单位输入输出数据,字符流按 16 位传输以字符为单位输入输出数据。

    16. BIO、NIO、AIO 有什么区别?

    • BIO:Block IO 同步阻塞式 IO,就是我们平常使用的传统 IO,它的特点是模式简单使用方便,并发处理能力低。
    • NIO:New IO 同步非阻塞 IO,是传统 IO 的升级,客户端和服务器端通过 Channel(通道)通讯,实现了多路复用。
    • AIO:Asynchronous IO 是 NIO 的升级,也叫 NIO2,实现了异步非堵塞 IO ,异步 IO 的操作基于事件和回调机制。

    17. Files的常用方法都有哪些?

    • Files.exists():检测文件路径是否存在。
    • Files.createFile():创建文件。
    • Files.createDirectory():创建文件夹。
    • Files.delete():删除一个文件或目录。
    • Files.copy():复制文件。
    • Files.move():移动文件。
    • Files.size():查看文件个数。
    • Files.read():读取文件。
    • Files.write():写入文件。

    二、容器

    18. java 容器都有哪些?

    常用容器的图录:

    19. Collection 和 Collections 有什么区别?

    • java.util.Collection 是一个集合接口(集合类的一个顶级接口)。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java 类库中有很多具体的实现。Collection接口的意义是为各种具体的集合提供了最大化的统一操作方式,其直接继承接口有List与Set。
    • Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序、搜索以及线程安全等各种操作。

    20. List、Set、Map 之间的区别是什么?

    21. HashMap 和 Hashtable 有什么区别?

    • hashMap去掉了HashTable 的contains方法,但是加上了containsValue()和containsKey()方法。
    • hashTable同步的,而HashMap是非同步的,效率上逼hashTable要高。
    • hashMap允许空键值,而hashTable不允许。

    22. 如何决定使用 HashMap 还是 TreeMap?

    对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。

    23. 说一下 HashMap 的实现原理?

    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 

    HashMap的数据结构: 在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

    当我们往Hashmap中put元素时,首先根据key的hashcode重新计算hash值,根绝hash值得到这个元素在数组中的位置(下标),如果该数组在该位置上已经存放了其他元素,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放入链尾.如果数组中该位置没有元素,就直接将该元素放到数组的该位置上。

    需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn)

    24. 说一下 HashSet 的实现原理?

    • HashSet底层由HashMap实现
    • HashSet的值存放于HashMap的key上
    • HashMap的value统一为PRESENT

    25. ArrayList 和 LinkedList 的区别是什么?

    最明显的区别是 ArrrayList底层的数据结构是数组,支持随机访问,而 LinkedList 的底层数据结构是双向循环链表,不支持随机访问。使用下标访问一个元素,ArrayList 的时间复杂度是 O(1),而 LinkedList 是 O(n)。

    26. 如何实现数组和 List 之间的转换?

    • List转换成为数组:调用ArrayList的toArray方法。
    • 数组转换成为List:调用Arrays的asList方法。

    27. ArrayList 和 Vector 的区别是什么?

    • Vector是同步的,而ArrayList不是。然而,如果你寻求在迭代的时候对列表进行改变,你应该使用CopyOnWriteArrayList。 
    • ArrayList比Vector快,它因为有同步,不会过载。 
    • ArrayList更加通用,因为我们可以使用Collections工具类轻易地获取同步列表和只读列表。

    28. Array 和 ArrayList 有何区别?

    • Array可以容纳基本类型和对象,而ArrayList只能容纳对象。 
    • Array是指定大小的,而ArrayList大小是固定的。 
    • Array没有提供ArrayList那么多功能,比如addAll、removeAll和iterator等。

    29. 在 Queue 中 poll()和 remove()有什么区别?

    poll() 和 remove() 都是从队列中取出一个元素,但是 poll() 在获取元素失败的时候会返回空,但是 remove() 失败的时候会抛出异常。

    30. 哪些集合类是线程安全的?

    • vector:就比arraylist多了个同步化机制(线程安全),因为效率较低,现在已经不太建议使用。在web应用中,特别是前台页面,往往效率(页面响应速度)是优先考虑的。
    • statck:堆栈类,先进后出。
    • hashtable:就比hashmap多了个线程安全。
    • enumeration:枚举,相当于迭代器。

    31. 迭代器 Iterator 是什么?

    迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构。迭代器通常被称为“轻量级”对象,因为创建它的代价小。

    32. Iterator 怎么使用?有什么特点?

    Java中的Iterator功能比较简单,并且只能单向移动:

    (1) 使用方法iterator()要求容器返回一个Iterator。第一次调用Iterator的next()方法时,它返回序列的第一个元素。注意:iterator()方法是java.lang.Iterable接口,被Collection继承。

    (2) 使用next()获得序列中的下一个元素。

    (3) 使用hasNext()检查序列中是否还有元素。

    (4) 使用remove()将迭代器新返回的元素删除。

    Iterator是Java迭代器最简单的实现,为List设计的ListIterator具有更多的功能,它可以从两个方向遍历List,也可以从List中插入和删除元素。

    33. Iterator 和 ListIterator 有什么区别?

    • Iterator可用来遍历Set和List集合,但是ListIterator只能用来遍历List。 
    • Iterator对集合只能是前向遍历,ListIterator既可以前向也可以后向。 
    • ListIterator实现了Iterator接口,并包含其他的功能,比如:增加元素,替换元素,获取前一个和后一个元素的索引,等等。

     三、多线程

    35. 并行和并发有什么区别?

    • 并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔发生。
    • 并行是在不同实体上的多个事件,并发是在同一实体上的多个事件。
    • 在一台处理器上“同时”处理多个任务,在多台处理器上同时处理多个任务。如hadoop分布式集群。

    所以并发编程的目标是充分的利用处理器的每一个核,以达到最高的处理性能。

    36. 线程和进程的区别?

    简而言之,进程是程序运行和资源分配的基本单位,一个程序至少有一个进程,一个进程至少有一个线程。进程在执行过程中拥有独立的内存单元,而多个线程共享内存资源,减少切换次数,从而效率更高。线程是进程的一个实体,是cpu调度和分派的基本单位,是比程序更小的能独立运行的基本单位。同一进程中的多个线程之间可以并发执行。

    37. 守护线程是什么?

    守护线程(即daemon thread),是个服务线程,准确地来说就是服务其他的线程。

    38. 创建线程有哪几种方式?

    ①. 继承Thread类创建线程类

    • 定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务。因此把run()方法称为执行体。
    • 创建Thread子类的实例,即创建了线程对象。
    • 调用线程对象的start()方法来启动该线程。

    ②. 通过Runnable接口创建线程类

    • 定义runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
    • 创建 Runnable实现类的实例,并依此实例作为Thread的target来创建Thread对象,该Thread对象才是真正的线程对象。
    • 调用线程对象的start()方法来启动该线程。

    ③. 通过Callable和Future创建线程

    • 创建Callable接口的实现类,并实现call()方法,该call()方法将作为线程执行体,并且有返回值。
    • 创建Callable实现类的实例,使用FutureTask类来包装Callable对象,该FutureTask对象封装了该Callable对象的call()方法的返回值。
    • 使用FutureTask对象作为Thread对象的target创建并启动新线程。
    • 调用FutureTask对象的get()方法来获得子线程执行结束后的返回值。

    39. 说一下 runnable 和 callable 有什么区别?

    有点深的问题了,也看出一个Java程序员学习知识的广度。

    • Runnable接口中的run()方法的返回值是void,它做的事情只是纯粹地去执行run()方法中的代码而已;
    • Callable接口中的call()方法是有返回值的,是一个泛型,和Future、FutureTask配合可以用来获取异步执行的结果。

    40. 线程有哪些状态?

    线程通常都有五种状态,创建、就绪、运行、阻塞和死亡。

    • 创建状态。在生成线程对象,并没有调用该对象的start方法,这是线程处于创建状态。
    • 就绪状态。当调用了线程对象的start方法之后,该线程就进入了就绪状态,但是此时线程调度程序还没有把该线程设置为当前线程,此时处于就绪状态。在线程运行之后,从等待或者睡眠中回来之后,也会处于就绪状态。
    • 运行状态。线程调度程序将处于就绪状态的线程设置为当前线程,此时线程就进入了运行状态,开始运行run函数当中的代码。
    • 阻塞状态。线程正在运行的时候,被暂停,通常是为了等待某个时间的发生(比如说某项资源就绪)之后再继续运行。sleep,suspend,wait等方法都可以导致线程阻塞。
    • 死亡状态。如果一个线程的run方法执行结束或者调用stop方法后,该线程就会死亡。对于已经死亡的线程,无法再使用start方法令其进入就绪   

    41. sleep() 和 wait() 有什么区别?

    sleep():方法是线程类(Thread)的静态方法,让调用线程进入睡眠状态,让出执行机会给其他线程,等到休眠时间结束后,线程进入就绪状态和其他线程一起竞争cpu的执行时间。因为sleep() 是static静态的方法,他不能改变对象的机锁,当一个synchronized块中调用了sleep() 方法,线程虽然进入休眠,但是对象的机锁没有被释放,其他线程依然无法访问这个对象。

    wait():wait()是Object类的方法,当一个线程执行到wait方法时,它就进入到一个和该对象相关的等待池,同时释放对象的机锁,使得其他线程能够访问,可以通过notify,notifyAll方法来唤醒等待的线程。

    42. notify()和 notifyAll()有什么区别?

    • 如果线程调用了对象的 wait()方法,那么线程便会处于该对象的等待池中,等待池中的线程不会去竞争该对象的锁。
    • 当有线程调用了对象的 notifyAll()方法(唤醒所有 wait 线程)或 notify()方法(只随机唤醒一个 wait 线程),被唤醒的的线程便会进入该对象的锁池中,锁池中的线程会去竞争该对象锁。也就是说,调用了notify后只要一个线程会由等待池进入锁池,而notifyAll会将该对象等待池内的所有线程移动到锁池中,等待锁竞争。
    • 优先级高的线程竞争到对象锁的概率大,假若某线程没有竞争到该对象锁,它还会留在锁池中,唯有线程再次调用 wait()方法,它才会重新回到等待池中。而竞争到对象锁的线程则继续往下执行,直到执行完了 synchronized 代码块,它会释放掉该对象锁,这时锁池中的线程会继续竞争该对象锁。

    43. 线程的 run()和 start()有什么区别?

    每个线程都是通过某个特定Thread对象所对应的方法run()来完成其操作的,方法run()称为线程体。通过调用Thread类的start()方法来启动一个线程。

    start()方法来启动一个线程,真正实现了多线程运行。这时无需等待run方法体代码执行完毕,可以直接继续执行下面的代码; 这时此线程是处于就绪状态, 并没有运行。 然后通过此Thread类调用方法run()来完成其运行状态, 这里方法run()称为线程体,它包含了要执行的这个线程的内容, Run方法运行结束, 此线程终止。然后CPU再调度其它线程。

    run()方法是在本线程里的,只是线程里的一个函数,而不是多线程的。 如果直接调用run(),其实就相当于是调用了一个普通函数而已,直接待用run()方法必须等待run()方法执行完毕才能执行下面的代码,所以执行路径还是只有一条,根本就没有线程的特征,所以在多线程执行时要使用start()方法而不是run()方法。

    44. 创建线程池有哪几种方式?

    ①. newFixedThreadPool(int nThreads)

    创建一个固定长度的线程池,每当提交一个任务就创建一个线程,直到达到线程池的最大数量,这时线程规模将不再变化,当线程发生未预期的错误而结束时,线程池会补充一个新的线程。

    ②. newCachedThreadPool()

    创建一个可缓存的线程池,如果线程池的规模超过了处理需求,将自动回收空闲线程,而当需求增加时,则可以自动添加新线程,线程池的规模不存在任何限制。

    ③. newSingleThreadExecutor()

    这是一个单线程的Executor,它创建单个工作线程来执行任务,如果这个线程异常结束,会创建一个新的来替代它;它的特点是能确保依照任务在队列中的顺序来串行执行。

    ④. newScheduledThreadPool(int corePoolSize)

    创建了一个固定长度的线程池,而且以延迟或定时的方式来执行任务,类似于Timer。

    45. 线程池都有哪些状态?

    线程池有5种状态:Running、ShutDown、Stop、Tidying、Terminated。

    线程池各个状态切换框架图:

    46. 线程池中 submit()和 execute()方法有什么区别?

    • 接收的参数不一样
    • submit有返回值,而execute没有
    • submit方便Exception处理

    47. 在 java 程序中怎么保证多线程的运行安全?

    线程安全在三个方面体现:

    • 原子性:提供互斥访问,同一时刻只能有一个线程对数据进行操作,(atomic,synchronized);
    • 可见性:一个线程对主内存的修改可以及时地被其他线程看到,(synchronized,volatile);
    • 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序,该观察结果一般杂乱无序,(happens-before原则)。

    48. 多线程锁的升级原理是什么?

    在Java中,锁共有4种状态,级别从低到高依次为:无状态锁,偏向锁,轻量级锁和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级。

    锁升级的图示过程: 

    49. 什么是死锁?

    死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。是操作系统层面的一个错误,是进程死锁的简称,最早在 1965 年由 Dijkstra 在研究银行家算法时提出的,它是计算机操作系统乃至整个并发程序设计领域最难处理的问题之一。

    50. 怎么防止死锁?

    死锁的四个必要条件:

    • 互斥条件:进程对所分配到的资源不允许其他进程进行访问,若其他进程访问该资源,只能等待,直至占有该资源的进程使用完成后释放该资源
    • 请求和保持条件:进程获得一定的资源之后,又对其他资源发出请求,但是该资源可能被其他进程占有,此事请求阻塞,但又对自己获得的资源保持不放
    • 不可剥夺条件:是指进程已获得的资源,在未完成使用之前,不可被剥夺,只能在使用完后自己释放
    • 环路等待条件:是指进程发生死锁后,若干进程之间形成一种头尾相接的循环等待资源关系

    这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之 一不满足,就不会发生死锁。

    理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和 解除死锁。

    所以,在系统设计、进程调度等方面注意如何不让这四个必要条件成立,如何确 定资源的合理分配算法,避免进程永久占据系统资源。

    此外,也要防止进程在处于等待状态的情况下占用资源。因此,对资源的分配要给予合理的规划。

    51. ThreadLocal 是什么?有哪些使用场景?

    线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java提供ThreadLocal类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。

    52.说一下 synchronized 底层实现原理?

    synchronized可以保证方法或者代码块在运行时,同一时刻只有一个方法可以进入到临界区,同时它还可以保证共享变量的内存可见性。

    Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:

    • 普通同步方法,锁是当前实例对象
    • 静态同步方法,锁是当前类的class对象
    • 同步方法块,锁是括号里面的对象

    53. synchronized 和 volatile 的区别是什么?

    • volatile本质是在告诉jvm当前变量在寄存器(工作内存)中的值是不确定的,需要从主存中读取; synchronized则是锁定当前变量,只有当前线程可以访问该变量,其他线程被阻塞住。
    • volatile仅能使用在变量级别;synchronized则可以使用在变量、方法、和类级别的。
    • volatile仅能实现变量的修改可见性,不能保证原子性;而synchronized则可以保证变量的修改可见性和原子性。
    • volatile不会造成线程的阻塞;synchronized可能会造成线程的阻塞。
    • volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化。

    54. synchronized 和 Lock 有什么区别?

    • 首先synchronized是java内置关键字,在jvm层面,Lock是个java类;
    • synchronized无法判断是否获取锁的状态,Lock可以判断是否获取到锁;
    • synchronized会自动释放锁(a 线程执行完同步代码会释放锁 ;b 线程执行过程中发生异常会释放锁),Lock需在finally中手工释放锁(unlock()方法释放锁),否则容易造成线程死锁;
    • 用synchronized关键字的两个线程1和线程2,如果当前线程1获得锁,线程2线程等待。如果线程1阻塞,线程2则会一直等待下去,而Lock锁就不一定会等待下去,如果尝试获取不到锁,线程可以不用一直等待就结束了;
    • synchronized的锁可重入、不可中断、非公平,而Lock锁可重入、可判断、可公平(两者皆可);
    • Lock锁适合大量同步的代码的同步问题,synchronized锁适合代码少量的同步问题。

    55. synchronized 和 ReentrantLock 区别是什么?

    synchronized是和if、else、for、while一样的关键字,ReentrantLock是类,这是二者的本质区别。既然ReentrantLock是类,那么它就提供了比synchronized更多更灵活的特性,可以被继承、可以有方法、可以有各种各样的类变量,ReentrantLock比synchronized的扩展性体现在几点上: 

    • ReentrantLock可以对获取锁的等待时间进行设置,这样就避免了死锁 
    • ReentrantLock可以获取各种锁的信息
    • ReentrantLock可以灵活地实现多路通知 

    另外,二者的锁机制其实也是不一样的:ReentrantLock底层调用的是Unsafe的park方法加锁,synchronized操作的应该是对象头中mark word。

    56. 说一下 atomic 的原理?

    Atomic包中的类基本的特性就是在多线程环境下,当有多个线程同时对单个(包括基本类型及引用类型)变量进行操作时,具有排他性,即当多个线程同时对该变量的值进行更新时,仅有一个线程能成功,而未成功的线程可以向自旋锁一样,继续尝试,一直等到执行成功。

    Atomic系列的类中的核心方法都会调用unsafe类中的几个本地方法。我们需要先知道一个东西就是Unsafe类,全名为:sun.misc.Unsafe,这个类包含了大量的对C代码的操作,包括很多直接内存分配以及原子操作的调用,而它之所以标记为非安全的,是告诉你这个里面大量的方法调用都会存在安全隐患,需要小心使用,否则会导致严重的后果,例如在通过unsafe分配内存的时候,如果自己指定某些区域可能会导致一些类似C++一样的指针越界到其他进程的问题。


    四、反射

    57. 什么是反射?

    反射主要是指程序可以访问、检测和修改它本身状态或行为的一种能力

    Java反射:

    在Java运行时环境中,对于任意一个类,能否知道这个类有哪些属性和方法?对于任意一个对象,能否调用它的任意一个方法

    Java反射机制主要提供了以下功能:

    • 在运行时判断任意一个对象所属的类。
    • 在运行时构造任意一个类的对象。
    • 在运行时判断任意一个类所具有的成员变量和方法。
    • 在运行时调用任意一个对象的方法。 

    58. 什么是 java 序列化?什么情况下需要序列化?

    简单说就是为了保存在内存中的各种对象的状态(也就是实例变量,不是方法),并且可以把保存的对象状态再读出来。虽然你可以用你自己的各种各样的方法来保存object states,但是Java给你提供一种应该比你自己好的保存对象状态的机制,那就是序列化。

    什么情况下需要序列化:

    a)当你想把的内存中的对象状态保存到一个文件中或者数据库中时候;
    b)当你想用套接字在网络上传送对象的时候;
    c)当你想通过RMI传输对象的时候;

    59. 动态代理是什么?有哪些应用?

    动态代理:

    当想要给实现了某个接口的类中的方法,加一些额外的处理。比如说加日志,加事务等。可以给这个类创建一个代理,故名思议就是创建一个新的类,这个类不仅包含原来类方法的功能,而且还在原来的基础上添加了额外处理的新类。这个代理类并不是定义好的,是动态生成的。具有解耦意义,灵活,扩展性强。

    动态代理的应用:

    • Spring的AOP
    • 加事务
    • 加权限
    • 加日志

    60. 怎么实现动态代理?

    首先必须定义一个接口,还要有一个InvocationHandler(将实现接口的类的对象传递给它)处理类。再有一个工具类Proxy(习惯性将其称为代理类,因为调用他的newInstance()可以产生代理对象,其实他只是一个产生代理对象的工具类)。利用到InvocationHandler,拼接代理类源码,将其编译生成代理类的二进制码,利用加载器加载,并将其实例化产生代理对象,最后返回。


    五、对象拷贝

    61. 为什么要使用克隆?

    想对一个对象进行处理,又想保留原有的数据进行接下来的操作,就需要克隆了,Java语言中克隆针对的是类的实例。

    62. 如何实现对象克隆?

    有两种方式:

    1). 实现Cloneable接口并重写Object类中的clone()方法;

    2). 实现Serializable接口,通过对象的序列化和反序列化实现克隆,可以实现真正的深度克隆,代码如下:

    
    import java.io.ByteArrayInputStream;
    import java.io.ByteArrayOutputStream;
    import java.io.ObjectInputStream;
    import java.io.ObjectOutputStream;
    import java.io.Serializable;
    
    public class MyUtil {
    
        private MyUtil() {
            throw new AssertionError();
        }
    
        @SuppressWarnings("unchecked")
        public static <T extends Serializable> T clone(T obj) throws Exception {
            ByteArrayOutputStream bout = new ByteArrayOutputStream();
            ObjectOutputStream oos = new ObjectOutputStream(bout);
            oos.writeObject(obj);
    
            ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());
            ObjectInputStream ois = new ObjectInputStream(bin);
            return (T) ois.readObject();
    
            // 说明:调用ByteArrayInputStream或ByteArrayOutputStream对象的close方法没有任何意义
            // 这两个基于内存的流只要垃圾回收器清理对象就能够释放资源,这一点不同于对外部资源(如文件流)的释放
        }
    }

    下面是测试代码:

    
    import java.io.Serializable;
    
    /**
     * 人类
     * @author nnngu
     *
     */
    class Person implements Serializable {
        private static final long serialVersionUID = -9102017020286042305L;
    
        private String name;    // 姓名
        private int age;        // 年龄
        private Car car;        // 座驾
    
        public Person(String name, int age, Car car) {
            this.name = name;
            this.age = age;
            this.car = car;
        }
    
        public String getName() {
            return name;
        }
    
        public void setName(String name) {
            this.name = name;
        }
    
        public int getAge() {
            return age;
        }
    
        public void setAge(int age) {
            this.age = age;
        }
    
        public Car getCar() {
            return car;
        }
    
        public void setCar(Car car) {
            this.car = car;
        }
    
        @Override
        public String toString() {
            return "Person [name=" + name + ", age=" + age + ", car=" + car + "]";
        }
    
    }
    
    /**
     * 小汽车类
     * @author nnngu
     *
     */
    class Car implements Serializable {
        private static final long serialVersionUID = -5713945027627603702L;
    
        private String brand;       // 品牌
        private int maxSpeed;       // 最高时速
    
        public Car(String brand, int maxSpeed) {
            this.brand = brand;
            this.maxSpeed = maxSpeed;
        }
    
        public String getBrand() {
            return brand;
        }
    
        public void setBrand(String brand) {
            this.brand = brand;
        }
    
        public int getMaxSpeed() {
            return maxSpeed;
        }
    
        public void setMaxSpeed(int maxSpeed) {
            this.maxSpeed = maxSpeed;
        }
    
        @Override
        public String toString() {
            return "Car [brand=" + brand + ", maxSpeed=" + maxSpeed + "]";
        }
    
    }
    class CloneTest {
    
        public static void main(String[] args) {
            try {
                Person p1 = new Person("郭靖", 33, new Car("Benz", 300));
                Person p2 = MyUtil.clone(p1);   // 深度克隆
                p2.getCar().setBrand("BYD");
                // 修改克隆的Person对象p2关联的汽车对象的品牌属性
                // 原来的Person对象p1关联的汽车不会受到任何影响
                // 因为在克隆Person对象时其关联的汽车对象也被克隆了
                System.out.println(p1);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

    注意:基于序列化和反序列化实现的克隆不仅仅是深度克隆,更重要的是通过泛型限定,可以检查出要克隆的对象是否支持序列化,这项检查是编译器完成的,不是在运行时抛出异常,这种是方案明显优于使用Object类的clone方法克隆对象。让问题在编译的时候暴露出来总是好过把问题留到运行时。

    63. 深拷贝和浅拷贝区别是什么?

    • 浅拷贝只是复制了对象的引用地址,两个对象指向同一个内存地址,所以修改其中任意的值,另一个值都会随之变化,这就是浅拷贝(例:assign())
    • 深拷贝是将对象及值复制过来,两个对象修改其中任意的值另一个值不会改变,这就是深拷贝(例:JSON.parse()和JSON.stringify(),但是此方法无法复制函数类型)

    六、Java Web

    64. jsp 和 servlet 有什么区别?

    1. jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能够识别的java类)
    2. jsp更擅长表现于页面显示,servlet更擅长于逻辑控制。
    3. Servlet中没有内置对象,Jsp中的内置对象都是必须通过HttpServletRequest对象,HttpServletResponse对象以及HttpServlet对象得到。
    4. Jsp是Servlet的一种简化,使用Jsp只需要完成程序员需要输出到客户端的内容,Jsp中的Java脚本如何镶嵌到一个类中,由Jsp容器完成。而Servlet则是个完整的Java类,这个类的Service方法用于生成对客户端的响应。

    65. jsp 有哪些内置对象?作用分别是什么?

    JSP有9个内置对象:

    • request:封装客户端的请求,其中包含来自GET或POST请求的参数;
    • response:封装服务器对客户端的响应;
    • pageContext:通过该对象可以获取其他对象;
    • session:封装用户会话的对象;
    • application:封装服务器运行环境的对象;
    • out:输出服务器响应的输出流对象;
    • config:Web应用的配置对象;
    • page:JSP页面本身(相当于Java程序中的this);
    • exception:封装页面抛出异常的对象。

    66. 说一下 jsp 的 4 种作用域?

    JSP中的四种作用域包括page、request、session和application,具体来说:

    • page代表与一个页面相关的对象和属性。
    • request代表与Web客户机发出的一个请求相关的对象和属性。一个请求可能跨越多个页面,涉及多个Web组件;需要在页面显示的临时数据可以置于此作用域。
    • session代表与某个用户与服务器建立的一次会话相关的对象和属性。跟某个用户相关的数据应该放在用户自己的session中。
    • application代表与整个Web应用程序相关的对象和属性,它实质上是跨越整个Web应用程序,包括多个页面、请求和会话的一个全局作用域。

    67. session 和 cookie 有什么区别?

    • 由于HTTP协议是无状态的协议,所以服务端需要记录用户的状态时,就需要用某种机制来识具体的用户,这个机制就是Session.典型的场景比如购物车,当你点击下单按钮时,由于HTTP协议无状态,所以并不知道是哪个用户操作的,所以服务端要为特定的用户创建了特定的Session,用用于标识这个用户,并且跟踪用户,这样才知道购物车里面有几本书。这个Session是保存在服务端的,有一个唯一标识。在服务端保存Session的方法很多,内存、数据库、文件都有。集群的时候也要考虑Session的转移,在大型的网站,一般会有专门的Session服务器集群,用来保存用户会话,这个时候 Session 信息都是放在内存的,使用一些缓存服务比如Memcached之类的来放 Session。
    • 思考一下服务端如何识别特定的客户?这个时候Cookie就登场了。每次HTTP请求的时候,客户端都会发送相应的Cookie信息到服务端。实际上大多数的应用都是用 Cookie 来实现Session跟踪的,第一次创建Session的时候,服务端会在HTTP协议中告诉客户端,需要在 Cookie 里面记录一个Session ID,以后每次请求把这个会话ID发送到服务器,我就知道你是谁了。有人问,如果客户端的浏览器禁用了 Cookie 怎么办?一般这种情况下,会使用一种叫做URL重写的技术来进行会话跟踪,即每次HTTP交互,URL后面都会被附加上一个诸如 sid=xxxxx 这样的参数,服务端据此来识别用户。
    • Cookie其实还可以用在一些方便用户的场景下,设想你某次登陆过一个网站,下次登录的时候不想再次输入账号了,怎么办?这个信息可以写到Cookie里面,访问网站的时候,网站页面的脚本可以读取这个信息,就自动帮你把用户名给填了,能够方便一下用户。这也是Cookie名称的由来,给用户的一点甜头。所以,总结一下:Session是在服务端保存的一个数据结构,用来跟踪用户的状态,这个数据可以保存在集群、数据库、文件中;Cookie是客户端保存用户信息的一种机制,用来记录用户的一些信息,也是实现Session的一种方式。

    68. 说一下 session 的工作原理?

    其实session是一个存在服务器上的类似于一个散列表格的文件。里面存有我们需要的信息,在我们需要用的时候可以从里面取出来。类似于一个大号的map吧,里面的键存储的是用户的sessionid,用户向服务器发送请求的时候会带上这个sessionid。这时就可以从中取出对应的值了。

    69. 如果客户端禁止 cookie 能实现 session 还能用吗?

    Cookie与 Session,一般认为是两个独立的东西,Session采用的是在服务器端保持状态的方案,而Cookie采用的是在客户端保持状态的方案。但为什么禁用Cookie就不能得到Session呢?因为Session是用Session ID来确定当前对话所对应的服务器Session,而Session ID是通过Cookie来传递的,禁用Cookie相当于失去了Session ID,也就得不到Session了。

    假定用户关闭Cookie的情况下使用Session,其实现途径有以下几种:

    1. 设置php.ini配置文件中的“session.use_trans_sid = 1”,或者编译时打开打开了“--enable-trans-sid”选项,让PHP自动跨页传递Session ID。
    2. 手动通过URL传值、隐藏表单传递Session ID。
    3. 用文件、数据库等形式保存Session ID,在跨页过程中手动调用。

    70. spring mvc 和 struts 的区别是什么?

    • 拦截机制的不同

    Struts2是类级别的拦截,每次请求就会创建一个Action,和Spring整合时Struts2的ActionBean注入作用域是原型模式prototype,然后通过setter,getter吧request数据注入到属性。Struts2中,一个Action对应一个request,response上下文,在接收参数时,可以通过属性接收,这说明属性参数是让多个方法共享的。Struts2中Action的一个方法可以对应一个url,而其类属性却被所有方法共享,这也就无法用注解或其他方式标识其所属方法了,只能设计为多例。

    SpringMVC是方法级别的拦截,一个方法对应一个Request上下文,所以方法直接基本上是独立的,独享request,response数据。而每个方法同时又何一个url对应,参数的传递是直接注入到方法中的,是方法所独有的。处理结果通过ModeMap返回给框架。在Spring整合时,SpringMVC的Controller Bean默认单例模式Singleton,所以默认对所有的请求,只会创建一个Controller,有应为没有共享的属性,所以是线程安全的,如果要改变默认的作用域,需要添加@Scope注解修改。

    Struts2有自己的拦截Interceptor机制,SpringMVC这是用的是独立的Aop方式,这样导致Struts2的配置文件量还是比SpringMVC大。

    • 底层框架的不同

    Struts2采用Filter(StrutsPrepareAndExecuteFilter)实现,SpringMVC(DispatcherServlet)则采用Servlet实现。Filter在容器启动之后即初始化;服务停止以后坠毁,晚于Servlet。Servlet在是在调用时初始化,先于Filter调用,服务停止后销毁。

    • 性能方面

    Struts2是类级别的拦截,每次请求对应实例一个新的Action,需要加载所有的属性值注入,SpringMVC实现了零配置,由于SpringMVC基于方法的拦截,有加载一次单例模式bean注入。所以,SpringMVC开发效率和性能高于Struts2。

    • 配置方面

    spring MVC和Spring是无缝的。从这个项目的管理和安全上也比Struts2高。

    71. 如何避免 sql 注入?

    1. PreparedStatement(简单又有效的方法)
    2. 使用正则表达式过滤传入的参数
    3. 字符串过滤
    4. JSP中调用该函数检查是否包函非法字符
    5. JSP页面判断代码

    72. 什么是 XSS 攻击,如何避免?

    XSS攻击又称CSS,全称Cross Site Script  (跨站脚本攻击),其原理是攻击者向有XSS漏洞的网站中输入恶意的 HTML 代码,当用户浏览该网站时,这段 HTML 代码会自动执行,从而达到攻击的目的。XSS 攻击类似于 SQL 注入攻击,SQL注入攻击中以SQL语句作为用户输入,从而达到查询/修改/删除数据的目的,而在xss攻击中,通过插入恶意脚本,实现对用户游览器的控制,获取用户的一些信息。 XSS是 Web 程序中常见的漏洞,XSS 属于被动式且用于客户端的攻击方式。

    XSS防范的总体思路是:对输入(和URL参数)进行过滤,对输出进行编码。

    73. 什么是 CSRF 攻击,如何避免?

    CSRF(Cross-site request forgery)也被称为 one-click attack或者 session riding,中文全称是叫跨站请求伪造。一般来说,攻击者通过伪造用户的浏览器的请求,向访问一个用户自己曾经认证访问过的网站发送出去,使目标网站接收并误以为是用户的真实操作而去执行命令。常用于盗取账号、转账、发送虚假消息等。攻击者利用网站对请求的验证漏洞而实现这样的攻击行为,网站能够确认请求来源于用户的浏览器,却不能验证请求是否源于用户的真实意愿下的操作行为。

    如何避免:

    1. 验证 HTTP Referer 字段

    HTTP头中的Referer字段记录了该 HTTP 请求的来源地址。在通常情况下,访问一个安全受限页面的请求来自于同一个网站,而如果黑客要对其实施 CSRF
    攻击,他一般只能在他自己的网站构造请求。因此,可以通过验证Referer值来防御CSRF 攻击。

    2. 使用验证码

    关键操作页面加上验证码,后台收到请求后通过判断验证码可以防御CSRF。但这种方法对用户不太友好。

    3. 在请求地址中添加token并验证

    CSRF 攻击之所以能够成功,是因为黑客可以完全伪造用户的请求,该请求中所有的用户验证信息都是存在于cookie中,因此黑客可以在不知道这些验证信息的情况下直接利用用户自己的cookie 来通过安全验证。要抵御 CSRF,关键在于在请求中放入黑客所不能伪造的信息,并且该信息不存在于 cookie 之中。可以在 HTTP 请求中以参数的形式加入一个随机产生的 token,并在服务器端建立一个拦截器来验证这个 token,如果请求中没有token或者 token 内容不正确,则认为可能是 CSRF 攻击而拒绝该请求。这种方法要比检查 Referer 要安全一些,token 可以在用户登陆后产生并放于session之中,然后在每次请求时把token 从 session 中拿出,与请求中的 token 进行比对,但这种方法的难点在于如何把 token 以参数的形式加入请求。
    对于 GET 请求,token 将附在请求地址之后,这样 URL 就变成 http://url?csrftoken=tokenvalue。
    而对于 POST 请求来说,要在 form 的最后加上 <input type="hidden" name="csrftoken" value="tokenvalue"/>,这样就把token以参数的形式加入请求了。

    4. 在HTTP 头中自定义属性并验证

    这种方法也是使用 token 并进行验证,和上一种方法不同的是,这里并不是把 token 以参数的形式置于 HTTP 请求之中,而是把它放到 HTTP 头中自定义的属性里。通过 XMLHttpRequest 这个类,可以一次性给所有该类请求加上 csrftoken 这个 HTTP 头属性,并把 token 值放入其中。这样解决了上种方法在请求中加入 token 的不便,同时,通过 XMLHttpRequest 请求的地址不会被记录到浏览器的地址栏,也不用担心 token 会透过 Referer 泄露到其他网站中去。


    七、异常

    74. throw 和 throws 的区别?

    throws是用来声明一个方法可能抛出的所有异常信息,throws是将异常声明但是不处理,而是将异常往上传,谁调用我就交给谁处理。而throw则是指抛出的一个具体的异常类型。

    75. final、finally、finalize 有什么区别?

    • final可以修饰类、变量、方法,修饰类表示该类不能被继承、修饰方法表示该方法不能被重写、修饰变量表示该变量是一个常量不能被重新赋值。
    • finally一般作用在try-catch代码块中,在处理异常的时候,通常我们将一定要执行的代码方法finally代码块中,表示不管是否出现异常,该代码块都会执行,一般用来存放一些关闭资源的代码。
    • finalize是一个方法,属于Object类的一个方法,而Object类是所有类的父类,该方法一般由垃圾回收器来调用,当我们调用System的gc()方法的时候,由垃圾回收器调用finalize(),回收垃圾。 

    76. try-catch-finally 中哪个部分可以省略?

    答:catch 可以省略

    原因:

    更为严格的说法其实是:try只适合处理运行时异常,try+catch适合处理运行时异常+普通异常。也就是说,如果你只用try去处理普通异常却不加以catch处理,编译是通不过的,因为编译器硬性规定,普通异常如果选择捕获,则必须用catch显示声明以便进一步处理。而运行时异常在编译时没有如此规定,所以catch可以省略,你加上catch编译器也觉得无可厚非。

    理论上,编译器看任何代码都不顺眼,都觉得可能有潜在的问题,所以你即使对所有代码加上try,代码在运行期时也只不过是在正常运行的基础上加一层皮。但是你一旦对一段代码加上try,就等于显示地承诺编译器,对这段代码可能抛出的异常进行捕获而非向上抛出处理。如果是普通异常,编译器要求必须用catch捕获以便进一步处理;如果运行时异常,捕获然后丢弃并且+finally扫尾处理,或者加上catch捕获以便进一步处理。

    至于加上finally,则是在不管有没捕获异常,都要进行的“扫尾”处理。

    77. try-catch-finally 中,如果 catch 中 return 了,finally 还会执行吗?

    答:会执行,在 return 前执行。

    代码示例1:

    
    /*
     * java面试题--如果catch里面有return语句,finally里面的代码还会执行吗?
     */
    public class FinallyDemo2 {
        public static void main(String[] args) {
            System.out.println(getInt());
        }
    
        public static int getInt() {
            int a = 10;
            try {
                System.out.println(a / 0);
                a = 20;
            } catch (ArithmeticException e) {
                a = 30;
                return a;
                /*
                 * return a 在程序执行到这一步的时候,这里不是return a 而是 return 30;这个返回路径就形成了
                 * 但是呢,它发现后面还有finally,所以继续执行finally的内容,a=40
                 * 再次回到以前的路径,继续走return 30,形成返回路径之后,这里的a就不是a变量了,而是常量30
                 */
            } finally {
                a = 40;
            }
    
    //      return a;
        }
    }

    执行结果:30

    代码示例2:

    
    package com.java_02;
    
    /*
     * java面试题--如果catch里面有return语句,finally里面的代码还会执行吗?
     */
    public class FinallyDemo2 {
        public static void main(String[] args) {
            System.out.println(getInt());
        }
    
        public static int getInt() {
            int a = 10;
            try {
                System.out.println(a / 0);
                a = 20;
            } catch (ArithmeticException e) {
                a = 30;
                return a;
                /*
                 * return a 在程序执行到这一步的时候,这里不是return a 而是 return 30;这个返回路径就形成了
                 * 但是呢,它发现后面还有finally,所以继续执行finally的内容,a=40
                 * 再次回到以前的路径,继续走return 30,形成返回路径之后,这里的a就不是a变量了,而是常量30
                 */
            } finally {
                a = 40;
                return a; //如果这样,就又重新形成了一条返回路径,由于只能通过1个return返回,所以这里直接返回40
            }
    
    //      return a;
        }
    }

    执行结果:40

    78. 常见的异常类有哪些?

    • NullPointerException:当应用程序试图访问空对象时,则抛出该异常。
    • SQLException:提供关于数据库访问错误或其他错误信息的异常。
    • IndexOutOfBoundsException:指示某排序索引(例如对数组、字符串或向量的排序)超出范围时抛出。 
    • NumberFormatException:当应用程序试图将字符串转换成一种数值类型,但该字符串不能转换为适当格式时,抛出该异常。
    • FileNotFoundException:当试图打开指定路径名表示的文件失败时,抛出此异常。
    • IOException:当发生某种I/O异常时,抛出此异常。此类是失败或中断的I/O操作生成的异常的通用类。
    • ClassCastException:当试图将对象强制转换为不是实例的子类时,抛出该异常。
    • ArrayStoreException:试图将错误类型的对象存储到一个对象数组时抛出的异常。
    • IllegalArgumentException:抛出的异常表明向方法传递了一个不合法或不正确的参数。
    • ArithmeticException:当出现异常的运算条件时,抛出此异常。例如,一个整数“除以零”时,抛出此类的一个实例。 
    • NegativeArraySizeException:如果应用程序试图创建大小为负的数组,则抛出该异常。
    • NoSuchMethodException:无法找到某一特定方法时,抛出该异常。
    • SecurityException:由安全管理器抛出的异常,指示存在安全侵犯。
    • UnsupportedOperationException:当不支持请求的操作时,抛出该异常。
    • RuntimeExceptionRuntimeException:是那些可能在Java虚拟机正常运行期间抛出的异常的超类。

    八、网络

    79. http 响应码 301 和 302 代表的是什么?有什么区别?

    答:301,302 都是HTTP状态的编码,都代表着某个URL发生了转移。

    区别: 

    • 301 redirect: 301 代表永久性转移(Permanently Moved)。
    • 302 redirect: 302 代表暂时性转移(Temporarily Moved )。 

    80. forward 和 redirect 的区别?

    Forward和Redirect代表了两种请求转发方式:直接转发和间接转发。

    直接转发方式(Forward),客户端和浏览器只发出一次请求,Servlet、HTML、JSP或其它信息资源,由第二个信息资源响应该请求,在请求对象request中,保存的对象对于每个信息资源是共享的。

    间接转发方式(Redirect)实际是两次HTTP请求,服务器端在响应第一次请求的时候,让浏览器再向另外一个URL发出请求,从而达到转发的目的。

    举个通俗的例子:

    直接转发就相当于:“A找B借钱,B说没有,B去找C借,借到借不到都会把消息传递给A”;

    间接转发就相当于:"A找B借钱,B说没有,让A去找C借"。

    81. 简述 tcp 和 udp的区别?

    • TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接。
    • TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付。
    • Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。
    • UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。
    • 每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信。
    • TCP对系统资源要求较多,UDP对系统资源要求较少。

    82. tcp 为什么要三次握手,两次不行吗?为什么?

    为了实现可靠数据传输, TCP 协议的通信双方, 都必须维护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤。

    如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认。

    83. 说一下 tcp 粘包是怎么产生的?

    ①. 发送方产生粘包

    采用TCP协议传输数据的客户端与服务器经常是保持一个长连接的状态(一次连接发一次数据不存在粘包),双方在连接不断开的情况下,可以一直传输数据;但当发送的数据包过于的小时,那么TCP协议默认的会启用Nagle算法,将这些较小的数据包进行合并发送(缓冲区数据发送是一个堆压的过程);这个合并过程就是在发送缓冲区中进行的,也就是说数据发送出来它已经是粘包的状态了。

    ②. 接收方产生粘包

    接收方采用TCP协议接收数据时的过程是这样的:数据到底接收方,从网络模型的下方传递至传输层,传输层的TCP协议处理是将其放置接收缓冲区,然后由应用层来主动获取(C语言用recv、read等函数);这时会出现一个问题,就是我们在程序中调用的读取数据函数不能及时的把缓冲区中的数据拿出来,而下一个数据又到来并有一部分放入的缓冲区末尾,等我们读取数据时就是一个粘包。(放数据的速度 > 应用层拿数据速度) 

    84. OSI 的七层模型都有哪些?

    1. 应用层:网络服务与最终用户的一个接口。
    2. 表示层:数据的表示、安全、压缩。
    3. 会话层:建立、管理、终止会话。
    4. 传输层:定义传输数据的协议端口号,以及流控和差错校验。
    5. 网络层:进行逻辑地址寻址,实现不同网络之间的路径选择。
    6. 数据链路层:建立逻辑连接、进行硬件地址寻址、差错校验等功能。
    7. 物理层:建立、维护、断开物理连接。

    85. get 和 post 请求有哪些区别?

    • GET在浏览器回退时是无害的,而POST会再次提交请求。
    • GET产生的URL地址可以被Bookmark,而POST不可以。
    • GET请求会被浏览器主动cache,而POST不会,除非手动设置。
    • GET请求只能进行url编码,而POST支持多种编码方式。
    • GET请求参数会被完整保留在浏览器历史记录里,而POST中的参数不会被保留。
    • GET请求在URL中传送的参数是有长度限制的,而POST么有。
    • 对参数的数据类型,GET只接受ASCII字符,而POST没有限制。
    • GET比POST更不安全,因为参数直接暴露在URL上,所以不能用来传递敏感信息。
    • GET参数通过URL传递,POST放在Request body中。

    86. 如何实现跨域?

    方式一:图片ping或script标签跨域

    图片ping常用于跟踪用户点击页面或动态广告曝光次数。 
    script标签可以得到从其他来源数据,这也是JSONP依赖的根据。 

    方式二:JSONP跨域

    JSONP(JSON with Padding)是数据格式JSON的一种“使用模式”,可以让网页从别的网域要数据。根据 XmlHttpRequest 对象受到同源策略的影响,而利用 <script>元素的这个开放策略,网页可以得到从其他来源动态产生的JSON数据,而这种使用模式就是所谓的 JSONP。用JSONP抓到的数据并不是JSON,而是任意的JavaScript,用 JavaScript解释器运行而不是用JSON解析器解析。所有,通过Chrome查看所有JSONP发送的Get请求都是js类型,而非XHR。 

    缺点:

    • 只能使用Get请求
    • 不能注册success、error等事件监听函数,不能很容易的确定JSONP请求是否失败
    • JSONP是从其他域中加载代码执行,容易受到跨站请求伪造的攻击,其安全性无法确保

    方式三:CORS

    Cross-Origin Resource Sharing(CORS)跨域资源共享是一份浏览器技术的规范,提供了 Web 服务从不同域传来沙盒脚本的方法,以避开浏览器的同源策略,确保安全的跨域数据传输。现代浏览器使用CORS在API容器如XMLHttpRequest来减少HTTP请求的风险来源。与 JSONP 不同,CORS 除了 GET 要求方法以外也支持其他的 HTTP 要求。服务器一般需要增加如下响应头的一种或几种:

    Access-Control-Allow-Origin: *
    Access-Control-Allow-Methods: POST, GET, OPTIONS
    Access-Control-Allow-Headers: X-PINGOTHER, Content-Type
    Access-Control-Max-Age: 86400

    跨域请求默认不会携带Cookie信息,如果需要携带,请配置下述参数:

    "Access-Control-Allow-Credentials": true
    // Ajax设置
    "withCredentials": true

    方式四:window.name+iframe

    window.name通过在iframe(一般动态创建i)中加载跨域HTML文件来起作用。然后,HTML文件将传递给请求者的字符串内容赋值给window.name。然后,请求者可以检索window.name值作为响应。

    • iframe标签的跨域能力;
    • window.name属性值在文档刷新后依旧存在的能力(且最大允许2M左右)。

    每个iframe都有包裹它的window,而这个window是top window的子窗口。contentWindow属性返回<iframe>元素的Window对象。你可以使用这个Window对象来访问iframe的文档及其内部DOM。

    <!-- 
     下述用端口 
     10000表示:domainA
     10001表示:domainB
    -->
    
    <!-- localhost:10000 -->
    <script>
      var iframe = document.createElement('iframe');
      iframe.style.display = 'none'; // 隐藏
    
      var state = 0; // 防止页面无限刷新
      iframe.onload = function() {
          if(state === 1) {
              console.log(JSON.parse(iframe.contentWindow.name));
              // 清除创建的iframe
              iframe.contentWindow.document.write('');
              iframe.contentWindow.close();
              document.body.removeChild(iframe);
          } else if(state === 0) {
              state = 1;
              // 加载完成,指向当前域,防止错误(proxy.html为空白页面)
              // Blocked a frame with origin "http://localhost:10000" from accessing a cross-origin frame.
              iframe.contentWindow.location = 'http://localhost:10000/proxy.html';
          }
      };
    
      iframe.src = 'http://localhost:10001';
      document.body.appendChild(iframe);
    </script>
    
    <!-- localhost:10001 -->
    <!DOCTYPE html>
    ...
    <script>
      window.name = JSON.stringify({a: 1, b: 2});
    </script>
    </html>
    

    方式五:window.postMessage()

    HTML5新特性,可以用来向其他所有的 window 对象发送消息。需要注意的是我们必须要保证所有的脚本执行完才发送 MessageEvent,如果在函数执行的过程中调用了它,就会让后面的函数超时无法执行。

    下述代码实现了跨域存储localStorage

    <!-- 
     下述用端口 
     10000表示:domainA
     10001表示:domainB
    -->
    
    <!-- localhost:10000 -->
    <iframe src="http://localhost:10001/msg.html" name="myPostMessage" style="display:none;">
    </iframe>
    
    <script>
      function main() {
          LSsetItem('test', 'Test: ' + new Date());
          LSgetItem('test', function(value) {
              console.log('value: ' + value);
          });
          LSremoveItem('test');
      }
    
      var callbacks = {};
      window.addEventListener('message', function(event) {
          if (event.source === frames['myPostMessage']) {
              console.log(event)
              var data = /^#localStorage#(\d+)(null)?#([\S\s]*)/.exec(event.data);
              if (data) {
                  if (callbacks[data[1]]) {
                      callbacks[data[1]](data[2] === 'null' ? null : data[3]);
                  }
                  delete callbacks[data[1]];
              }
          }
      }, false);
    
      var domain = '*';
      // 增加
      function LSsetItem(key, value) {
          var obj = {
              setItem: key,
              value: value
          };
          frames['myPostMessage'].postMessage(JSON.stringify(obj), domain);
      }
      // 获取
      function LSgetItem(key, callback) {
          var identifier = new Date().getTime();
          var obj = {
              identifier: identifier,
              getItem: key
          };
          callbacks[identifier] = callback;
          frames['myPostMessage'].postMessage(JSON.stringify(obj), domain);
      }
      // 删除
      function LSremoveItem(key) {
          var obj = {
              removeItem: key
          };
          frames['myPostMessage'].postMessage(JSON.stringify(obj), domain);
      }
    </script>
    
    <!-- localhost:10001 -->
    <script>
      window.addEventListener('message', function(event) {
        console.log('Receiver debugging', event);
        if (event.origin == 'http://localhost:10000') {
          var data = JSON.parse(event.data);
          if ('setItem' in data) {
            localStorage.setItem(data.setItem, data.value);
          } else if ('getItem' in data) {
            var gotItem = localStorage.getItem(data.getItem);
            event.source.postMessage(
              '#localStorage#' + data.identifier +
              (gotItem === null ? 'null#' : '#' + gotItem),
              event.origin
            );
          } else if ('removeItem' in data) {
            localStorage.removeItem(data.removeItem);
          }
        }
      }, false);
    </script>

    注意Safari一下,会报错:

    Blocked a frame with origin “http://localhost:10001” from accessing a frame with origin “http://localhost:10000“. Protocols, domains, and ports must match.

    避免该错误,可以在Safari浏览器中勾选开发菜单==>停用跨域限制。或者只能使用服务器端转存的方式实现,因为Safari浏览器默认只支持CORS跨域请求。

    方式六:修改document.domain跨子域

    前提条件:这两个域名必须属于同一个基础域名!而且所用的协议,端口都要一致,否则无法利用document.domain进行跨域,所以只能跨子域

    在根域范围内,允许把domain属性的值设置为它的上一级域。例如,在”aaa.xxx.com”域内,可以把domain设置为 “xxx.com” 但不能设置为 “xxx.org” 或者”com”。

    现在存在两个域名aaa.xxx.com和bbb.xxx.com。在aaa下嵌入bbb的页面,由于其document.name不一致,无法在aaa下操作bbb的js。可以在aaa和bbb下通过js将document.name = 'xxx.com';设置一致,来达到互相访问的作用。

    方式七:WebSocket

    WebSocket protocol 是HTML5一种新的协议。它实现了浏览器与服务器全双工通信,同时允许跨域通讯,是server push技术的一种很棒的实现。相关文章,请查看:WebSocket、WebSocket-SockJS

    需要注意:WebSocket对象不支持DOM 2级事件侦听器,必须使用DOM 0级语法分别定义各个事件。

    方式八:代理

    同源策略是针对浏览器端进行的限制,可以通过服务器端来解决该问题

    DomainA客户端(浏览器) ==> DomainA服务器 ==> DomainB服务器 ==> DomainA客户端(浏览器)

    来源:blog.csdn.net/ligang2585116/article/details/73072868

    87.说一下 JSONP 实现原理?

    jsonp 即 json+padding,动态创建script标签,利用script标签的src属性可以获取任何域下的js脚本,通过这个特性(也可以说漏洞),服务器端不在返货json格式,而是返回一段调用某个函数的js代码,在src中进行了调用,这样实现了跨域。


    九、设计模式

    88. 说一下你熟悉的设计模式?

    参考:常用的设计模式汇总,超详细!

    89. 简单工厂和抽象工厂有什么区别?

    简单工厂模式

    这个模式本身很简单而且使用在业务较简单的情况下。一般用于小项目或者具体产品很少扩展的情况(这样工厂类才不用经常更改)。

    它由三种角色组成:

    • 工厂类角色:这是本模式的核心,含有一定的商业逻辑和判断逻辑,根据逻辑不同,产生具体的工厂产品。如例子中的Driver类。
    • 抽象产品角色:它一般是具体产品继承的父类或者实现的接口。由接口或者抽象类来实现。如例中的Car接口。
    • 具体产品角色:工厂类所创建的对象就是此角色的实例。在java中由一个具体类实现,如例子中的Benz、Bmw类。

    来用类图来清晰的表示下的它们之间的关系:

    抽象工厂模式:

    先来认识下什么是产品族: 位于不同产品等级结构中,功能相关联的产品组成的家族。

    图中的BmwCar和BenzCar就是两个产品树(产品层次结构);而如图所示的BenzSportsCar和BmwSportsCar就是一个产品族。他们都可以放到跑车家族中,因此功能有所关联。同理BmwBussinessCar和BenzBusinessCar也是一个产品族。

    可以这么说,它和工厂方法模式的区别就在于需要创建对象的复杂程度上。而且抽象工厂模式是三个里面最为抽象、最具一般性的。抽象工厂模式的用意为:给客户端提供一个接口,可以创建多个产品族中的产品对象。

    而且使用抽象工厂模式还要满足一下条件:

    1. 系统中有多个产品族,而系统一次只可能消费其中一族产品
    2. 同属于同一个产品族的产品以其使用。

    来看看抽象工厂模式的各个角色(和工厂方法的如出一辙):

    • 抽象工厂角色: 这是工厂方法模式的核心,它与应用程序无关。是具体工厂角色必须实现的接口或者必须继承的父类。在java中它由抽象类或者接口来实现。
    • 具体工厂角色:它含有和具体业务逻辑有关的代码。由应用程序调用以创建对应的具体产品的对象。在java中它由具体的类来实现。
    • 抽象产品角色:它是具体产品继承的父类或者是实现的接口。在java中一般有抽象类或者接口来实现。
    • 具体产品角色:具体工厂角色所创建的对象就是此角色的实例。在java中由具体的类来实现。

    十、Spring / Spring MVC

    90. 为什么要使用 spring?

    1.简介

    • 目的:解决企业应用开发的复杂性
    • 功能:使用基本的JavaBean代替EJB,并提供了更多的企业应用功能
    • 范围:任何Java应用

    简单来说,Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。

    2.轻量 

    从大小与开销两方面而言Spring都是轻量的。完整的Spring框架可以在一个大小只有1MB多的JAR文件里发布。并且Spring所需的处理开销也是微不足道的。此外,Spring是非侵入式的:典型地,Spring应用中的对象不依赖于Spring的特定类。

    3.控制反转  

    Spring通过一种称作控制反转(IoC)的技术促进了松耦合。当应用了IoC,一个对象依赖的其它对象会通过被动的方式传递进来,而不是这个对象自己创建或者查找依赖对象。你可以认为IoC与JNDI相反——不是对象从容器中查找依赖,而是容器在对象初始化时不等对象请求就主动将依赖传递给它。

    4.面向切面  

    Spring提供了面向切面编程的丰富支持,允许通过分离应用的业务逻辑与系统级服务(例如审计(auditing)和事务(transaction)管理)进行内聚性的开发。应用对象只实现它们应该做的——完成业务逻辑——仅此而已。它们并不负责(甚至是意识)其它的系统级关注点,例如日志或事务支持。

    5.容器

    Spring包含并管理应用对象的配置和生命周期,在这个意义上它是一种容器,你可以配置你的每个bean如何被创建——基于一个可配置原型(prototype),你的bean可以创建一个单独的实例或者每次需要时都生成一个新的实例——以及它们是如何相互关联的。然而,Spring不应该被混同于传统的重量级的EJB容器,它们经常是庞大与笨重的,难以使用。

    6.框架

    Spring可以将简单的组件配置、组合成为复杂的应用。在Spring中,应用对象被声明式地组合,典型地是在一个XML文件里。Spring也提供了很多基础功能(事务管理、持久化框架集成等等),将应用逻辑的开发留给了你。

    所有Spring的这些特征使你能够编写更干净、更可管理、并且更易于测试的代码。它们也为Spring中的各种模块提供了基础支持。

    91. 解释一下什么是 aop?

    AOP(Aspect-Oriented Programming,面向方面编程),可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善。OOP引入封装、继承和多态性等概念来建立一种对象层次结构,用以模拟公共行为的一个集合。当我们需要为分散的对象引入公共行为的时候,OOP则显得无能为力。也就是说,OOP允许你定义从上到下的关系,但并不适合定义从左到右的关系。例如日志功能。日志代码往往水平地散布在所有对象层次中,而与它所散布到的对象的核心功能毫无关系。对于其他类型的代码,如安全性、异常处理和透明的持续性也是如此。这种散布在各处的无关的代码被称为横切(cross-cutting)代码,在OOP设计中,它导致了大量代码的重复,而不利于各个模块的重用。

    而AOP技术则恰恰相反,它利用一种称为“横切”的技术,剖解开封装的对象内部,并将那些影响了多个类的公共行为封装到一个可重用模块,并将其名为“Aspect”,即方面。所谓“方面”,简单地说,就是将那些与业务无关,却为业务模块所共同调用的逻辑或责任封装起来,便于减少系统的重复代码,降低模块间的耦合度,并有利于未来的可操作性和可维护性。AOP代表的是一个横向的关系,如果说“对象”是一个空心的圆柱体,其中封装的是对象的属性和行为;那么面向方面编程的方法,就仿佛一把利刃,将这些空心圆柱体剖开,以获得其内部的消息。而剖开的切面,也就是所谓的“方面”了。然后它又以巧夺天功的妙手将这些剖开的切面复原,不留痕迹。

    使用“横切”技术,AOP把软件系统分为两个部分:核心关注点和横切关注点。业务处理的主要流程是核心关注点,与之关系不大的部分是横切关注点。横切关注点的一个特点是,他们经常发生在核心关注点的多处,而各处都基本相似。比如权限认证、日志、事务处理。Aop 的作用在于分离系统中的各种关注点,将核心关注点和横切关注点分离开来。正如Avanade公司的高级方案构架师Adam Magee所说,AOP的核心思想就是“将应用程序中的商业逻辑同对其提供支持的通用服务进行分离。”

    92. 解释一下什么是 ioc?

    IOC是Inversion of Control的缩写,多数书籍翻译成“控制反转”。

    1996年,Michael Mattson在一篇有关探讨面向对象框架的文章中,首先提出了IOC 这个概念。对于面向对象设计及编程的基本思想,前面我们已经讲了很多了,不再赘述,简单来说就是把复杂系统分解成相互合作的对象,这些对象类通过封装以后,内部实现对外部是透明的,从而降低了解决问题的复杂度,而且可以灵活地被重用和扩展。

    IOC理论提出的观点大体是这样的:借助于“第三方”实现具有依赖关系的对象之间的解耦。如下图:

    大家看到了吧,由于引进了中间位置的“第三方”,也就是IOC容器,使得A、B、C、D这4个对象没有了耦合关系,齿轮之间的传动全部依靠“第三方”了,全部对象的控制权全部上缴给“第三方”IOC容器,所以,IOC容器成了整个系统的关键核心,它起到了一种类似“粘合剂”的作用,把系统中的所有对象粘合在一起发挥作用,如果没有这个“粘合剂”,对象与对象之间会彼此失去联系,这就是有人把IOC容器比喻成“粘合剂”的由来。

    我们再来做个试验:把上图中间的IOC容器拿掉,然后再来看看这套系统:

    我们现在看到的画面,就是我们要实现整个系统所需要完成的全部内容。这时候,A、B、C、D这4个对象之间已经没有了耦合关系,彼此毫无联系,这样的话,当你在实现A的时候,根本无须再去考虑B、C和D了,对象之间的依赖关系已经降低到了最低程度。所以,如果真能实现IOC容器,对于系统开发而言,这将是一件多么美好的事情,参与开发的每一成员只要实现自己的类就可以了,跟别人没有任何关系!

    我们再来看看,控制反转(IOC)到底为什么要起这么个名字?我们来对比一下:

    软件系统在没有引入IOC容器之前,如图1所示,对象A依赖于对象B,那么对象A在初始化或者运行到某一点的时候,自己必须主动去创建对象B或者使用已经创建的对象B。无论是创建还是使用对象B,控制权都在自己手上。

    软件系统在引入IOC容器之后,这种情形就完全改变了,如图3所示,由于IOC容器的加入,对象A与对象B之间失去了直接联系,所以,当对象A运行到需要对象B的时候,IOC容器会主动创建一个对象B注入到对象A需要的地方。

    通过前后的对比,我们不难看出来:对象A获得依赖对象B的过程,由主动行为变为了被动行为,控制权颠倒过来了,这就是“控制反转”这个名称的由来。

    93. spring 有哪些主要模块?

    Spring框架至今已集成了20多个模块。这些模块主要被分如下图所示的核心容器、数据访问/集成,、Web、AOP(面向切面编程)、工具、消息和测试模块。

    更多信息:howtodoinjava.com/java-spring-framework-tutorials/

    94. spring 常用的注入方式有哪些?

    Spring通过DI(依赖注入)实现IOC(控制反转),常用的注入方式主要有三种:

    1. 构造方法注入
    2. setter注入
    3. 基于注解的注入

    95. spring 中的 bean 是线程安全的吗?

    Spring容器中的Bean是否线程安全,容器本身并没有提供Bean的线程安全策略,因此可以说spring容器中的Bean本身不具备线程安全的特性,但是具体还是要结合具体scope的Bean去研究。

    96. spring 支持几种 bean 的作用域?

    当通过spring容器创建一个Bean实例时,不仅可以完成Bean实例的实例化,还可以为Bean指定特定的作用域。Spring支持如下5种作用域:

    • singleton:单例模式,在整个Spring IoC容器中,使用singleton定义的Bean将只有一个实例
    • prototype:原型模式,每次通过容器的getBean方法获取prototype定义的Bean时,都将产生一个新的Bean实例
    • request:对于每次HTTP请求,使用request定义的Bean都将产生一个新实例,即每次HTTP请求将会产生不同的Bean实例。只有在Web应用中使用Spring时,该作用域才有效
    • session:对于每次HTTP Session,使用session定义的Bean豆浆产生一个新实例。同样只有在Web应用中使用Spring时,该作用域才有效
    • globalsession:每个全局的HTTP Session,使用session定义的Bean都将产生一个新实例。典型情况下,仅在使用portlet context的时候有效。同样只有在Web应用中使用Spring时,该作用域才有效

    其中比较常用的是singleton和prototype两种作用域。对于singleton作用域的Bean,每次请求该Bean都将获得相同的实例。容器负责跟踪Bean实例的状态,负责维护Bean实例的生命周期行为;如果一个Bean被设置成prototype作用域,程序每次请求该id的Bean,Spring都会新建一个Bean实例,然后返回给程序。在这种情况下,Spring容器仅仅使用new 关键字创建Bean实例,一旦创建成功,容器不在跟踪实例,也不会维护Bean实例的状态。

    如果不指定Bean的作用域,Spring默认使用singleton作用域。Java在创建Java实例时,需要进行内存申请;销毁实例时,需要完成垃圾回收,这些工作都会导致系统开销的增加。因此,prototype作用域Bean的创建、销毁代价比较大。而singleton作用域的Bean实例一旦创建成功,可以重复使用。因此,除非必要,否则尽量避免将Bean被设置成prototype作用域。

    97. spring 自动装配 bean 有哪些方式?

    Spring容器负责创建应用程序中的bean同时通过ID来协调这些对象之间的关系。作为开发人员,我们需要告诉Spring要创建哪些bean并且如何将其装配到一起。

    spring中bean装配有两种方式:

    • 隐式的bean发现机制和自动装配
    • 在java代码或者XML中进行显示配置

    当然这些方式也可以配合使用。

    98. spring 事务实现方式有哪些?

    1. 编程式事务管理对基于 POJO 的应用来说是唯一选择。我们需要在代码中调用beginTransaction()、commit()、rollback()等事务管理相关的方法,这就是编程式事务管理。
    2. 基于 TransactionProxyFactoryBean 的声明式事务管理
    3. 基于 @Transactional 的声明式事务管理
    4. 基于 Aspectj AOP 配置事务

    99. 说一下 spring 的事务隔离?

    事务隔离级别指的是一个事务对数据的修改与另一个并行的事务的隔离程度,当多个事务同时访问相同数据时,如果没有采取必要的隔离机制,就可能发生以下问题:

    • 脏读:一个事务读到另一个事务未提交的更新数据。
    • 幻读:例如第一个事务对一个表中的数据进行了修改,比如这种修改涉及到表中的“全部数据行”。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入“一行新数据”。那么,以后就会发生操作第一个事务的用户发现表中还存在没有修改的数据行,就好象发生了幻觉一样。
    • 不可重复读:比方说在同一个事务中先后执行两条一模一样的select语句,期间在此次事务中没有执行过任何DDL语句,但先后得到的结果不一致,这就是不可重复读。

    100. 说一下 spring mvc 运行流程?

    Spring MVC运行流程图:

    Spring运行流程描述:

    1. 用户向服务器发送请求,请求被Spring 前端控制Servelt DispatcherServlet捕获;

    2. DispatcherServlet对请求URL进行解析,得到请求资源标识符(URI)。然后根据该URI,调用HandlerMapping获得该Handler配置的所有相关的对象(包括Handler对象以及Handler对象对应的拦截器),最后以HandlerExecutionChain对象的形式返回;

    3. DispatcherServlet 根据获得的Handler,选择一个合适的HandlerAdapter;(附注:如果成功获得HandlerAdapter后,此时将开始执行拦截器的preHandler(...)方法)

    4.  提取Request中的模型数据,填充Handler入参,开始执行Handler(Controller)。 在填充Handler的入参过程中,根据你的配置,Spring将帮你做一些额外的工作:

    • HttpMessageConveter: 将请求消息(如Json、xml等数据)转换成一个对象,将对象转换为指定的响应信息
    • 数据转换:对请求消息进行数据转换。如String转换成Integer、Double等
    • 数据根式化:对请求消息进行数据格式化。 如将字符串转换成格式化数字或格式化日期等
    • 数据验证: 验证数据的有效性(长度、格式等),验证结果存储到BindingResult或Error中

    5.  Handler执行完成后,向DispatcherServlet 返回一个ModelAndView对象;

    6.  根据返回的ModelAndView,选择一个适合的ViewResolver(必须是已经注册到Spring容器中的ViewResolver)返回给DispatcherServlet ;

    7. ViewResolver 结合Model和View,来渲染视图;

    8. 将渲染结果返回给客户端。

    101. spring mvc 有哪些组件?

    Spring MVC的核心组件:

    1. DispatcherServlet:中央控制器,把请求给转发到具体的控制类
    2. Controller:具体处理请求的控制器
    3. HandlerMapping:映射处理器,负责映射中央处理器转发给controller时的映射策略
    4. ModelAndView:服务层返回的数据和视图层的封装类
    5. ViewResolver:视图解析器,解析具体的视图
    6. Interceptors :拦截器,负责拦截我们定义的请求然后做处理工作

    102. @RequestMapping 的作用是什么?

    RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。

    RequestMapping注解有六个属性,下面我们把她分成三类进行说明。

    value, method:

    • value:指定请求的实际地址,指定的地址可以是URI Template 模式(后面将会说明);
    • method:指定请求的method类型, GET、POST、PUT、DELETE等;

    consumes,produces

    • consumes:指定处理请求的提交内容类型(Content-Type),例如application/json, text/html;
    • produces:指定返回的内容类型,仅当request请求头中的(Accept)类型中包含该指定类型才返回;

    params,headers

    • params: 指定request中必须包含某些参数值是,才让该方法处理。
    • headers:指定request中必须包含某些指定的header值,才能让该方法处理请求。

    103. @Autowired 的作用是什么?

    《@Autowired用法详解》


    未完待续......


    欢迎大家关注我的公众号:Java团长,后续面试题更新之后可以在第一时间获取~

    展开全文
  • 用于在一行书写多个语句,而不是, 思考题:9 9.下列Python语句的输出结果是 def f():pass print(type(f())) 结果: NoneType数据类型包含唯一值None,主要用于表示空值,如没有返回值的函数的结果 上机实践:2~6 2. ...

    (还在更新中…) 这篇博客花费了我的大量时间和精力,从创作到维护;若认可本篇博客,希望给一个点赞、收藏

    并且,遇到了什么问题,请在评论区留言,我会及时回复的


    这本书对Python的知识点的描述很详细,而且排版看的很舒服

    1. 几个例题: 假装自己从零开始学,将一些有代表性、有意思的例题抽取出来
    2. 部分复习题: 遇到有意思的复习题,我会拿出来,并且进行分析
    3. 上机实践: 全部上机实践题的解题思路

    文章目录

    第一章 Python概述


    几个例题

    一:Python3.7.4下载

    python3.7.4下载地址:https://www.python.org/downloads/release/python-374/
    页面最下面:

    下载,安装完python后:出现的四个玩意:Python 3.7 Module Docs,IDLE,Python 3.7 Manuals,Python 3.7(64-bit)

    1. Python 3.7 Module Docs(64-bit)
      点击之后,会出现一个网页(将我下载的Python3.7.4文件夹中包含的模块都列了出来,页面不止这么点,还可以往下拉)

    2. IDLE(Python 3.7 64-bit)
      一个Python编辑器,Python内置的集成开发工具

    3. Python 3.7 Manuals(64-bit)
      Python 3.7 开发手册

    4. Python 3.7(64-bit)
      控制台中运行Python

    二:更新pip和setuptools包,安装NumPy包,安装Matplotlib包

    以下三个命令都是在控制台(windows中的cmd)中运行

    更新pip和setuptools包

    1. pip用于安装和管理Python扩展包
    2. setuptools用于发布Python包
    python -m pip install -U pip setuptools
    

    安装NumPy

    Python扩展模块NumPy提供了数组和矩阵处理,以及傅立叶变换等高效的数值处理功能

     python -m pip install NumPy
    

    安装Matplotlib包

    Matplotlib是Python最著名的绘图库之一,提供了一整套和MATLAB相似的命令API,既适合交互式地进行制图,也可以作为绘图控件方便地嵌入到GUI应用程序中

    python -m pip install Matplotlib
    

    三:使用IDLE打开和执行Python源文件程序

    首先:
    有一个.py文件test.py
    在这里插入图片描述

    使用IDLE打开.py文件的两种方式:

    1. 右键test.py---->Edit With IDLE---->Edit With IDLE 3.7(64-bit)
    2. 打开IDLE,然后File---->Open(或者ctrl+O)选择.py文件

    运行

    Run---->Run Module(或者F5
    就会出现这个界面,执行结果显示在这个界面中

    补充一点:
    如果在IDLE中编辑.py文件,记得修改后要保存(ctrl+s),再运行(F5

    四:使用资源管理器运行hello.py

    hello.py文件在桌面

    import random
    
    print("hello,Python")
    print("你今天的随机数字是:",random.choice(range(10)))#输出在0-9之间随机选择的整数
    input()
    
    1. 在桌面打开PowerShell(还有两种输入方式:python hello.py或者.\hello.py
    2. 或者在桌面打开cmd, 就输入hello.py或者python hello.py

    补充:上述两种命令中的hello.py都是相对路径,因为文件在桌面,而且我是在桌面打开cmd,所以文件路劲可以这么简简单单的写。如果文件存储位置和cmd打开位置不一样,请使用绝对路径

    五:命令行参数示例hello_argv.py

    hello_argv.py文件在桌面

    import sys
    
    print("Hello,",sys.argv[1])
    #这样写也行:
    #print("Hello,"+sys.argv[1])
    
    1. 在桌面打开PowerShell(还有两种输入方式:python hello_argv.py 任意输入或者./hello_argv.py 任意输入
    2. 或者在桌面打开cmd,就输入hello_argv.py 任意输入或者python hello_argv.py 任意输入

    补充:以图中第一个命令举例,hello_argv.pysys.argv[0]Pythonsys.argv[1]

    第二章 Python语言基础


    选择题:1、3、7、8

    1. 在Python中,以下标识符合法的是

    A. _B. 3CC. it’sB. str

    答案:A

    1. 标识符的第一个字符必须是字母,下划线(_);其后的字符可以是字母、下划线或数字。
    2. 一些特殊的名称,作为python语言的保留关键字,不能作为标识符
    3. 以双下划线开始和结束的名称通常具有特殊的含义。例如__init__为类的构造函数,一般应避免使用

    B:以数字开头,错误
    C:使用了',不是字母、下划线或数字
    D:str是保留关键字

    3. 在下列Python语句中非法的是

    A. x = y =1B. x = (y =1)C. x,y = y,xB. x=1;y=1

    答案:B,C

    7. 为了给整型变量x,y,z赋初值10,下面Python赋值语句正确的是

    A. xyz=10B. x=10 y=10 z=10C. x=y=z=10B. x=10,y=10,z=10

    答案:C

    1. 分号;用于在一行书写多个语句
    2. python支持链式赋值

    A:赋值对象是xyz
    B:分号;用于在一行书写多个语句,而不是' '(即空格)
    D:分号;用于在一行书写多个语句,而不是,

    8. 为了给整型变量x,y,z赋初值5,下面Python赋值语句正确的是

    A. x=5;y=5;z=5B. xyz=5C. x,y,z=10B. x=10,y=10,z=10

    答案:A

    Pytho能支持序列解包赋值,但是变量的个数必须与序列的元素个数一致,否则会报错

    B:赋值对象是xyz
    C:序列解包赋值,变量的个数必须与序列的元素个数一致,否则会报错
    D:分号;用于在一行书写多个语句,而不是,

    思考题:9

    9.下列Python语句的输出结果是

    def f():pass
    print(type(f()))
    

    结果:<class 'NoneType'>

    NoneType数据类型包含唯一值None,主要用于表示空值,如没有返回值的函数的结果

    上机实践:2~6

    2. 编写程序,输入本金、年利率和年数,计算复利(结果保留两位小数)

    money = int(input("请输入本金:"))
    rate = float(input("请输入年利率:"))
    years = int(input("请输入年数:"))
    amount = money*((1+rate/100)**years)
    print(str.format("本金利率和为:{0:2.2f}",amount))
    

    运行:

    请输入本金:1000
    请输入年利率:6.6
    请输入年数:10
    本金利率和为:1894.84
    

    3. 编写程序,输入球的半径,计算球的表面积和体积(结果保留两位小数)

    import math
    r = float(input("请输入球的半径:"))
    area = 4 * math.pi * r**2
    volume = 4/3*math.pi*r**3
    print(str.format("球的表面积为:{0:2.2f},体积为:{1:2.2f}",area,volume))
    

    运行:

    请输入球的半径:666
    球的表面积为:5573889.08,体积为:1237403376.70
    

    4. 编写程序,声明函数getValue(b,r,n),根据本金b,年利率r和年数n计算最终收益v

    money = int(input("请输入本金:"))
    rate = float(input("请输入年利率(<1):"))
    years = int(input("请输入年数:"))
    
    def getValue(b,r,n):
        return b*(1+r)**n
    
    print(str.format("本金利率和为:{0:2.2f}",getValue(money,rate,years)))
    

    运行:

    请输入本金:10000
    请输入年利率(<1):0.6
    请输入年数:6
    本金利率和为:167772.16
    

    5. 编写程序,求解一元二次方程x2-10x+16=0

    from math import sqrt 
    x = (10+sqrt(10*10-4*16))/2
    y = (10-sqrt(10*10-4*16))/2
    print(str.format("x*x-10*x+16=0的解为:{0:2.2f},{1:2.2f}",x,y))
    

    运行:

    x*x-10*x+16=0的解为:8.00,2.00
    

    6. 编写程序,提示输入姓名和出生年份,输出姓名和年龄

    import datetime
    sName = str(input("请输入您的姓名:"))
    birthday = int(input("请输入您的出生年份:"))
    age = datetime.date.today().year - birthday
    print("您好!{0}。您{1}岁。".format(sName,age))
    

    运行:

    请输入您的姓名:zgh
    请输入您的出生年份:1999
    您好!zgh。您20岁。
    

    案例研究:使用Pillow库处理图像文件

    https://blog.csdn.net/Zhangguohao666/article/details/102060722

    通过此案例,进一步了解Python的基本概念:模块、对象、方法和函数的使用

    第三章 程序流程控制


    几个例题

    一:编程判断某一年是否为闰年

    闰年:年份能被4整除但不能被100整除,或者可以被400整除。
    口诀:四年一闰,百年不闰,四百必闰

    代码一:

    y = int(input("请输入要判断的年份:"))
    if((y % 4 == 0 and y % 100 != 0) or y % 400 == 0):
        print("是闰年")
    else:
        print("不是闰年")
    

    代码二(使用calendar模块的isleap()函数来判断):

    from calendar import isleap
    
    y = int(input("请输入要判断的年份:"))
    if(isleap(y)):print("闰年")
    else:print("不是闰年")
    

    二:利用嵌套循环打印九九乘法表

    九九乘法表:

    for i in range(1,10):
        s = ""
        for j in range(1,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    下三角:

    for i in range(1,10):
        s = ""
        for j in range(1,i+1):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    上三角:

    for i in range(1,10):
        s = ""
        for k in range(1,i):
            s += "                   "
        for j in range(i,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    三:enumerate()函数和下标元素循环示例

    Python语言中的for循环直接迭代对象集合中的元素,如果需要在循环中使用索引下标访问集合元素,则可以使用内置的enumerate()函数

    enumerate()函数用于将一个可遍历的数据对象(例如列表、元组或字符串)组合为一个索引序列,并返回一个可迭代对象,故在for循环当中可直接迭代下标和元素

    seasons = ["Spring","Summer","Autumn","Winter"]
    for i,s in enumerate(seasons,start=1):    #start默认从0开始
        print("第{0}个季节:{1}".format(i,s))
    

    运行:

    第1个季节:Spring
    第2个季节:Summer
    第3个季节:Autumn
    第4个季节:Winter
    

    四:zip()函数和并行循环示例

    如果需要并行遍历多个可迭代对象,则可以使用Python的内置函数zip()

    zip()函数将多个可迭代对象中对应的元素打包成一个个元组,然后返回一个可迭代对象。如果元素的个数不一致,则返回列表的长度与最短的对象相同。

    利用运算符*还可以实现将元组解压为列表

    evens = [0,2,4,6,8]
    odds = [1,3,5,7,9]
    for e,o in zip(evens,odds):
        print("{0} * {1} = {2}".format(e,o,e*o))
    

    运行:

    0 * 1 = 0
    2 * 3 = 6
    4 * 5 = 20
    6 * 7 = 42
    8 * 9 = 72
    

    五:map()函数和循环示例

    如果需要遍历可迭代对象,并使用指定函数处理对应的元素,则可以使用Python的内置函数map()

    map(func,seq1[,seq2,...])
    
    • func作用于seq中的每一个元素,并将所有的调用结果作为可迭代对象返回。
    • 如果func为None,该函数的作用等同于zip()函数

    计算绝对值:

    >>> list(map(abs, [-1, 0, 7, -8]))
    [1, 0, 7, 8]
    

    计算乘幂:

    >>> list(map(pow, range(5), range(5)))
    [1, 1, 4, 27, 256]
    

    计算ASCII码:

    >>> list(map(ord, 'zgh'))
    [122, 103, 104]
    

    字符串拼接(使用了匿名函数lambda):

    >>> list(map(lambda x, y: x+y, 'zgh', '666'))
    ['z6', 'g6', 'h6']
    

    选择题:1、2、3

    1. 下面的Python循环体的执行次数与其他不同的是

    A.

    i = 0						
    while(i <= 10):
    	print(i)
    	i = i + 1
    

    B.

    i = 10
    while(i > 0):
    	print(i)
    	i = i - 1
    

    C.

    for i in range(10):
    	print(i)
    

    D.

    for i in range(10,0,-1):
    	print(i)
    

    答案:A

    A:[0,10] 执行11次
    B:[10,1] 执行10次
    C:[0,9) 执行10次
    D:[10,0) 执行10次

    2. 执行下列Python语句将产生的结果是

    x = 2; y = 2.0
    if(x == y): print("Equal")
    else: print("Not Equal")
    
    A. EqualB. Not EqualC. 编译错误D. 运行时错误

    答案:A

    Python中的自动类型转换:

    1. 自动类型转换注意针对Number数据类型来说的
    2. 当2个不同类型的数据进行运算的时候,默认向更高精度转换
    3. 数据类型精度从低到高:bool int float complex
    4. 关于bool类型的两个值:True 转化成整型是1;False 转化成整型是0

    int类型的2转化为float类型的2.0

    3. 执行下列Python语句将产生的结果是

    i= 1 	
    if(i): print(True) 	
    else: print(False)
    
    A. 输出1B. 输出TrueC. 输出FalseD. 编译错误

    答案:B

    在Python中,条件表达式最后被评价为bool值True或False。

    如果表达式的结果为数值类型(0),空字符串(""),空元组(()),空列表([]),空字典({}),其bool值为False,否则其bool值为True

    填空题:6

    6. 要使语句for i in range(_,-4,-2)循环执行15次,则循环变量i的初值应当为

    答案:26或者25

    一开始我给的答案是26,经过评论区 的提醒:
    在这里插入图片描述

    >>> a = 0
    >>> for i in range(26, -4, -2): a+=1
    
    >>> print(a)
    15
    
    >>> a = 0
    >>> for i in range(25, -4, -2): a+=1
    
    >>> print(a)
    15
    

    这种题目有一个规律:for i in range(x,y,z):
    若循环中没有break或者continue语句,
    执行次数的绝对值:result = (x-y)÷z

    但实际上没有这么简单:

    • 如果步长为 -1或者1,那么答案只有一个
    • 如果步长为 -2或者2,那么答案有两个
    • 如果步长为 -3或者3,那么答案有三个

    通过公式算出 x 之后,

    • 如果步长为2,还要计算 (x ± 1) - z × (result-1) 的值,然后再经过琐碎的判断即可
    • 如果步长为3,还要计算 (x ± 2) - z × (result-1) 的值,…

    虽然看着麻烦,但实际上是很好理解的

    思考题:3~6

    3. 阅读下面的Python程序,请问程序的功能是什么?

    from math import sqrt
    
    n = 0
    for m in range(101,201,2):
        k = int(sqrt(m))
        for i in range(2, k+2):
            if m % i == 0:break
        if i == k + 1:
            if n % 10 == 0:print()
            print('%d' % m,end = " ")
            n += 1
    

    输出101到200之间的素数
    每行输出10个,多余换行

    运行:

    101 103 107 109 113 127 131 137 139 149 
    151 157 163 167 173 179 181 191 193 197 
    199
    

    素数(质数)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

    4. 阅读下面的Python程序,请问输出的结果使什么?

    n = int(input("请输入图形的行数:"))
    for i in range(0, n):
        for j in range(0, 10 - i):print(" ", end=" ")
        for k in range(0, 2 * i + 1):print(" * ", end=" ")
        print("\n")
    

    输出的是一个金字塔

    运行:

    请输入图形的行数:4
                         *  
    
                       *   *   *  
    
                     *   *   *   *   *  
    
                   *   *   *   *   *   *   *  
    

    5. 阅读下面的Python程序,请问输出的结果使什么?程序的功能是什么?

    for i in range(100,1000):
        n1 = i // 100
        n2 = i // 10 % 10
        n3 = i % 10
        if(pow(n1, 3) + pow(n2, 3) + pow(n3, 3) == i):print(i, end=" ")
    

    输出三位数中所有的水仙花数

    运行:

    153 370 371 407 
    

    水仙花数 是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身

    6. 阅读下面的Python程序,请问输出的结果使什么?程序的功能是什么?

    for n in range(1,1001):
        total = 0; factors = []
        for i in range(1, n):
            if(n % i == 0):
                factors.append(i)
                total += i
        if(total == n):print("{0} : {1}".format(n, factors))    
    

    输出1到1000的所有完数,并输出每个完数的所有因子

    运行:

    6 : [1, 2, 3]
    28 : [1, 2, 4, 7, 14]
    496 : [1, 2, 4, 8, 16, 31, 62, 124, 248]
    

    完数 所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身

    上机实践:2~14

    2. 编写程序,计算1=2+3+…+100之和

    1. 使用for循环(递增):
    total = 0
    for i in range(101):
        total += i
    print(total) 
    
    1. 使用求和公式:
    >>> (1 + 100) * 100 /2
    5050.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1, 101)))[99]
    5050
    

    3. 编写程序,计算10+9+8+…+1之和

    1. 使用for循环(递增):
    total = 0
    for i in range(11):
        total += i
    print(total) 
    
    1. 使用for循环(递减):
    total = 0
    for i in range(10,0,-1):
        total += i
    print(total)   
    
    1. 使用求和公式:
    >>> (1 + 10) * 10 / 2
    55.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1,11)))[9]
    55
    

    4. 编写程序,计算1+3+5+7+…+99之和

    1. 使用for循环(递增):
    total = 0
    for i in range(1,100,2):
        total += i
    print(total)     
    
    1. 使用求和公式:
    >>> (1 + 99) * 50 /2
    2500.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1,100,2)))[49]
    2500
    

    5. 编写程序,计算2+4+6+8+…+100之和

    1. 使用for循环(递增):
    total = 0
    for i in range(2,101,2):
        total += i
    print(total)     
    
    1. 使用求和公式:
    >>> (2 + 100) * 50 / 2
    2550.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> x = list(itertools.accumulate(range(2,101,2)))
    >>> x[len(x)-1]
    2550
    

    6. 编写程序,使用不同的实现方法输出2000~3000的所有闰年

    代码一:

    for y in range(2000,3001):
        if((y % 4 == 0 and y % 100 != 0) or y % 400 == 0):
            print(y,end = ' ')
    

    代码二(使用calendar模块的isleap()函数来判断):

    from calendar import isleap
    
    for y in range(2000,3001):
        if(isleap(y)):print(y,end = " ")
    

    运行:

    2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064 2068 2072 2076 2080 2084 2088 2092 2096 2104 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176 2180 2184 2188 2192 2196 2204 2208 2212 2216 2220 2224 2228 2232 2236 2240 2244 2248 2252 2256 2260 2264 2268 2272 2276 2280 2284 2288 2292 2296 2304 2308 2312 2316 2320 2324 2328 2332 2336 2340 2344 2348 2352 2356 2360 2364 2368 2372 2376 2380 2384 2388 2392 2396 2400 2404 2408 2412 2416 2420 2424 2428 2432 2436 2440 2444 2448 2452 2456 2460 2464 2468 2472 2476 2480 2484 2488 2492 2496 2504 2508 2512 2516 2520 2524 2528 2532 2536 2540 2544 2548 2552 2556 2560 2564 2568 2572 2576 2580 2584 2588 2592 2596 2604 2608 2612 2616 2620 2624 2628 2632 2636 2640 2644 2648 2652 2656 2660 2664 2668 2672 2676 2680 2684 2688 2692 2696 2704 2708 2712 2716 2720 2724 2728 2732 2736 2740 2744 2748 2752 2756 2760 2764 2768 2772 2776 2780 2784 2788 2792 2796 2800 2804 2808 2812 2816 2820 2824 2828 2832 2836 2840 2844 2848 2852 2856 2860 2864 2868 2872 2876 2880 2884 2888 2892 2896 2904 2908 2912 2916 2920 2924 2928 2932 2936 2940 2944 2948 2952 2956 2960 2964 2968 2972 2976 2980 2984 2988 2992 2996 
    

    7. 编写程序,计算Sn=1-3+5-7+9-11…

    代码一:

    n = int(input("项数:"))
    total = 0
    flag = True
    for i in range(1,2*n,2):
        if(flag):
            total += i
            flag = False
        else:
            total -= i
            flag = True
    print(total)
    

    代码二:

    n = int(input("项数:"))
    total = 0
    x = 2
    for i in range(1,2*n,2):
        total += pow(-1,x)*i
        x += 1 
    print(total)
    

    运行:

    项数:10
    -10
    

    8. 编写程序,计算Sn=1+1/2+1/3+…

    n = int(input("项数:"))
    total = 0.0
    for i in range(1,n+1):
        total += 1/i 
    print(total)
    

    运行:

    项数:10
    2.9289682539682538
    

    9. 编写程序,打印九九乘法表。要求输入九九乘法表的各种显示效果(上三角,下三角,矩形块等方式)

    矩形块:

    for i in range(1,10):
        s = ""
        for j in range(1,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    下三角:

    for i in range(1,10):
        s = ""
        for j in range(1,i+1):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    上三角:

    for i in range(1,10):
        s = ""
        for k in range(1,i):
            s += "                   "
        for j in range(i,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    10. 编写程序,输入三角形的三条边,先判断是否可以构成三角形,如果可以,则进一步求三角形的周长和面积,否则报错“无法构成三角形!”

    from math import sqrt
    
    a = float(input("请输入三角形的边长a:"))
    b = float(input("请输入三角形的边长b:"))
    c = float(input("请输入三角形的边长c:"))
    
    if(a < b): a,b = b,a
    if(a < c): a,c = c,a
    if(b < c): b,c = c,b
    
    if(a < 0 or b < 0 or c < 0 or b+c <= a): print("无法构成三角形!")
    else:
        h = (a+b+c)/2
        area = sqrt(h*(h-a)*(h-b)*(h-c))
        print("周长:{0},面积:{1}".format(a+b+c,area))
    

    运行:

    请输入三角形的边长a:4
    请输入三角形的边长b:3
    请输入三角形的边长c:5
    周长:12.0,面积:6.0
    

    11. 编写程序,输入x,根据如下公式计算分段函数y的值。请分别用单分支语句,双分支语句结构以及条件运算语句等方法实现

    y = (x2-3x)/(x+1) + 2π + sinx (x≥0 )
    y = ln(-5x) + 6√(|x|+e4) - (x+1)3 (x<0)

    单分支语句:

    import math
    
    x = float(input("请输入x:"))
    if(x >= 0):
        y = (x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)
    if(x < 0):
        y = math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)
    
    print(y)
    
    
    

    双分支语句:

    import math
    
    x = float(input("请输入x:"))
    if(x >= 0):
        y = (x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)
    else:
        y = math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)
    
    print(y)
    

    条件运算语句:

    import math
    
    x = float(input("请输入x:"))
    y = ((x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)) if(x >= 0) \
    else (math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)) 
    
    print(y)
    

    运行一:

    请输入x:666
    668.2715406628656
    

    运行二:

    请输入x:-666
    294079794.1744833
    

    12. 编写程序,输入一元二次方程的3个系数a、b、c,求ax2+bx+c=0方程的解

    import math
    
    a = float(input("请输入系数a:"))
    b = float(input("请输入系数b:"))
    c = float(input("请输入系数c:"))
    
    delta = b*b -4*a*c
    
    if(a == 0):
        if(b == 0): print("无解")
        else: print("有一个实根:",-1*c/b)
    elif(delta == 0): print("有两个相等实根:x1 = x2 = ", (-1*b)/(2*a))
    elif(delta > 0): print("有两个不等实根:x1 = {0},x2 = {1}".format\
                           ((-1*b +math.sqrt(delta))/2*a,(-1*b -math.sqrt(delta))/2*a))
    elif(delta < 0): print("有两个共轭复根:x1 = {0},x2 = {1}".format\
                           (complex( (-1*b)/(2*a),math.sqrt(delta*-1)/(2*a)),complex( (-1*b)/(2*a),-1*math.sqrt(delta*-1)/(2*a))))
    

    运行一:

    请输入系数a:0
    请输入系数b:0
    请输入系数c:10
    无解
    

    运行二:

    请输入系数a:0
    请输入系数b:10
    请输入系数c:5
    有一个实根: -0.5
    

    运行三:

    请输入系数a:1
    请输入系数b:8
    请输入系数c:16
    有两个相等实根:x1 = x2 =  -4.0
    

    运行四:

    请输入系数a:1
    请输入系数b:-5
    请输入系数c:6
    有两个不等实根:x1 = 3.0,x2 = 2.0
    

    运行五:

    请输入系数a:5
    请输入系数b:2
    请输入系数c:1
    有两个共轭复根:x1 = (-0.2+0.4j),x2 = (-0.2-0.4j)
    

    13. 编写程序,输入整数n(n≥0),分别利用for循环和while循环求n!

    1. for循环
    n = int(input("请输入n:"))
    
    if(n == 0): total = 1
    if(n > 0):
        total = 1
        for i in range(n,0,-1):
            total *= i
    
    print(total)
    
    
    1. while循环
    n = int(input("请输入n:"))
    
    if(n == 0): total = 1
    if(n > 0):
        total = 1
        while(n >= 1):
            total *= n
            n -= 1
    
    print(total)
    
    1. 补充一个:使用累计迭代器itertools.accumulate
    >>> import itertools, operator
    >>> n = int(input('请输入n:'))
    请输入n:7
    >>> x = list(accumulate(range(1, n+1), operator.mul))
    >>> x[len(x)-1]
    5040
    

    14. 编写程序,产生两个0~100(包含0和100)的随机整数a和b,求这两个整数的最大公约数和最小公倍数

    1. 现有知识点解决方法
    
    import random
    
    a = random.randint(0,100)
    b = random.randint(0,100)
    sum = a*b
    
    print(a) #输出原来的a,b
    print(b)
    
    if(a < b): a,b = b,a
    
    while(a%b != 0):
        a,b = b,a%b
    
    print("最大公约数:{0},最小公倍数:{1}".format(b,sum/b))
    
    
    1. 补充:使用生成器(generate)函数:yield
    >>> def func(a, b):
    	if(a < b): a,b = b,a
    	while(a%b != 0):
    		a,b = b,a%b
    		yield b
    
    		
    >>> import random
    >>> if __name__ == '__main__':
    	a = random.randint(0,100)
    	b = random.randint(0,100)
    	sum = a*b
    	print(a,b)
    	t = list(iter(func(a, b)))
    	gcd = t[len(t)-1]
    	print("gcd = {0}, mcm = {1}".format(gcd, sum/gcd))
    
    	
    29 65
    gcd = 1, mcm = 1885.0
    
    1. 补充:使用math模块中的gcd(x,y)函数
    >>> import random
    >>> import math
    >>> if __name__ == '__main__':
    	a = random.randint(0,100)
    	b = random.randint(0,100)
    	sum = a*b
    	print(a,b)
    	gcd = math.gcd(a,b)
    	print("gcd = {0}, mcm = {1}".format(gcd, sum/gcd))
    
    	
    29 48
    gcd = 1, mcm = 1392.0
    

    案例研究:使用嵌套循环实现图像处理算法

    https://blog.csdn.net/Zhangguohao666/article/details/103935185

    通过图像处理算法案例,深入了解Python数据结构和基本算法流程

    第四章 常用内置数据类型


    几个例题

    一:Python内置数据类型概述

    Python中一切皆为对象,而每个对象属于某个数据类型

    Python的数据类型包括:

    1. 内置的数据类型
    2. 模块中定义的数据类型
    3. 用户自定义的类型

    四种内置的数值类型:int,float,bool,complex

    1. int
      与其他计算机语言有精度限制不同,Python中的整数位数可以为任意长度(只受限于计算机内存)。
      整型对象是不可变对象。
    2. float
      与其他计算机语言中的double和float对应
      Python的浮点类型的精度和系统相关
    3. bool
    4. complex
      当数值字符串中包含虚部j(或J)时即复数字面量

    序列数据类型:str,tuple,bytes,list,bytearray

    序列数据类型表示若干有序数据.

    不可变序列数据类型:

    1. str(字符串)
      表示Unicode字符序列,例如:“zgh666”
      在Python中没有独立的字符数据类型,字符即长度为1的字符串
    2. tuple(元组)
      表示任意数据类型的序列,例如:(“z”,“g”,“h”,6,6,6)
    3. bytes(字节序列)
      表示字节(8位)序列数据

    可变序列数据类型:

    1. list(列表)
      表示可以修改的任意类型数据的序列,比如:[‘z’,‘g’,‘h’,6,6,6]
    2. bytearray(字节数组)
      表示可以修改的字节(8位)数组

    集合数据类型:set,frozenset

    集合数据类型表示若干数据的集合,数据项目没有顺序,且不重复

    1. set(集)
      例如:{1,2,3}
    2. frozenset(不可变集)

    字典数据类型:dict

    字典数据类型用于表示键值对的字典
    例如:{1:"zgh", 2:666}

    NoneType,NotImplementedType,EllipsisType

    1. NoneType数据类型包含唯一值None,主要用于表示空值,如没有返回值的函数的结果
    2. NotImplementedType数据类型包含唯一值NotImplemented,在进行数值运算和比较运算时,如果对象不支持,则可能返回该值
    3. EllipsisType数据类型包含唯一值Ellipsis,表示省略字符串符号...

    其他数据类型

    Python中一切对象都有一个数据类型,模块、类、对象、函数都属于某种数据类型
    Python解释器包含内置类型,
    例如:
    代码对象Code objects
    框架对象Frame objects
    跟踪对象Traceback objects
    切片对象Slice objects
    静态方法对象Static method objects
    类方法对象Class method objects

    二:整型字面量示例

    Python3.7支持使用下划线作为整数或者浮点数的千分位标记,以增强大数值的可阅读性。
    二进制、八进制、十六进制则使用下划线区分4位标记

    1_000_000_000  #输出1000000000
    
    0xff_ff_ff_ff  #输出4294967295
    0x_FF_FF_FF_FF  #输出4294967295
    

    三:字符串字面量示例

    两个紧邻的字符串,如果中间只有空格分隔,则自动拼接位一个字符串

    'zgh' '666'  #输出'zgh666'
    'zgh' + "666"   #输出'zgh666'
    

    四:转义字符示例

    转义字符后跟Unicode编码也可以表示字符

    1. \ooo八进制Unicode码对应的字符
    2. \xhh十六进制Unicode码对应的字符
    '\101'  #输出'A'
    '\x41'  #输出'A'
    

    使用r’‘或者R’'的字符串称为原始字符串,其中包含的任何字符都不进行转义

    s = r'换\t行\t符\n'
    s  		  #输出:'换\\t行\\t符\\n'
    print(s)  #输出:换\\t行\\t符\\n
    

    五:字符串的格式化

    一:

    "student number:{0},score_average:{1}".format(2,100)
    #输出:'student number:2,score_average:100'
    

    二:

    str.format("student number:{0},score_average:{1}",2,100)
    #输出:'student number:2,score_average:100'
    

    三(兼容Python2的格式,不推荐使用):

     "student number:%4d,score_average:%2.1f" %(2,100)
     #输出:'student number:   2,score_average:100.0'
    

    六:字符串示例,格式化输出字符串堆积的三角形

    1. str.center()方法用于字符串两边填充
    2. str.rjust()方法用于字符串右填充
    print("1".center(20))		#一行20个字符,居中对齐
    print(format("121","^20"))	#一行20个字符,居中对齐
    print("1".rjust(20,"*"))	#一行20个字符,右对齐,加*
    print(format("121","*>20"))	#一行20个字符,右对齐,加*
    

    运行:

             1          
            121         
    *******************1
    *****************121
    

    选择题:11

    11. 关于Python字符串,下列说法错误的是

    A. 字符即长度为1的字符串
    B. 字符串以/0标识字符串的结束
    C. 用户既可以用单引号,也可以用双引号创建字符串
    D. 用三引号字符串中可以包含换行回车等特殊字符

    答案:B

    Python中字符串不是用\0来判断字符串结尾,
    每个字符串都存有字符串的长度,通过计数来判断是否到达结尾。

    虽然在c语言中\0就是来判断字符串的结尾;

    填空题:4、7、8、9、10、13、21

    4. Python表达式3 ** 2 ** 3的值为

    答案:6561

    表达式中,相同优先级的运算,从右往左

    7. Python语句print(pow(-3,2),round(18.67,1),round(18.67,-1))的输出结果是

    答案:9 18.7 20.0

    pow()幂运算
    round()四舍六入,五留双

    8. Python语句print(round(123.84,0),round(123.84,-2),floor(15.5))的输出结果是

    答案:124.0 100.0 15

    补充:floor()是math模块中的方法,向下取整

    9. Python语句print(int(‘20’,16),int(‘101’,2))的输出结果是

    答案:32 5

    注意:int(x,y)是指将y进制的数值x转化为10进制数

    10. Python语句print(hex(16),bin(10))的输出结果是

    答案:0x10 0b1010

    hex(x)将十进制数x转化为十六进制,以字符串形式输出
    bin(x)将十进制数x转化为二进制,以字符串形式输出

    13. Python语句print(gcd(12,16),divmod(7,3))的输出结果是

    答案:4 (2,1)

    gcd()是math模块中的函数,求最大公约数
    divmod()是内置函数,返回商和余数

    21. Python语句序列 x=True;y=False;z=False;print(x or y and z) 的运行结果是

    答案:True

    and优先级比or高

    思考题:5

    5. 阅读下面的Python程序,请问输出结果是什么?

    from decimal import *
    
    ctx = getcontext()
    ctx.prec = 2
    print(Decimal('1.78'))#1.78
    print(Decimal('1.78') + 0)#1.8
    ctx.rounding = ROUND_UP
    print(Decimal('1.65') + 0)#1.7
    print(Decimal('1.62') + 0)#1.7
    print(Decimal('-1.45') + 0)#-1.5
    print(Decimal('-1.42') + 0)#-1.5
    ctx.rounding = ROUND_HALF_UP
    print(Decimal('1.65') + 0)#1.7
    print(Decimal('1.62') + 0)#1.6
    print(Decimal('-1.45') + 0)#-1.5
    ctx.rounding = ROUND_HALF_DOWN
    print(Decimal('1.65') + 0)#1.6
    print(Decimal('-1.45') + 0)#-1.4
    

    上机实践:2~14

    2. 编写程序,格式化输出杨辉三角

    杨辉三角即二项式定理的系数表,各元素满足如下条件:第一列及对角线上的元素均为1;其余每个元素等于它上一行同一列元素与前一列元素之和

    我使用了一个更加精妙的规律
    比如第一行为1
    第二行:01 + 10 = 11
    第三行:011 + 110 = 121
    第四行:0121 + 1210 = 1331
    。。。

    def generate(numRows):
        l1 = [1]
        n = 0
        while n < numRows:
            print(str(l1).center(66))
            l1 = [sum(t) for t in zip([0] + l1, l1 + [0])]  #利用zip函数算出每一行 如第二行 zip([0,1],[1,0])=[1,1],以此类推
            n += 1
    a=int(input("请输入行数"))
    generate(a)
    

    运行:

    请输入行数4
                                   [1]                                
                                  [1, 1]                              
                                [1, 2, 1]                             
                               [1, 3, 3, 1]  
    

    3. 输入直角三角形的两个直角边,求三角形的周长和面积,以及两个锐角的度数。结果保留一位小数

    import math
    
    a = float(input("请输入直角三角形的直角边a:"))
    b = float(input("请输入直角三角形的直角边b:"))
    c = math.sqrt(a*a+b*b)
    
    p = a + b + c
    area = 0.5*a*b
    print("三角形的周长:{0:1.1f},面积:{1:1.1f}".format(p,area))
    
    sina = a/c
    sinb = b/c
    
    a_degree = round(math.asin(sina) * 180 / math.pi,0)
    b_degree = round(math.asin(sinb) * 180 / math.pi,0)
    
    print("三角形直角边a的度数:{0},b的度数:{1}".format(a_degree,b_degree))
    

    运行:

    请输入直角三角形的直角边a:3
    请输入直角三角形的直角边b:4
    三角形的周长:12.0,面积:6.0
    三角形直角边a的度数:37.0,b的度数:53.0
    

    4. 编程产生0~100(包含0和100)的三个随机数a、b、c,要求至少使用两种不同的方法,将三个数按从小到大的顺序排序

    方法一:

    import random
    
    a = random.randint(0, 100)
    b = random.randint(0, 100)
    c = random.randint(0, 100)
    
    print(str.format("原始值:{0},{1},{2}", a, b, c))
    
    if(a > b): a,b = b,a
    if(a > c): a,c = c,a
    if(b > c): b,c = c,b
    
    print(str.format("增序:{0},{1},{2}", a, b, c))
    

    方法二(使用内置函数max、min、sum):

    import random
    
    a = random.randint(0, 100)
    b = random.randint(0, 100)
    c = random.randint(0, 100)
    
    print(str.format("原始值:{0},{1},{2}", a, b, c))
    
    maxx = max(a, b, c)
    minx = min(a, b, c)
    median = sum([a, b, c]) - minx - maxx
    
    print(str.format("增序:{0},{1},{2}", minx, median, maxx))
    

    方法三(使用内置函数sorted):

    >>> import random
    >>> a = random.randint(0,100)
    >>> b = random.randint(0,100)
    >>> c = random.randint(0,100)
    >>> print("init value: {0} , {1} , {2}".format(a,b,c))
    init value: 17 , 6 , 59
    >>> sorted([a,b,c])
    [6, 17, 59]
    

    5. 编程计算有固定工资收入的党员每月所缴纳的党费。

    工资基数3000元及以下者,交纳工资基数的0.5%
    工资基数3000~5000元者,交纳工资基数的1%
    工资基数在5000~10000元者,交纳工资基数的1.5%
    工资基数超过10000元者,交纳工资基数的2%

    salary = float(input("请输入有固定工资收入的党员的月工资:"))
    if salary <= 3000: dues = salary*0.005
    elif salary <= 5000: dues = salary*0.01
    elif salary <= 10000: dues = salary*0.15
    else: dues = salary*0.02
    
    print("交纳党费:",dues)
    

    运行:

    请输入有固定工资收入的党员的月工资:10001
    交纳党费: 200.02
    

    6. 编程实现袖珍计算器,要求输入两个操作数和一个操作符(+、-、*、/、%),根据操作符输出运算结果。注意/和%运算符的零异常问题

    a = float(input("请输入操作数(左):"))
    b = float(input("请输入操作数(右):"))
    operator = input("请输入操作符(+、-、*、/、%):")
    
    if(b == 0 and (operator == '/' or operator == '%')):
        print("分母为零,异常!")
    else:
        if operator == '+': result = a+b
        elif operator == '-': result = a-b
        elif operator == '*': result = a*b
        elif operator == '/': result = a/b
        elif operator == '%': result = a%b
        print("{0} {1} {2}= {3}:".format(a,operator,b,result))
    

    运行:

    请输入操作数(左):10
    请输入操作数(右):5
    请输入操作符(+、-、*、/、%):+
    10.0 + 5.0= 15.0:
    

    7. 输入三角形的3条边a、b、c,判断此3边是否可以构成三角形。若能,进一步判断三角形的性质,即为等边、等腰、直角或其他三角形

    a = float(input("请输入三角形的边a:"))
    b = float(input("请输入三角形的边b:"))
    c = float(input("请输入三角形的边c:"))
    
    if(a > b): a,b = b,a
    if(a > c): a,c = c,a
    if(b > c): b,c = c,b
    
    result = "三角形"
    if(not(a>0 and b>0 and c>0 and a+b>c)):
        result = '此三边无法构成三角形'
    else:
        if a == b == c: result = '等边三角形'
        elif(a==b or a==c or b==c): result = '等腰三角形'
        elif(a*a+b*b == c*c): result = '直角三角形'
    
    print(result)
    

    运行:

    请输入三角形的边a:3
    请输入三角形的边b:4
    请输入三角形的边c:5
    直角三角形
    

    8. 编程实现鸡兔同笼问题

    已知在同一个笼子里共有h只鸡和兔,鸡和兔的总脚数为f,其中h和f由用户输入,求鸡和兔各有多少只?要求使用两种方法:一是求解方程;二是利用循环进行枚举测试

    h = int(input("请输入总头数:"))
    f = int(input("请输入总脚数:"))
    
    def fun1(h,f):
        rabbits = f/2-h
        chicken = h-rabbits
        if(chicken < 0 or rabbits < 0): return '无解'
        return chicken,rabbits
    
    def fun2(h,f):
        for i in range(0,h+1):
            if(2*i + 4*(h-i) == f):return i,h-i
        return '无解'
    
    if(h>0 and f>0 and f % 2 == 0):
        if fun1(h,f)=='无解':
            print("无解")
        else:
            print("方法一:鸡:{0},兔:{1}".format(fun1(h,f)[0],fun1(h,f)[1]))
            print("方法二:鸡:{0},兔:{1}".format(fun2(h,f)[0],fun2(h,f)[1]))
    else:
        print('输入的数据无意义')    
    

    运行:

    请输入总头数:100
    请输入总脚数:100
    无解
    

    9. 输入任意实数x,计算ex的近似值,直到最后一项的绝对值小于10-6为止

    ex = 1 + x + x2/2 + x3/3! + x4/4! + … + xn/n!

    x = int(input("请输入任意实数:"))
    
    e = 1
    i = 1
    t = 1
    a = 1
    while(a >= 10e-6):
        t *= i
        a = pow(x,i)/t
        e += a
        i += 1
    
    print(e)
    

    运行:

    请输入任意实数:1
    2.7182815255731922
    

    我发现了在Python中10e-6pow(10,-6)是有差别的,将上述代码中的10e-6改为pow(10,-6),输出结果会有细微的差别

    运行:

    请输入任意实数:1
    2.7182818011463845
    

    10. 输入任意实数a(a>=0),用迭代法求x=√a,要求计算的相对偏差小于10-6

    求平方根的公式:

    Xn+1 = 0.5(Xn + a/Xn)

    import math
    
    a = int(input("请输入任意实数a(>=0):"))
    
    x = a / 2
    y = (x + a/x) / 2
    
    while(abs(y-x) >= pow(10,-6)):
        x = y
        y = (x + a/x) / 2
    
    print(y)
    

    运行:

    请输入任意实数a(>=0):2
    1.414213562373095
    

    11. 即有一个数,用3除余2,用5除余3,用7除余2,请问0~1000中这样的数有哪些?

    我国古代有位大将,名叫韩信。他每次集合部队,只要求部下先后按1-3,1-5,1-7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法被人们称作“鬼谷算”,也叫“隔墙算”,或称为“韩信点兵”,外国人还称它为“中国余数定理”。

    for i in range(0,1001):
        if((i % 3 == 2 )and (i % 5 == 3) and (i % 7 == 2)): print(i, end="  ")
    

    运行:

    23  128  233  338  443  548  653  758  863  968
    

    12. 一球从100米的高度自由下落,每次落地后反弹回原高度的一半,再落下。求小球在第10次落地时共经过多少米?第10次反弹多高

    规律:
    第一次下落时的高度:100
    第二次下落时的高度(第一次反弹的高度):50
    第三次下落时的高度(第二次反弹的高度):25

    n = 10
    
    h_down = 100
    h_up = 0
    sum = 0
    for i in range(1,n+1):
        sum += h_down+h_up
        h_down = h_up = h_down/2
    
    print("小球在第十次落地时共经过:{0}米,第十次反弹高度:{1}米".format(sum,h_up))    
    

    运行:

    小球在第十次落地时共经过:299.609375米,第十次反弹高度:0.09765625米
    

    13. 猴子吃桃问题

    猴子第一天摘下若干个桃子,当天吃掉一半多一个;第二天接着吃了剩下的桃子的一半多一个;以后每天都吃了前一天剩下的桃子的一半多一个。到第八天发现只剩一个桃子了。请问猴子第一天共摘了多少个桃子?

    这是一个递推问题

    某天所剩桃子数x
    后一天所剩桃子数y = x - (x/2+1) = x/2-1

    则x = 2(y+1)

    result = 1
    for i in range(8,0,-1):
        print("第{0}天桃子数:{1}".format(i,result))
        result = 2*(result+1)
    

    运行:

    第8天桃子数:1
    第7天桃子数:4
    第6天桃子数:10
    第5天桃子数:22
    第4天桃子数:46
    第3天桃子数:94
    第2天桃子数:190
    第1天桃子数:382
    

    14. 计算Sn = 1+11+111+…+111…111(最后一项是n个1)。n是一个随机产生的1~10(包括1和10)中的正整数

    import random
    
    n = random.randint(1,10)
    
    x = 1
    s = 0
    for i in range(1,n+1):
        s += x
        x = 10*x+1
    
    print("n = {0},sn = {1}".format(n,s))
    

    运行:

    n = 6,sn = 123456
    

    random.randint(a, b)

    • 生成指定范围内的整数
    • 范围:[a, b]

    案例研究:科学计算和数据分析

    https://blog.csdn.net/Zhangguohao666/article/details/103941448

    通过Python科学计算和数据分析库的安装和基本使用,了解使用Python进行科学计算的基本方法

    第五章 序列数据类型


    几个例题

    一:Python中内置的序列数据类型

    • 元组也称为定值表,用于存储固定不变的表
    • 列表也称为表,用于存储其值可变的表
    • 字符串是包括若干字符的序列数据,支持序列数据的基本操作
    • 字节序列数据是包括若干字节的序列。Python抓取网页时返回的页面通常为utf-8编码的字节序列。

    字节序列和字符串可以直接相互转换(字节编码和解码):

    >>> s1 = b'abc'
    >>> s1
    b'abc'
    >>> s1.decode("utf-8")
    abc
    
    >>> s2 = "中国"
    >>> s2.encode("utf-8")
    b'\xe4\xb8\xad\xe5\x9b\xbd'
    

    二:序列的切片操作示例

    >>> s = 'zgh666'
    >>> s[0]
    'z'
    >>> s[2]
    'h'
    >>> s[:3]
    'zgh'
    >>> s[1:3]
    'gh'
    >>> s[3:6]
    '666'
    >>> s[3:55]
    '666'
    >>> s[::-1]
    '666hgz'
    >>> s[3:2]
    ''
    >>> s[:]
    'zgh666'
    >>> s[::2]
    'zh6'
    

    三:序列的连接和重复操作

    • 通过连接操作符+可以连接两个序列,形成一个新的序列对象
    • 通过重复操作符*可以重复一个序列n次
    • 连接操作符和重复操作符也支持复合赋值运算,即:+=*=
    >>> x = 'zgh'
    >>> y = '666'
    >>> x + y
    'zgh666'
    >>> x *2
    'zghzgh'
    >>> x += y
    >>> x
    'zgh666'
    >>> y *= 3
    >>> y
    '666666666'
    

    四:序列的成员关系操作

    • in
    • not in
    • s.count(x)
      x在s中出现的次数
    • s.index(x)
      x在s中第一次出现的下标
    >>> s = "zgh666"
    >>> 'z' in s
    True
    >>> 'g' not in s
    False
    >>> s.count('6')
    3
    >>> s.index('6')
    3
    

    五:序列的排序操作

    sorted(iterable,key=None,reverse=False)

    >>> sorted(s)
    [1, 3, 5, 9]
    >>> sorted(s,reverse=True)
    [9, 5, 3, 1]
    
    >>> s = 'zGhZgH'
    >>> sorted(s)
    ['G', 'H', 'Z', 'g', 'h', 'z']
    >>> sorted(s,key=str.lower)
    ['G', 'g', 'h', 'H', 'z', 'Z']
    >>> sorted(s,key=str.lower,reverse=True)
    ['z', 'Z', 'h', 'H', 'G', 'g']
    

    六:序列的拆分

    1. 变量个数与序列长度相等
      若变量个数与序列的元素个数不一致,将导致ValueError
    >>> data = (118,'zgh',(100,100,100))
    >>> sid,name,(chinese,english,math) = data
    >>> sid
    118
    >>> name
    'zgh'
    >>> chinese
    100
    >>> english
    100
    >>> math
    100
    
    1. 变量个数与序列长度不等
      如果序列长度未知,可以使用*元组变量,将多个值作为元组赋值给元组变量。在一个赋值语句中,*元组变量只允许出现一次,否则将导致SyntaxError
    >>> first,second,third,*middles,last = range(10)
    >>> first
    0
    >>> second
    1
    >>> third
    2
    >>> middles
    [3, 4, 5, 6, 7, 8]
    >>> last
    9
    
    >>> first,*middles,last = sorted([58,60,60,100,70,70])
    >>> sum(middles)/len(middles)
    65.0
    
    1. 使用临时变量_
      如果只需要部分数据,序列的其它位置可以使用临时变量_
    >>> record = ['zgh','858990471@qq.com','17354364147','15272502101']
    >>> name,_,*phone = record
    >>> name
    'zgh'
    >>> phone
    ['17354364147', '15272502101']
    

    七:使用元组字面量,tuple创建元组实例对象的实例

    >>> t1 = 1,2,3
    >>> t1
    (1, 2, 3)
    
    >>> t2 = (4,5,6)
    >>> t2
    (4, 5, 6)
    
    >>> t3 = (9,)
    >>> t3
    (9,)
    

    如果元组中只有一个项目,后面的逗号不能省略。

    Python解释器把(1)解释为整数1,将(1,)解释为元组

    >>> t1 = tuple()
    >>> t1
    ()
    
    >>> t2 = tuple("zgh666")
    >>> t2
    ('z', 'g', 'h', '6', '6', '6')
    
    >>> t3 = tuple(['z','g','h'])
    >>> t3
    ('z', 'g', 'h')
    

    八:使用列表字面量,list创建列表实例对象的实例

    >>> l1 = []
    >>> l1
    []
    
    >>> l2 = ['zgh666']
    >>> l2
    ['zgh666']
    
    >>> l3 = [(1,2,3)]
    >>> l3
    [(1, 2, 3)]
    
    >>> l1 = list()
    >>> l1
    []
    
    >>> l2 = list(b'zgh666')
    >>> l2
    [122, 103, 104, 54, 54, 54]
    
    >>> l3 = list(b'aAbBcC')
    >>> l3
    [97, 65, 98, 66, 99, 67]
    

    补充:列表是可变对象,故用户可以改变列表对象中元素的值,也可以通过del删除某元素

    九:列表解析表达式示例

    使用列表解析表达式可以简单,高效地处理一个可迭代对象,并生成结果列表

    >>> [(i,i**2) for i in range(10)]
    [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64), (9, 81)]
    
    >>> [i for i in range(10) if i%2==0]
    [0, 2, 4, 6, 8]
    
    >>> [(x,y,x*y) for x in range(1,4) for y in range(1,4) if x>=y]
    [(1, 1, 1), (2, 1, 2), (2, 2, 4), (3, 1, 3), (3, 2, 6), (3, 3, 9)]
    

    选择题:4、5、7、11、12

    4. Python语句序列“a = (1,2,3,None,(),[]);print(len(a))”的运行结果是

    >>> a = (1,2,3,None,(),[])
    >>> len(a)
    6
    

    5. Python语句序列“nums = set([1,2,2,3,3,3,4]);print(len(nums))”的运行结果是

    >>> nums = set([1,2,2,3,3,3,4])
    >>> nums
    {1, 2, 3, 4}
    >>> len(nums)
    4
    

    7. Python语句序列“s1=[4,5,6];s2=s1;s1[1]=0;print(s2)”的运行结果是

    Python中变量(如s1,s2)存储在栈中,存放的是地址
    [4,5,6]存储在堆中

    s1 = [4,5,6]即s1存储指向堆中[4,5,6]的地址
    s2 = s1地址赋值,即s2和s1都指向同一个地址
    所以对列表进行修改,两者的显示都会发生变化

    >>> s1 = [4,5,6]
    >>> s2 = s1
    >>> s1[1] = 0
    >>> s1
    [4, 0, 6]
    >>> s2
    [4, 0, 6]
    

    11. Python语句序列“s={‘a’,1,‘b’,2};print(s[‘b’])”的运行结果是

    A. 语法错B. ‘b’C. 1D. 2

    答案:A

    通过值访问集合是没有意义的,语法也不支持

    >>> s ={'a',1,'b',2}
    >>> print(s['b'])
    Traceback (most recent call last):
      File "<pyshell#29>", line 1, in <module>
        print(s['b'])
    TypeError: 'set' object is not subscriptable
    

    补充:集合set是无序不重复的,是无法通过下标访问的

    12. Python语句print(r"\nGood")的运行结果是

    A. 新行和字符串GoodB. r"\nGood"C. \nGoodD. 字符r、新行和字符串Good

    答案:C

    >>> print(r"\nGood")
    \nGood
    

    r""声明原始字符串

    填空题:1、5、6、12、13、14

    1. Python语句序列“fruits = [‘apple’,‘banana’,‘bear’];print(fruits[-1][-1])”的运行结果是

    注意:fruit[-1]是字符串’bear’
    所以:fruit[-1][-1]'bear[-1]'

    >>> fruits = ['apple','banana','pear']
    >>> fruits[-1]
    'pear'
    >>> fruits[-1][-1]
    'r'
    

    5. Python语句 print(’%d%%%d’%(3/2,3%2)) 的运行结果是

    >>> print('%d%%%d'%(3/2,3%2))
    1%1
    

    6. Python语句序列“s = [1,2,3,4];s.append([5,6]);print(len(s))”的运行结果是

    答案:5

    注意append()和extend()函数的区别
    s.append(x)将对象x追加到s尾部
    s.extend(x)将序列x追加到s尾部

    append

    >>> s = [1,2,3,4]
    >>> s.append([5,6])
    >>> s
    [1, 2, 3, 4, [5, 6]]
    >>> len(s)
    5
    

    extend

    >>> s = [1,2,3,4]
    >>> s.extend([5,6])
    >>> s
    [1, 2, 3, 4, 5, 6]
    >>> len(s)
    6
    

    12

    >>> s =('a','b','c','d','e')
    >>> s[2]
    'c'
    >>> s[2:3]
    ('c',)
    >>> s[2:4]
    ('c', 'd')
    >>> s[1::2]
    ('b', 'd')
    >>> s[-2]
    'd'
    >>> s[::-1]
    ('e', 'd', 'c', 'b', 'a')
    >>> s[-2:-1]
    ('d',)
    >>> s[-99:-5]
    ()
    >>> s[-99:-3]
    ('a', 'b')
    >>> s[::]
    ('a', 'b', 'c', 'd', 'e')
    >>> s[1:-1]
    ('b', 'c', 'd')
    

    13

    >>> s = [1,2,3,4,5,6]
    >>> s[:1] = []
    >>> s
    [2, 3, 4, 5, 6]
    
    >>> s[:2] = 'a'
    >>> s
    ['a', 4, 5, 6]
    
    >>> s[2:] = 'b'
    >>> s
    ['a', 4, 'b']
    
    >>> s[2:3] = ['x','y']
    >>> s
    ['a', 4, 'x', 'y']
    
    >>> del s[:1]
    >>> s
    [4, 'x', 'y']
    

    14

    >>> s = ['a','b']
    >>> s.append([1,2])
    >>> s
    ['a', 'b', [1, 2]]
    >>> s.extend('34')
    >>> s
    ['a', 'b', [1, 2], '3', '4']
    >>> s.extend([5,6])
    >>> s
    ['a', 'b', [1, 2], '3', '4', 5, 6]
    >>> s.insert(1,7)
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6]
    >>> s.insert(10,8)
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6, 8]
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6]
    >>> s.remove('b')
    >>> s
    ['a', 7, [1, 2], '3', '4', 5, 6]
    >>> s[3:] =[]
    >>> s
    ['a', 7, [1, 2]]
    >>> s.reverse()
    >>> s
    [[1, 2], 7, 'a']
    >>> 
    

    思考题:2、3、5

    2. 阅读下面的Python语句,请问输出结果是什么?

    n = int(input('请输入图形的行数:'))
    
    for i in range(n,0,-1):
        print(" ".rjust(20-i),end=' ')
        for j in range(2*i-1):print(" * ",end=' ')
        print('\n')
    
    for i in range(1,n):
        print(" ".rjust(19-i),end=' ')
        for j in range(2*i+1):print(" * ",end=' ')
        print('\n')          
    

    运行一:

    请输入图形的行数:1
                         *  
    

    运行二:

    请输入图形的行数:2
                        *   *   *  
    
                         *  
    
                        *   *   *  
    

    运行三:

    请输入图形的行数:3
                       *   *   *   *   *  
    
                        *   *   *  
    
                         *  
    
                        *   *   *  
    
                       *   *   *   *   *  
    

    3. 阅读下面的Python语句,请问输出结果是什么?

    n = int(input('请输入上(或下)三角行数:'))
    
    for i in range(0,n):
        print(" ".rjust(19-i),end=' ')
        for j in range(2*i+1):print(" * ",end=' ')
        print('\n')
    
    for i in range(n-1,0,-1):
        print(" ".rjust(20-i),end=' ')
        for j in range(2*i-1):print(" * ",end=' ')
        print('\n')          
    

    运行:

    请输入上(或下)三角行数:4
                         *  
    
                        *   *   *  
    
                       *   *   *   *   *  
    
                      *   *   *   *   *   *   *  
    
                       *   *   *   *   *  
    
                        *   *   *  
    
                         *  
    

    5. 阅读下面的Python语句,请问输出结果是什么?

    先看这三句:

    >>> names1 = ['Amy','Bob','Charlie','Daling']
    >>> names2 = names1
    >>> names3 = names1[:]
    

    毫无疑问,此时names1,names2,names3的值都是[‘Amy’,‘Bob’,‘Charlie’,‘Daling’]
    但是

    >>> id(names1)
    2338529391368
    >>> id(names2)
    2338529391368
    >>> id(names3)
    2338529391560
    

    names1和names2指向同一个地址
    而names3指向另一个地址

    然后:

    >>> names2[0] = 'Alice'
    >>> names3[1] = 'Ben'
    >>> names1
    ['Alice', 'Bob', 'Charlie', 'Daling']
    >>> names2
    ['Alice', 'Bob', 'Charlie', 'Daling']
    >>> names3
    ['Amy', 'Ben', 'Charlie', 'Daling']
    

    最后:

    >>> sum = 0
    >>> for ls in(names1,names2,names3):
    	if ls[0] == 'Alice': sum+=1
    	if ls[1] == 'Ben':sum+=2
    
    	
    >>> print(sum)
    4
    

    上机实践:2~6

    2. 统计所输入字符串中单词的个数,单词之间用空格分隔

    s = input("请输入字符串:")
    
    num = 0
    for i in s:
        if((i >= 'a' and i <= 'z') or (i >= 'A' and i <= 'Z')):
            num += 1
    
    print("其中的单词总数:",num) 
    

    运行:

    请输入字符串:zgh666 ZGH6
    其中的单词总数: 6
    

    3. 编写程序,删除一个list里面重复元素

    方法一:利用set集合不重复的性质(但结果不能保证原来的顺序)

    l = [1,2,2,3,3,3,4,5,6,6,6]
    s = set(l)
    l = list(s)
    print(l)
    

    运行:

    [1, 2, 3, 4, 5, 6]
    

    方法二:既可以去除重复项,又可以保证原来的顺序

    def unique(items):
        items_existed = set()
        for item in items:
            if item not in items_existed:
                yield item
                items_existed.add(item)
    
    if __name__ == '__main__':
        a = [1, 8, 5, 1, 9, 2, 1, 10]
        a1 = unique(a)
        print(list(a1))
    
    

    运行结果:

    [1, 8, 5, 9, 2, 10]
    

    对代码的分析:

    • 可以看出,unique()函数返回的并不是items_existed,而是利用了yield

    在函数定义中,如果使用yield语句代替return返回一个值,则定义了一个生成器函数(generator)
    生成器函数是一个迭代器,是可迭代对象,支持迭代

    • a1 = unique(a) 这个函数返回的实际上是一个可迭代对象
      print(a1)得到的会是:<generator object unique at 0x0000016E23AF4F48>
    • 所以,要得到去掉重复后的列表的样子,需要将可迭代对象a1放在list()中
      运行:

    4. 编写程序,求列表[9,7,8,3,2,1,55,6]中的元素个数、最大值、最小值,以及元素之和、平均值。请思考有几种实现方法?

    内置函数:

    s = [9,7,8,3,2,1,55,6]
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(len(s),max(s),min(s),sum(s),sum(s)/len(s)))
    

    直接访问元素列表(for i in s…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = 0
    for i in s:
        sum += i
        length += 1
        if(i > max): max = i
        if(i < min): min = i
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    间接访问列表元素(for i in range(0,len(s))…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    for i in range(0,length):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    正序访问(i=0;while i<len(s)…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = 0
    while(i < length):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i += 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    反序访问(i=len(s)-1;while i>=0…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = length-1
    while(i >= 0):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i -= 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    while True:…break

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = 0
    while(True):
        if(i > length-1): break
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i += 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    

    运行:

    元素个数:8,最大值:55,最小值:1,和:91,平均值:11.375
    

    5. 编写程序,将列表[9,7,8,3,2,1,5,6]中的偶数变成它的平方,奇数保持不变

    l = [9,7,8,3,2,1,5,6]
    
    for i,value in enumerate(l):
        if(value % 2 == 0):l[i] = value**2
    
    print(l)
    

    运行:

    [9, 7, 64, 3, 4, 1, 5, 36]
    

    6. 编写程序,输入字符串,将其每个字符的ASCII码形成列表并输出

    s = input("请输入一个字符串:")
    l = list()
    for i in s:
        l.append(ord(i))
    
    print(l)
    

    运行:

    请输入一个字符串:zgh666
    [122, 103, 104, 54, 54, 54]
    

    案例研究:猜单词游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103948234

    通过猜单词游戏的设计和实现,帮助读者了解使用Python系列数据类型和控制流程

    第六章 输入和输出


    几个例题

    一:运行时提示输入密码

    输入密码时,一般需要不明显,则可以使用模块getpass,以保证用户输入的密码在控制台中不回显

    import getpass
    
    username = input("user:")
    password = getpass.getpass("password:")
    if(username == 'zgh' and password == '666'):
        print('logined!')
    else:
        print('failed!')
    
    input()#为了看到输出结果。因为执行完毕后,控制台会立马关闭
    

    注意:上面这个代码,如果使用IDLE执行,会因为安全问题而执行失败

    但是,在控制台中执行就没问题,看输出结果(可以看到,输入的密码不会显示出来):

    user:zgh
    password:
    logined!
    

    二:重定向标准输出到一个文件的示例

    这种重定向由控制台完成,而与Python本身无关。

    格式:
    程序 > 输出文件

    其目的是将显示屏从标准输出中分离,并将输出文件与标准输出关联,即程序的执行结果将写入输出文件,而不是发送到显示屏中显示

    首先准备一个test.py文件(代码如下)

    import sys,random
    
    n = int(sys.argv[1])
    for i in range(n):
        print(random.randrange(0,100))
    

    然后在PowerShell中:python test.py 100 > scores.txt
    记住,切记,一定要注意:千万能省略python,这样写./test.py 100 > scores.txt会出现问题,生成的scores文件中会没有任何内容!!!(原因未知)

    然后在当前目录下,100个[0,100)范围内的的整数生成在scores.txt文件中了

    三:重定向文件到标准输入

    格式:
    程序 < 输入文件

    其目的是将控制台键盘从标准输入中分离,并将输入文件与标准输入关联,即程序从输入文件中读取输入数据,而不是从键盘中读取输入数据

    准备一个average.py文件(代码如下)

    import sys
    
    total =0.0
    count = 0
    for line in sys.stdin:
        count += 1
        total += float(line)
    
    avg = total/count
    print("average:",avg)
    

    然后问题总是不期而至,
    在PowerShell中:python average.py < scores.txt,会报错,PowerShell会提示你:“<”运算符是为将来使用而保留的
    很无奈,我只能使用cmd了,然后得出结果

    四:管道

    格式:
    程序1 | 程序2 | 程序3 | … | 程序4

    其目的是将程序1的标准输出连接到程序2的标准输入,
    将程序2的标准输出连接到程序3的标准输入,以此类推

    例如:
    打开cmd,输入python test.py 100 | average.py,其执行结果等同于上面两个例子中的命令

    使用管道更加简洁,且不用创建中间文件,从而消除了输入流和输出流可以处理的数据大小的限制,执行效率更高

    五:过滤器

    1. 使用操作系统实用程序more逐屏显示数据

    2. 使用操作系统实用程序sort排序输出数据

    more和sort都可以在一个语句中使用

    填空题:1、2

    print(value, ..., sep = ' ', end = '\n', file = sys.stdout, flush = False)

    1. sep(分隔符,默认为空格)
    2. end(换行符,即输入的末尾是个啥)
    3. file(写入到指定文件流,默认为控制台sys.stdout)
    4. flush(指定是否强制写入到流)

    1

    >>> print(1,2,3,4,5,sep='-',end='!')
    1-2-3-4-5!
    

    2

    >>> for i in range(10):
    	print(i,end=' ')
    
    	
    0 1 2 3 4 5 6 7 8 9 
    

    例题及上机实践:2~5

    2. 尝试修改例6.2编写的命令行参数解析的程序,解析命令行参数所输入边长的值,计算并输出正方形的周长和面积

    argparse模块用于解析命名的命令行参数,生成帮助信息的Python标准模块

    例6.2:解析命令行参数所输入的长和宽的值,计算并输出长方形的面积

    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--length', default = 10, type = int, help = '长度')
    parser.add_argument('--width', default = 5, type = int, help = '宽度')
    
    args = parser.parse_args()
    area = args.length * args.width
    print('面积 = ', area)
    
    input()#加这一句是为了可以看到输出结果
    

    输出:面积 = 50

    如果在执行这个模块时,加入两个命令行参数

    输出:面积 = 36

    基本上看了上面这个例子后,就可以理解argparse的用法了

    本题代码:

    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--length', default = 10, type = int, help = '长度')
    
    args = parser.parse_args()
    area = args.length ** 2
    perimeter = 4 * args.length
    print('面积 = {0},周长 = {1}'.format(area,perimeter))
    
    input()#加这一句是为了可以看到输出结果
    
    

    在PowerShell中输入.\test.py
    不给命令行参数,输出是以默认值来计算的
    输出:面积 = 100,周长 = 40

    给命令行参数:.\test.py --length 1
    输出:面积 = 1,周长 = 4

    3. 尝试修改例6.8编写读取并输出文本文件的程序,由命令行第一个参数确认所需输出的文本文件名

    f = open(file, mode = 'r' , buffering = -1, encoding = None)

    1. file是要打开或创建的文件名,如果文件不在当前路径,需指出具体路径
    2. mode是打开文件的模式,模式有:
      ‘r’(只读)
      ‘w’(写入,写入前删除就内容)
      ‘x’(创建新文件,如果文件存在,则导致FileExistsError)
      ‘a’(追加)
      ‘b’(二进制文件)
      ‘t’(文本文件,默认值)
      ‘+’(更新,读写)
    3. buffering表示是否使用缓存(缓存为-1,表示使用系统默认的缓冲区大小)
    4. encoding是文件的编码

    例6.8:读取并输出文本文件

    import sys
    
    filename = sys.argv[0]#就读取本文件,骚的呀皮
    f = open(filename, 'r', encoding = 'utf-8')
    
    line_no = 0
    while True:
        line_no += 1
        line = f.readline()
        if line:
            print(line_no, ":", line)
        else:
            break
    f.close()       
    

    输出(代码输出的就是本python文件):

    1 : import sys
    
    2 : 
    
    3 : filename = sys.argv[0]#就读取本文件,骚的呀皮
    
    4 : f = open(filename, 'r', encoding = 'utf-8')
    
    5 : 
    
    6 : line_no = 0
    
    7 : while True:
    
    8 :     line_no += 1
    
    9 :     line = f.readline()
    
    10 :     if line:
    
    11 :         print(line_no, ":", line)
    
    12 :     else:
    
    13 :         break
    
    14 : f.close()
    
    15 :         
    
    

    本题代码:

    对例题代码进行些许修改就可以了,首先将上例中的第二个语句改为:filename = sys.argv[0],再考虑下面怎么进行

    准备一个用来测试的文件test.txt:

    对于这个文件要注意一点(你们很可能回出现这个问题!!!),win10默认创建的文本文件的字符编码是ANSI

    代码怎么写,有两种:

    1. 将test.txt文本文件的编码修改为utf-8,代码如上所说
      记事本方式打开test.txt文件,点击文件,点击另存为,看到下方的编码(修改为utf-8)
    2. test.txt就用默认的ANSI编码方式,再将上例代码的第三个语句修改为f = open(filename, 'r', encoding = 'ANSI')

    在PowerShell中输入:./test.py test.txt
    输出:

    1 : 大家好
    
    2 : 我是Zhangguohao666
    
    3 : 如果本文章对大家有帮助,请点赞支持一下
    
    4 : 还有:
    
    5 : 如果发现了什么问题,请在评论区指出,我会积极改进
    

    4. 尝试修改例6.9编写利用with语句读取并输出文本文件的程序,由命令行第一个参数确认所需输出的文本文件名

    为了简化操作,Python语言中与资源相关的对象可以实现上下文管理协议,可以使用with语句,确保释放资源。
    with open(file,mode) as f:

    例6.9:利用with语句读取并输出文本文件

    import sys
    
    filename = sys.argv[0]
    
    line_no = 0
    with open(filename, 'r', encoding = 'utf-8') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
    

    基本上,看这个例子,就可以上手with语句了

    本题代码:

    还是上一题准备的文本文件,
    代码一(文本文件的编码为默认的ANSI):

    import sys
    
    filename = sys.argv[1]
    
    line_no = 0
    with open(filename, 'r', encoding = 'ANSI') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
          
    

    代码二(将文本文件的编码修改为utf-8):

    import sys
    
    filename = sys.argv[1]
    
    line_no = 0
    with open(filename, 'r', encoding = 'utf-8') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
          
    
    

    本题的输出,我再不要脸的放一次吧:

    1 : 大家好
    
    2 : 我是Zhangguohao666
    
    3 : 如果本文章对大家有帮助,请点赞支持一下
    
    4 : 还有:
    
    5 : 如果发现了什么问题,请在评论区指出,我会积极改进
    

    5. 尝试修改例6.12编写标准输出流重定向的程序,从命令行第一个参数中获取n的值,然后将0-n,0-n的2倍值,2的0-n次幂的列表打印输出到out.log文件中

    例6.12:从命令行第一个参数中获取n的值,然后将0-n,2的0-n次幂的列表打印输出到out.log文件中

    1. 标准输入流文件对象:sys.stdin,
      默认值为sys.__stdin__
    2. 标准输出流文件对象:sys.stdout,
      默认值为sys.__stdout__
    3. 错误输出流文件对象(标准错误流文件对象):sys.stderr
      默认值为sys.__stderr__

    书中给的代码是这样的:

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ', str(power))
        power = 2*power
        i += 1
    sys.stdout = sys.__stdout__
    

    如果使用的编辑器是PyCharm(现在大多数编辑器会帮你对代码进行优化和处理一些隐患),运行书中的这个代码没有问题。

    但是:
    若使用的编辑器是python自带的IDLE,运行这个代码有问题!

    第一:out.log文件会生成,但是没有东西
    (发现文件关闭不了(就是×不掉),
    确定是文件没关闭(f.close())的原因)

    第二:控制台没有输出’done’语句(估计是IDLE编辑器处理不了__stdout__这个值)

    经过研究后,发现(基于IDLE编辑器):
    如果在上面的代码中加入f.close()后,该输入的东西都成功输入进out.log文件了,
    但是,
    还有一个问题
    控制台依旧没有输出’done’语句
    经过一步步的断点调试(就是手动写print)
    发现sys.stdout = sys.__stdout__不会执行

    然后进行改动后,就可以了,代码如下:
    (既然__stdout__不好使,就使用中间变量)

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    output = sys.stdout
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ', str(power))
        power = 2*power
        i += 1
    
    f.close()
    sys.stdout = output
    print('done!')#这一句是用来检测上面的代码是否成功执行
    
    

    问题虽然解决,但是原因没有彻底弄清楚,求助。。。。。。

    本题代码:

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    output = sys.stdout
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ',  str(2*i),  ' ', str(power))
        power = 2*power
        i += 1
    
    f.close()
    sys.stdout = output
    print('done!')#这一句是用来检测上面的代码是否成功执行
    
    

    比如时输入的命令行参数是6
    输出:

    案例研究:21点扑克牌游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103948545

    通过21点扑克牌游戏的设计和实现,了解使用Python数据类型、控制流程和输入输出

    第七章 错误和异常处理


    Python语言采用结构化的异常处理机制捕获和处理异常

    而我感觉,Python在这方面的知识点其实和Java的差不多

    几个例题

    一:程序的错误和异常处理

    1. 语法错误

    指源代码中的拼写错误,这些错误导致Python编译器无法把Python源代码转换为字节码,故也称之为编译错误

    1. 运行时错误

    在解释执行过程中产生的错误

    例如:

    • 程序中没有导入相关的模块,NameError
    • 程序中包括零除运算,ZeroDivisionError
    • 程序中试图打开不存在的文件,FileNotFoundError
    1. 逻辑错误

    程序可以执行(程序运行本身不报错),但执行结果不正确。
    对于逻辑错误,Python解释器无能为力,需要用户根据结果来调试判断

    大部分由程序错误而产生的错误和异常一般由Python虚拟机自动抛出。另外,在程序中如果判断某种错误情况,可以创建相应的异常类的对象,并通过raise语句抛出

    >>> a = -1
    >>> if(a < 0): raise ValueError("数值不能为负数")
    
    Traceback (most recent call last):
      File "<pyshell#9>", line 1, in <module>
        if(a < 0): raise ValueError("数值不能为负数")
    ValueError: 数值不能为负数
    >>> 
    

    在程序中的某个方法抛出异常后,Python虚拟机通过调用堆栈查找相应的异常捕获程序。如果找到匹配的异常捕获程序(即调用堆栈中的某函数使用try…except语句捕获处理),则执行相应的处理程序(try…except语句中匹配的except语句块)

    如果堆栈中没有匹配的异常捕获程序,则Python虚拟机捕获处理异常,在控制台打印出异常的错误信息和调用堆栈,并中止程序的执行

    二:try …except…else…finally

    try:
    	可能产生异常的语句
    except Exception1:
    	发生Exception1时执行的语句
    except (Exception2,Exception3):
    	发生Exception2或Exception3时执行的语句
    except Exception4 as e:
    	发生Exception4时执行的语句,Exception4的实例是e
    except:
    	捕获其他所有异常
    else:
    	无异常时执行的语句
    finally:
    	不管异常发生与否都保证执行的语句			
    

    except语句可以写多个,但是要注意一点:系统是自上而下匹配发生的异常,所以用户需要将带有最具体的(即派生类程度最高的)异常类的except写在前面

    三:创建自定义异常,处理应用程序中出现的负数参数的异常

    自定义异常类一般继承于Exception或其子类。自定义异常类的名称一般以Error或Exception为后缀

    >>> class NumberError(Exception):
        def __init__(self,data):
            Exception.__init__
            (self,data)
            self.data = data
        def __str__(self):
            return self.data + ':非法数值(<0)'
    
    >>> 
    >>> def total(data):
        total = 0
        for i in data:
            if i < 0: raise NumberError(str(i))
            total += 1
        return total
    
    >>> 
    >>> data1 = (44, 78, 90, 80, 55)
    >>> print("sum: ",total(data1))
    sum:  5
    >>> 
    >>> data2 = (44, 78, 90, 80, -1)
    >>> print("sum: ",total(data2))
    Traceback (most recent call last):
      File "<pyshell#24>", line 1, in <module>
        print("sum: ",total(data2))
      File "<pyshell#18>", line 4, in total
        if i < 0: raise NumberError(str(i))
    NumberError: -1:非法数值(<0>>> 
    

    四:断言处理

    用户在编写程序时,在调试阶段往往需要判断代码执行过程中变量的值等信息:

    1. 用户可以使用print()函数打印输出结果
    2. 也可以通过断点跟踪调试查看变量
    3. 但使用断言更加灵活

    assert语句和AssertionError

    断言的声明:

    • assert <布尔表达式>
      即:if __debug__: if not testexpression: raise AssertionError
    • assert <布尔表达式>,<字符串表达式>
      即:if __debug__: if not testexpression: raise AssertionError(data)
      字符串表达式(即data)是断言失败时输出的失败消息

    __debug__也是布尔值,Python解释器有两种:调试模式和优化模式

    • 调试模式:__debug__ == True
    • 优化模式:__debug__ == False

    在学习中,对于执行一个py模块(比如test.py)我们通常在cmd中这么输入python test.py,而这默认是调试模式。
    如果我们要使用优化模式来禁用断言来提高程序效率,我们可以加一个运行选项-O,在控制台中这么输入python -O test.py

    看一下断言的示例吧,理解一下用法:

    a =int(input("a: "))
    b =int(input("b: "))
    assert b != 0, '除数不能为零'
    c = a/b
    print("a/b = ", c)
    

    cmd出场:
    输入正确数值时:

    输入错误数值时:

    禁用断言,并且输入错误数值时:

    案例研究:使用调试器调试Python程序

    https://blog.csdn.net/Zhangguohao666/article/details/103948568

    了解使用Python调试器调试程序的方法

    第八章 函数和函数式编程


    一些知识点总结和几个例题

    Python中函数的分类:

    1. 内置函数
      在程序中可以直接使用
    2. 标准库函数
      Python语言安装程序同时会安装若干标准库,例如math、random等
    3. 第三方库函数
      Python社区提供了许多其它高质量的库,在下载、安装这些库后,通过import语句可以导入库
    4. 用户自定义函数
    • 函数名为有效的标识符(命名规则为全小写字母,可以使用下划线增加可阅读性,例如my_func()
    • 函数可以使用return返回值
      如果函数体中包含return语句,则返回值
      否则不返回,即返回值为空(None),无返回值的函数相当于其它编程语言中的过程

    调用函数之前程序必须先执行def语句,创建函数对象

    • 内置函数对象会自动创建
    • import导入模块时会执行模块中的def语句,创建模块中定义的函数
    • Python程序结构顺序通常为import语句>函数定义>全局代码

    一:产生副作用的函数,纯函数

    打印等腰三角形

    n = int(input("行数:"))
    
    def print_star(n):
        print((" * " * n).center(50))
    
    for i in range(1, 2*n, 2):
        print_star(i)
    

    输出:

    行数:5
                            *                         
                         *  *  *                      
                      *  *  *  *  *                   
                   *  *  *  *  *  *  *                
                *  *  *  *  *  *  *  *  *             
    

    上面代码中的print_star()是一个产生副作用的函数,其副作用是向标准输出写入若干星号

    • 副作用:例如读取键盘输入,产生输出,改变系统的状态等
    • 在一般情况下,产生副作用的函数相当于其它程序设计语言中的过程,可以省略return语句

    定义计算并返回第n阶调和数(1+1/2+1/3+…+1/n)的函数,输出前n个调和数

    def harmonic(n):
        total = 0.0
        for i in range(1, n+1):
            total += 1.0/i
        return total
    
    n = int(input("n:"))
    
    print("输出前n个调和数的值:")
    for i in range(1, n+1):
        print(harmonic(i))
    

    输出:

     n:8
    输出前n个调和数的值:
    1.0
    1.5
    1.8333333333333333
    2.083333333333333
    2.283333333333333
    2.4499999999999997
    2.5928571428571425
    2.7178571428571425         
    

    上面代码中的harmonic()是纯函数

    纯函数:给定同样的实际参数,其返回值唯一,且不会产生其它的可观察到的副作用

    注意:编写同时产生副作用和返回值的函数通常被认为是不良编程风格,但有一个例外,即读取函数。例如,input()函数既可以返回一个值,又可以产生副作用(从标准输入中读取并消耗一个字符串)

    二:传递不可变对象、可变对象的引用

    • 实际参数值默认按位置顺序依次传递给形式参数。如果参数个数不对,将会产生错误

    在调用函数时:

    1. 若传递的是不可变对象(例如:int、float、bool、str对象)的引用,则如果函数体中修改对象的值,其结果实际上是创建了一个新的对象
    i = 1
    
    def func(i,n):
        i += n
        return i
    
    print(i)#1
    func(i,10)
    print(i)#1
    

    执行函数func()后,i依旧为1,而不是11

    1. 若传递的是可变对象(例如:list对象)的引用,则在函数体中可以直接修改对象的值
    import random
    
    def shuffle(a):
        n = len(a)
        for i in range(n):
            r = random.randrange(i,n)
            a[i],a[r] = a[r],a[i]
    
    a = [1,2,3,4,5]
    print("初始:",a)
    shuffle(a)
    print("调用函数后:",a)
    

    输出:

    初始: [1, 2, 3, 4, 5]
    调用函数后: [1, 5, 4, 3, 2]
    

    三:可选参数,命名参数,可变参数,强制命名参数

    可选参数

    • 在声明函数时,如果希望函数的一些参数是可选的,可以在声明函数时为这些参数指定默认值
    >>> def babbles(words, times=1):
    	print(words * times)
    
    	
    >>> babbles('Hello')
    Hello
    >>> 
    >>> babbles("Hello", 2)
    HelloHello
    >>> 
    

    注意到一点:必须先声明没有默认值的形参,然后再声明有默认值的形参,否则报错。 这是因为在函数调用时默认是按位置传递实际参数的。

    怎么理解上面那句话呢?

    默认是按位置传递实际参数(如果有默认值的形参在左边,无默认值的形参在右,那么在调用函数时,你的实参该怎么传递呢?)

    命名参数

    • 位置参数:当函数调用时,实参默认按位置顺序传递形参
    • 命名参数(关键字参数):按名称指定传入的参数
      参数按名称意义明确
      传递的参数与顺序无关
      如果有多个可选参数,则可以选择指定某个参数值

    基于期中成绩和期末成绩,按照指定的权重计算总评成绩

    >>> def my_sum(mid_score, end_score, mid_rate = 0.4):
    	score = mid_score*mid_rate + end_score*(1-mid_rate)
    	print(format(score,'.2f'))
    
    	
    >>> my_sum(80,90)
    86.00
    >>> my_sum(mid_score = 80,end_score = 90)
    86.00
    >>> my_sum(end_score = 90,mid_score = 80)
    86.00
    >>> 
    

    可变参数

    • 在声明函数时,可以通过带星号的参数(例如:def func(* param))向函数传递可变数量的实参,调用函数时,从那一点后所有的参数被收集为一个元组
    • 在声明函数时,可以通过带双星号的参数(例如:def func(** param))向函数传递可变数量的实参,调用函数时,从那一点后所有的参数被收集为一个字典

    利用带星的参数计算各数字的累加和

    >>> def my_sum(a,b,*c):
        total = a+b
        for i in c:
            total += i
        return total
    
    >>> print(my_sum(1,2))
    3
    >>> print(my_sum(1,2,3,4,5,6))
    21
    

    利用带星和带双星的参数计算各数字的累加和

    >>> def my_sum(a,b,*c,**d):
        total = a+b
        for i in c:
            total += i
        for key in d:
            total += d[key]
        return total
    
    >>> print(my_sum(1,2))
    3
    >>> print(my_sum(1,2,3,4))
    10
    >>> print(my_sum(1,2,3,4,male=1,female=2))
    13
    

    强制命名参数

    • 在带星号的参数后面声明参数会导致强制命名参数(Keyword-only),然后在调用时必须显式使用命名参数传递值
    • 因为按位置传递的参数默认收集为一个元组,传递给前面带星号的可变参数
    >>> def my_sum(*, mid_score, end_score, mid_rate = 0.4):
        score = mid_score*mid_rate + end_score*(1-mid_rate)
        print(format(score,'.2f'))
    
    >>> my_sum(mid_score=80,end_score=90)
    86.00
    >>> my_sum(end_score=90,mid_score=80)
    86.00
    >>> my_sum(80,90)
    Traceback (most recent call last):
      File "<pyshell#47>", line 1, in <module>
        my_sum(80,90)
    TypeError: my_sum() takes 0 positional arguments but 2 were given
    >>> 
    

    四:全局语句global示例,非局部语句nonlocal示例,输出局部变量和全局变量

    • 在函数体中可以引用全局变量,但是要为定义在函数外的全局变量赋值,需要使用global语句
    pi = 2.1415926
    e = 2.7182818
    
    def my_func():
        global pi
        pi = 3.14
        print("global pi = ", pi)
        e = 2.718
        print("local e = ", e)
    
    print('module pi = ', pi)
    print('module e = ', e)
    my_func()
    print('module pi = ', pi)
    print('module e = ', e)
    

    输出:

    module pi =  2.1415926
    module e =  2.7182818
    global pi =  3.14
    local e =  2.718
    module pi =  3.14
    module e =  2.7182818
    
    • 在函数体中可以定义嵌套函数,在嵌套函数中如果要为定义在上级函数体的局部变量赋值,可以使用nonlocal
    def outer_func():
        tax_rate = 0.17
        print('outer function tax rate is ',tax_rate)
        def inner_func():
            nonlocal tax_rate
            tax_rate = 0.01
            print('inner function tax rate is ',tax_rate)
        inner_func()
        print('outer function tax rate is ',tax_rate)
    
    outer_func()
    

    输出:

    outer function tax rate is  0.17
    inner function tax rate is  0.01
    outer function tax rate is  0.01
    
    • 输出局部变量和全局变量
    1. 内置函数locals(),局部变量列表
    2. 内置函数globals(),全局变量列表

    五:获取和设置最大递归数

    在sys模块中,函数getrecursionlimit()setrecursionlimit()用于获取和设置最大递归次数

    >>> import sys
    >>> sys.getrecursionlimit()
    1000
    >>> sys.setrecursionlimit(666)
    >>> sys.getrecursionlimit()
    666
    >>> 
    

    六:三个有趣的内置函数:eval()、exec()、compile()

    eval

    • 对动态表达式进行求值,返回值
    • eval(expression, globals=None, locals=None)
      expression是动态表达式的字符串
      globals和locals是求值时使用的上下文环境的全局变量和局部变量,如果不指定,则使用当前运行上下文
    >>> x = 2
    >>> str_func = input("请输入表达式:")
    请输入表达式:x**2+2*x+1
    >>> eval(str_func)
    9
    >>> 
    

    exec

    • 可以执行动态表达式,不返回值
    • exec(str, globals=None, locals=None)
    >>> exec("for i in range(10): print(i, end=' ')")
    0 1 2 3 4 5 6 7 8 9 
    >>> 
    

    compile

    • 编译代码为代码对象,可以提高效率
    • compile(source, filename, mode)
      source为代码语句的字符串;如果是多行语句,则每一行的结尾必须有换行符\n
      filename为包含代码的文件
      mode为编码方式,可以为'exec'(用于语句序列的执行),可以为'eval'(用于表达式求值),可以为'single'(用于单个交互语句)
    >>> co = compile("for i in range(10): print(i, end=' ')", '', 'exec')
    >>> exec(co)
    0 1 2 3 4 5 6 7 8 9 
    >>> 
    

    七:map(),filter()

    • map(f, iterable,…),将函数f应用于可迭代对象,返回结果为可迭代对象

    示例1:

    >>> def is_odd(x):
    	return x%2 == 1
    
    >>> list(map(is_odd,range(5)))
    [False, True, False, True, False]
    >>> 
    

    示例2:

    >>> list(map(abs,[1,-2,3,-4,5,-6]))
    [1, 2, 3, 4, 5, 6]
    >>> 
    

    示例3:

    >>> list(map(str,[1,2,3,4,5]))
    ['1', '2', '3', '4', '5']
    >>
    

    示例4:

    >>> def greater(x,y):
    	return x>y
    
    >>> list(map(greater,[1,5,7,3,9],[2,8,4,6,0]))
    [False, False, True, False, True]
    >>> 
    
    • filter(f, iterable),将函数f应用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素,返回结果为可迭代对象

    示例1(返回个位数的奇数):

    >>> def is_odd(x):
    	return x%2 == 1
    
    >>> list(filter(is_odd, range(10)))
    [1, 3, 5, 7, 9]
    >>> 
    

    示例2(返回三位数的回文):

    >>> list(filter(is_palindrome, range(100, 1000)))
    [101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656, 666, 676, 686, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999]
    >>> 
    

    八:Lambda表达式和匿名函数

    匿名函数广泛应用于需要函数对象作为参数、函数比较简单并且只使用一次的场合

    格式:

    lambda arg1,arg2... : <expression>
    

    其中,arg1、arg2等为函数的参数,<expression>为函数的语句,其结果为函数的返回值

    示例1(计算两数之和):

    >>> f = lambda x,y : x+y
    >>> type(f)
    <class 'function'>
    >>> f(1,1)
    2
    >>> 
    

    示例2(返回奇数):

    >>> list(filter(lambda x:x%2==1, range(10)))
    [1, 3, 5, 7, 9]
    >>> 
    

    示例3(返回非空元素):

    >>> list(filter(lambda s:s and s.strip(), ['A', '', 'B', None, 'C', ' ']))
    ['A', 'B', 'C']
    >>> 
    

    补充:

    • strip()用来去除头尾字符、空白符(\n,\r,\t,’’,即换行、回车、制表、空格)
    • lstrip()用来去除开头字符、空白符
    • rstrip()用来去除结尾字符、空白符

    再补充一点:

    • \n到下一行的开头
    • \r回到这一行的开头

    示例4(返回大于0的元素):

    >>> list(filter(lambda x:x>0, [1,0,-2,8,5]))
    [1, 8, 5]
    >>> 
    

    示例5(返回元素的平方):

    >>> list(map(lambda x:x*x, range(10)))
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> 
    

    九:operator模块和操作符函数

    Python内置操作符的函数接口,它定义了对应算术和比较等操作的函数,用于map()、filter()等需要传递函数对象作为参数的场合,可以直接使用而不需要使用函数定义或者Lambda表达式,使得代码更加简洁

    示例1(concat(x,y)对应于x+y):

    >>> import operator
    >>> a = 'hello'
    >>>> operator.concat(a, ' world')
    'hello world'
    

    实例2(operator.gt对应于操作符>):

    >>> import operator
    >>> list(map(operator.gt, [1,5,7,3,9],[2,8,4,6,0]))
    [False, False, True, False, True]
    >>> 
    

    十:functools.reduce(),偏函数functools.partial(),sorted()

    functools.reduce()

    functools.reduce(func, iterable[, iterable[, initializer]])

    • 使用指定的带两个参数的函数func对一个数据集合的所有数据进行下列操作:
    • 使用第一个和第二个数据作为参数用func()函数运算,得到的结果再与第三个数据作为参数用func()函数运算,依此类推,最后得到一个结果
    • 可选的initialzer为初始值

    示例:

    >>> import functools,operator
    >>> functools.reduce(operator.add, [1,2,3,4,5])
    15
    >>> functools.reduce(operator.add, [1,2,3,4,5], 10)
    25
    >>> functools.reduce(operator.add, range(1,101))
    5050
    >>> 
    >>> functools.reduce(operator.mul, range(1,11))
    3628800
    

    偏函数functools.partial()

    functools.partial(func, *arg, **keywords)

    • 通过把一个函数的部分参数设置为默认值的方式返回一个新的可调用(callable)的partial对象
    • 主要用于设置预先已知的参数,从而减少调用时传递参数的个数

    示例(2的n次方):

    >>> import functools,math
    >>> pow2 = functools.partial(math.pow, 2)
    >>> list(map(pow2, range(11)))
    [1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0]
    >>> 
    

    十一:sorted()

    sorted(iterable, *, key=None, reverse=False)

    • iterable是待排序的可迭代对象
    • key是比较函数(默认为None,按自然顺序排序)
    • reverse用于指定是否逆序排序

    示例1(数值。默认自然排序):

    >>> sorted([1,6,4,-2,9])
    [-2, 1, 4, 6, 9]
    >>> sorted([1,6,4,-2,9], reverse=True)
    [9, 6, 4, 1, -2]
    >>> sorted([1,6,4,-2,9], key=abs)
    [1, -2, 4, 6, 9]
    

    示例2(字符串,默认按字符串字典序排序):

    >>> sorted(['Dod', 'cat', 'Rabbit'])
    ['Dod', 'Rabbit', 'cat']
    >>> sorted(['Dod', 'cat', 'Rabbit'], key=str.lower)
    ['cat', 'Dod', 'Rabbit']
    >>> sorted(['Dod', 'cat', 'Rabbit'], key=len)
    ['Dod', 'cat', 'Rabbit']
    

    示例3(元组,默认按元组的第一个元素排序):

    >>> sorted([('Bob', 75), ('Adam', 92), ('Lisa', 88)])
    [('Adam', 92), ('Bob', 75), ('Lisa', 88)]
    >>> sorted([('Bob', 75), ('Adam', 92), ('Lisa', 88)], key=lambda t:t[1])
    [('Bob', 75), ('Lisa', 88), ('Adam', 92)]
    

    十二:函数装饰器

    这玩意就很有意思了,很Java语言中的注解是很相像的

    示例1:

    import time,functools
    
    def timeit(func):
        def wrapper(*s):
            start = time.perf_counter()
            func(*s)
            end = time.perf_counter()
            print('运行时间:', end - start)
        return wrapper
    
    @timeit
    def my_sum(n):
        sum = 0
        for i in range(n): sum += i
        print(sum)
    
    if __name__ == '__main__':
        my_sum(10_0000)
    

    结果:

    4999950000
    运行时间: 0.013929100000000028
    

    怎么理解上面的代码呢?

    • 首先,timeit()返回的是wrapper,而不是执行(没有小括号)
    • @timeit相当于,在调用my_sum()的前一刻,会执行这么个语句:my_sum = timeit(my_sum)

    示例2:

    def makebold(fn):
        def wrapper(*s):
            return "<b>" + fn(*s) + "</b>"
        return wrapper
    
    def makeitalic(fn):
        def wrapper(*s):
            return "<i>" + fn(*s) + "</i>"
        return wrapper
    
    @makebold
    @makeitalic
    def htmltags(str1):
        return str1
    
    print(htmltags('Hello'))
    
    

    输出:

    <b><i>Hello</i></b>
    

    选择题:1~5

    1

    >>> print(type(lambda:None))
    <class 'function'>
    

    2

    >>> f = lambda x,y:x*y
    >>> f(12, 34)
    408
    

    3

    >>> f1 = lambda x:x*2
    >>> f2 = lambda x:x**2
    >>> print(f1(f2(2)))
    8
    

    4

    >>> def f1(p, **p2):
    	print(type(p2))
    
    	
    >>> f1(1, a=2)
    <class 'dict'>
    

    5

    >>> def f1(a,b,c):
    	print(a+b)
    
    	
    >>> nums = (1,2,3)
    >>> f1(*nums)
    3
    

    思考题:4~11

    4

    >>> d = lambda p:p*2
    >>> t = lambda p:p*3
    >>> x = 2
    >>> x = d(x)
    >>> x = t(x)
    >>> x = d(x)
    >>> print(x)
    24
    

    5

    >>> i = map(lambda x:x**2, (1,2,3))
    >>> for t in i:
    	print(t, end=' ')
    
    	
    1 4 9 
    

    6

    >>> def f1():
    	"simple function"
    	pass
    
    >>> print(f1.__doc__)
    simple function
    

    7

    >>> counter = 1
    >>> num = 0
    >>> def TestVariable():
    	global counter
    	for i in (1, 2, 3) : counter += 1
    	num = 10
    
    	
    >>> TestVariable()
    >>> print(counter, num)
    4 0
    

    8

    >>> def f(a,b):
    	if b==0 : print(a)
    	else : f(b, a%b)
    
    	
    >>> print(f(9,6))
    3
    None
    

    求最大公约数

    9

    >>> def aFunction():
    	"The quick brown fox"
    	return 1
    
    >>> print(aFunction.__doc__[4:9])
    quick
    

    10

    >>> def judge(param1, *param2):
    	print(type(param2))
    	print(param2)
    
    	
    >>> judge(1, 2, 3, 4, 5)
    <class 'tuple'>
    (2, 3, 4, 5)
    

    11

    >>> def judge(param1, **param2):
    	print(type(param2))
    	print(param2)
    
    	
    >>> judge(1, a=2, b=3, c=4, d=5)
    <class 'dict'>
    {'a': 2, 'b': 3, 'c': 4, 'd': 5}
    

    上机实践:2~5

    2. 编写程序,定义一个求阶乘的函数fact(n),并编写测试代码,要求输入整数n(n>=0)。请分别使用递归和非递归方式实现

    递归方式:

    def fact(n):
        if n == 0 :
            return 1
        return n*fact(n-1)
    
    n = int(input("请输入整数n(n>=0):"))
    print(str(n)+" ! =  " + str(fact(n)))
    
    

    非递归方式:

    def fact(n):
        t = 1
        for i in range(1,n+1):
            t *= i
        return t
    
    n = int(input("请输入整数n(n>=0):"))
    print(str(n)+" ! =  " + str(fact(n)))
    
    

    输出:

    请输入整数n(n>=0):5
    5 ! =  120
    

    3. 编写程序,定义一个求Fibonacci数列的函数fib(n),并编写测试代码,输出前20项(每项宽度5个字符位置,右对齐),每行输出10个。请分别使用递归和非递归方式实现

    递归方式:

    def fib(n):
        if (n == 1 or n == 2):
            return 1
        return fib(n-1)+fib(n-2)
    
    for i in range(1,21):
        print(str(fib(i)).rjust(5,' '),end = ' ')
        if i %10 == 0:
            print()
    

    非递归方式:

    def fib(n):
        if (n == 1 or n == 2):
            return 1
        n1 = n2 = 1
        for i  in range(3,n+1):
            n3 = n1+n2
            n1 = n2
            n2 = n3
        return n3
    
    for i in range(1,21):
        print(str(fib(i)).rjust(5,' '),end = ' ')
        if i %10 == 0:
            print()
    

    输出:

        1     1     2     3     5     8    13    21    34    55
       89   144   233   377   610   987  1597  2584  4181  6765
    

    4. 编写程序,利用可变参数定义一个求任意个数数值的最小值的函数min_n(a,b,*c),并编写测试代码。例如对于“print(min_n(8, 2))”以及“print(min_n(16, 1, 7, 4, 15))”的测试代码

    def min_n(a,b,*c):
        min_number = a if(a < b) else b
        for n in c:
            if n < min_number:
                min_number = n
        return min_number
    
    print(min_n(8, 2))
    print(min_n(16, 1, 7, 4, 15))
    

    输出:

    2
    1
    

    5. 编写程序,利用元组作为函数的返回值,求序列类型中的最大值、最小值和元素个数,并编写测试代码,假设测试代码数据分别为s1=[9, 7, 8, 3, 2, 1, 55, 6]、s2=[“apple”, “pear”, “melon”, “kiwi”]和s3="TheQuickBrownFox"

    def func(n):
        return (max(n),min(n),len(n))
        
    s1=[9, 7, 8, 3, 2, 1, 55, 6]
    s2=["apple", "pear", "melon", "kiwi"]
    s3="TheQuickBrownFox"
    
    for i in (s1,s2,s3):
        print("list = ", i)
        t = func(i)
        print("最大值 = {0},最小值 = {1},元素个数 = {2}".format(t[0], t[1], t[2]))
    

    输出:

    list =  [9, 7, 8, 3, 2, 1, 55, 6]
    最大值 = 55,最小值 = 1,元素个数 = 8
    list =  ['apple', 'pear', 'melon', 'kiwi']
    最大值 = pear,最小值 = apple,元素个数 = 4
    list =  TheQuickBrownFox
    最大值 = x,最小值 = B,元素个数 = 16
    

    案例研究:井字棋游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103280740

    了解Python函数的定义和使用


    由于本文的内容太多了,导致了两个很不好的结果,
    一是:在网页中打开本篇博客的加载时间太长了,明显的卡顿很影响阅读体验;
    二是:本人在对本篇文章进行更新或者修改内容时,卡的要死。
    遂,
    将本文第八章后面的很多内容拆分到新的文章中,望大家理解


    第九章 面向对象的程序设计


    第十章 模块和客户端


    第十一章 算法与数据结构基础


    第十二章 图形用户界面


    我对图形用户界面基本无兴趣,无特殊情况,基本不打算碰这方面内容

    案例研究:简易图形用户界面计算器

    第十三章 图形绘制


    与上一章相同,我对于图形绘制的兴趣也基本没有,尝试做了2-7题,就完全没兴趣做下去了

    图形绘制模块:tkinter

    2. 参考例13.2利用Canvas组件创建绘制矩形的程序,尝试改变矩形边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 130, height = 70)
    c.pack()
    
    c.create_rectangle(10, 10, 60, 60, fill = 'red')
    c.create_rectangle(70, 10, 120, 60, fill = 'green', outline = 'blue', width = 5)
    
    

    创建画布对象:

    • root = Tk()
      创建一个Tk根窗口组件root
    • c = Canvas(root, bg = 'white', width = 130, height = 70)
      创建大小为200 * 100、背景颜色为白色的画布
    • c.pack()
      调用组件pack()方法,调整其显示位置和大小

    绘制矩形:

    c.create_rectangle(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • c.create_rectangle(70, 10, 120, 60, fill = 'green', outline = 'blue', width = 5)
      用蓝色边框、绿色填充矩形,边框宽度为5

    3. 参考例13.3利用Canvas组件创建绘制椭圆的程序,尝试修改椭圆边框样式、边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 280, height = 70)
    c.pack()
    
    c.create_oval(10, 10, 60, 60, fill = 'green')
    c.create_oval(70, 10, 120, 60, fill = 'green', outline = 'red', width = 5)
    c.create_oval(130, 25, 180, 45, dash = (10,))
    c.create_oval(190, 10, 270, 50, dash = (1,), width = 2)
    
    

    绘制椭圆

    c.create_oval(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • c.create_oval(70, 10, 120, 60, fill = 'green', outline = 'red', width = 5)
      绿色填充、红色边框,宽度为5
    • c.create_oval(130, 25, 180, 45, dash = (10,))
      虚线椭圆

    4. 参考例13.4利用Canvas组件创建绘制圆弧的程序,尝试修改圆弧样式、边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_arc(10, 10, 60, 60, style = ARC)
    c.create_arc(70, 10, 120, 60, style = CHORD)
    c.create_arc(130, 10, 180, 60, style = PIESLICE)
    for i in range(0, 360, 60):
        c.create_arc(190, 10, 240, 60, fill = 'green', outline = 'red', start = i, extent = 30)
    
    

    绘制圆弧:

    c.create_arc(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • 选项start(开始角度,默认为0)和extend(圆弧角度,从start开始逆时针旋转,默认为90度)决定圆弧的角度范围
    • 选项start用于设置圆弧的样式

    5. 参考例13.5利用Canvas组件创建绘制线条的程序,尝试修改线条样式和颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_line(10, 10, 60, 60, arrow = BOTH, arrowshape = (3, 4, 5))
    c.create_line(70, 10, 95, 10, 120, 60, fill = 'red')
    c.create_line(130, 10, 180, 10, 130, 60, 180, 60, fill = 'green', width = 10, arrow = BOTH, joinstyle = MITER)
    c.create_line(190, 10, 240, 10, 190, 60, 240, 60, width = 10)
    
    

    绘制线条:

    c.create_line(x0, y0, x1, y1, ..., xn, yn, option, ...)
    
    • (x0,y0),(x1,y1),…,(xn,yn)是线条上各个点的坐标

    6. 参考例13.6利用Canvas组件创建绘制多边形的程序,尝试修改多边形的形状、线条样式和填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_polygon(35, 10, 10, 60, 60, 60, fill = 'red', outline = 'green')
    c.create_polygon(70, 10, 120, 10, 120, 60, fill = 'white', outline = 'blue')
    c.create_polygon(130, 10, 180, 10, 180, 60, 130, 60, outline = 'blue')
    c.create_polygon(190, 10, 240, 10, 190, 60, 240, 60, fill = 'white', outline = 'black')
    
    

    绘制多边形:

    c.create_polygon(x0, y0, x1, y1, ..., option, ...)
    
    • (x0,y0),(x1,y1),…,(xn,yn)是多边形上各个顶点的坐标

    7. 参考例13.7利用Canvas组件创建绘制字符串和图形的程序,绘制y = cos(x) 的图形

    绘制字符串:

    c.create_text(x, y, option, ...)
    
    • (x,y)是字符串放置的中心位置

    y = sin(x)

    from tkinter import *
    import math
    
    WIDTH, HEIGHT = 510, 210
    ORIGIN_X, ORIGIN_Y = 2, HEIGHT/2 #原点
    
    SCALE_X, SCALE_Y = 40, 100 #x轴、y轴缩放倍数
    ox, oy = 0, 0
    x, y = 0, 0
    arc = 0 #弧度
    END_ARC = 360 * 2 #函数图形画两个周期
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = WIDTH, height = HEIGHT)
    c.pack()
    
    c.create_text(200, 20, text = 'y = sin(x)')
    c.create_line(0, ORIGIN_Y, WIDTH, ORIGIN_Y) 
    c.create_line(ORIGIN_X, 0, ORIGIN_X, HEIGHT) #绘制x轴,y轴
    for i in range(0, END_ARC+1, 10):
        arc = math.pi * i / 180
        x = ORIGIN_X + arc * SCALE_X
        y = ORIGIN_Y - math.sin(arc) * SCALE_Y
        c.create_line(ox, oy, x, y)
        ox, oy = x, y
    

    y = cos(x)

    from tkinter import *
    import math
    
    WIDTH, HEIGHT = 510, 210
    ORIGIN_X, ORIGIN_Y = 2, HEIGHT/2 #原点 
    
    SCALE_X, SCALE_Y = 40, 100 #x轴、y轴缩放倍数
    ox, oy = 0, 0
    x, y = 0, 0
    arc = 0 #弧度
    END_ARC = 360 * 2 #函数图形画两个周期
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = WIDTH, height = HEIGHT)
    c.pack()
    
    c.create_text(200, 20, text = 'y = cos(x)')
    c.create_line(0, ORIGIN_Y, WIDTH, ORIGIN_Y) 
    c.create_line(ORIGIN_X, 0, ORIGIN_X, HEIGHT) 
    for i in range(0, END_ARC+1, 10):
        arc = math.pi * i / 180 
        x = ORIGIN_X + arc * SCALE_X
        y = ORIGIN_Y - math.cos(arc) * SCALE_Y
        c.create_line(ox, oy, x, y)
        ox, oy = x, y
    
    
    

    图形绘制模块:turtle


    后面章节内容:未完待续…

    第十四章 数值日期和时间处理


    第十五章 字符串和文本处理


    第十六章 文件和数据交换


    第十七章 数据访问


    第十八章 网络编程和通信


    第十九章 并行计算:进程、线程和协程


    第二十章 系统管理

    展开全文
  • MySQL 面试题

    万次阅读 多人点赞 2019-09-02 16:03:33
    MySQL 正常关闭时,可以 dump 出 buffer pool 的( space, page_no),重启时 reload,加快预热速度 索引和表的统计信息持久化到 mysql.innodb_table_stats 和 mysql.innodb_index_stats,可提供稳定的执行计划 ...

    MySQL 面试题

    MySQL 涉及的内容非常非常非常多,所以面试题也容易写的杂乱。当年,我们记着几个一定要掌握的重心:

    重点的题目添加了【重点】前缀。

    1. 索引。
    2. 锁。
    3. 事务和隔离级别。

    因为 MySQL 还会有部分内容和运维相关度比较高,所以本文我们分成两部分【开发】【运维】两部分。

    • 对于【开发】部分,我们需要掌握。
    • 对于【运维】部分,更多考验开发的知识储备情况,当然能回答出来是比较好的,特别是对于高级开发工程师、架构师等。

    开发

    为什么互联网公司一般选择 MySQL 而不是 Oracle?

    免费、流行、够用。

    ? 当然,这个回答要稍微润色下。不过一般,很少问这个问题了。

    数据库的三范式是什么?什么是反模式?

    艿艿:重点在于反模式的回答。实际开发中,不会严格遵守三范式。

    胖友直接看 《服务端指南 数据存储篇 | MySQL(07) 范式与反模式》

    MySQL 有哪些数据类型?

    MySQL 支持多种类型,大致可以分为三类:数值、日期/时间和字符串(字符)类型。具体可以看看 《MySQL 数据类型》 文档。

    • 正确的使用数据类型,对数据库的优化是非常重要的。

    ? MySQL 中 varchar 与 char 的区别?varchar(50) 中的 50 代表的涵义?

    • 1、varchar 与 char 的区别,char 是一种固定长度的类型,varchar 则是一种可变长度的类型。
    • 2、varchar(50) 中 50 的涵义最多存放 50 个字符。varchar(50) 和 (200) 存储 hello 所占空间一样,但后者在排序时会消耗更多内存,因为 ORDER BY col 采用 fixed_length 计算 col 长度(memory引擎也一样)。所以,实际场景下,选择合适的 varchar 长度还是有必要的。

    ? int(11) 中的 11 代表什么涵义?

    int(11) 中的 11 ,不影响字段存储的范围,只影响展示效果。具体可以看看 《MySQL 中 int 长度的意义》 文章。

    ? 金额(金钱)相关的数据,选择什么数据类型?

    • 方式一,使用 int 或者 bigint 类型。如果需要存储到分的维度,需要 *100 进行放大。
    • 方式二,使用 decimal 类型,避免精度丢失。如果使用 Java 语言时,需要使用 BigDecimal 进行对应。

    ? 一张表,里面有 ID 自增主键,当 insert 了 17 条记录之后,删除了第 15,16,17 条记录,再把 MySQL 重启,再 insert 一条记录,这条记录的 ID 是 18 还是 15?

    • 一般情况下,我们创建的表的类型是 InnoDB ,如果新增一条记录(不重启 MySQL 的情况下),这条记录的 ID 是18 ;但是如果重启 MySQL 的话,这条记录的 ID 是 15 。因为 InnoDB 表只把自增主键的最大 ID 记录到内存中,所以重启数据库或者对表 OPTIMIZE 操作,都会使最大 ID 丢失。
    • 但是,如果我们使用表的类型是 MyISAM ,那么这条记录的 ID 就是 18 。因为 MyISAM 表会把自增主键的最大 ID 记录到数据文件里面,重启 MYSQL 后,自增主键的最大 ID 也不会丢失。

    最后,还可以跟面试官装个 x ,生产数据,不建议进行物理删除记录。

    ? 表中有大字段 X(例如:text 类型),且字段 X 不会经常更新,以读为为主,请问您是选择拆成子表,还是继续放一起?写出您这样选择的理由

    • 拆带来的问题:连接消耗 + 存储拆分空间。

      如果能容忍拆分带来的空间问题,拆的话最好和经常要查询的表的主键在物理结构上放置在一起(分区) 顺序 IO ,减少连接消耗,最后这是一个文本列再加上一个全文索引来尽量抵消连接消耗。

    • 不拆可能带来的问题:查询性能。

      如果能容忍不拆分带来的查询性能损失的话,上面的方案在某个极致条件下肯定会出现问题,那么不拆就是最好的选择。

    实际场景下,例如说商品表数据量比较大的情况下,会将商品描述单独存储到一个表中。即,使用拆的方案。

    MySQL 有哪些存储引擎?

    MySQL 提供了多种的存储引擎:

    • InnoDB
    • MyISAM
    • MRG_MYISAM
    • MEMORY
    • CSV
    • ARCHIVE
    • BLACKHOLE
    • PERFORMANCE_SCHEMA
    • FEDERATED

    具体每种存储引擎的介绍,可以看看 《数据库存储引擎》

    ? 如何选择合适的存储引擎?

    提供几个选择标准,然后按照标准,选择对应的存储引擎即可,也可以根据 常用引擎对比 来选择你使用的存储引擎。使用哪种引擎需要根据需求灵活选择,一个数据库中多个表可以使用不同的引擎以满足各种性能和实际需求。使用合适的存储引擎,将会提高整个数据库的性能。

    1. 是否需要支持事务。

    2. 对索引和缓存的支持。

    3. 是否需要使用热备。

    4. 崩溃恢复,能否接受崩溃。

    5. 存储的限制。

    6. 是否需要外键支持。

      艿艿:目前开发已经不考虑外键,主要原因是性能。具体可以看看 《从 MySQL 物理外键开始的思考》 文章。

    目前,MySQL 默认的存储引擎是 InnoDB ,并且也是最主流的选择。主要原因如下:

    • 【最重要】支持事务。
    • 支持行级锁和表级锁,能支持更多的并发量。
    • 查询不加锁,完全不影响查询。
    • 支持崩溃后恢复。

    在 MySQL5.1 以及之前的版本,默认的存储引擎是 MyISAM ,但是目前已经不再更新,且它有几个比较关键的缺点:

    • 不支持事务。
    • 使用表级锁,如果数据量大,一个插入操作锁定表后,其他请求都将阻塞。

    艿艿:也就是说,我们不需要花太多力气在 MyISAM 的学习上。

    ? 请说明 InnoDB 和 MyISAM 的区别

    InnoDBMyISAM
    事务支持不支持
    存储限制64TB
    锁粒度行锁表锁
    崩溃后的恢复支持不支持
    外键支持不支持
    全文检索5.7 版本后支持支持

    更完整的对比,可以看看 《数据库存储引擎》「常用引擎对比」 小节。

    ? 请说说 InnoDB 的 4 大特性?

    艿艿:貌似我面试没被问过…反正,我是没弄懂过~~

    • 插入缓冲(insert buffer)
    • 二次写(double write)
    • 自适应哈希索引(ahi)
    • 预读(read ahead)

    ? 为什么 SELECT COUNT(*) FROM table 在 InnoDB 比 MyISAM 慢?

    对于 SELECT COUNT(*) FROM table 语句,在没有 WHERE 条件的情况下,InnoDB 比 MyISAM 可能会慢很多,尤其在大表的情况下。因为,InnoDB 是去实时统计结果,会全表扫描;而 MyISAM 内部维持了一个计数器,预存了结果,所以直接返回即可。

    详细的原因,胖友可以看看 《高性能 MySQL 之 Count 统计查询》 博客。

    ? 各种不同 MySQL 版本的 Innodb 的改进?

    艿艿:这是一个选择了解的问题。

    MySQL5.6 下 Innodb 引擎的主要改进:

    1. online DDL
    2. memcached NoSQL 接口
    3. transportable tablespace( alter table discard/import tablespace)
    4. MySQL 正常关闭时,可以 dump 出 buffer pool 的( space, page_no),重启时 reload,加快预热速度
    5. 索引和表的统计信息持久化到 mysql.innodb_table_stats 和 mysql.innodb_index_stats,可提供稳定的执行计划
    6. Compressed row format 支持压缩表

    MySQL5.7 下 Innodb 引擎的主要改进:

    • 1、修改 varchar 字段长度有时可以使用

      这里的“有时”,指的是也有些限制。可见 《MySQL 5.7 online ddl 的一些改进》

    • 2、Buffer pool 支持在线改变大小

    • 3、Buffer pool 支持导出部分比例

    • 4、支持新建 innodb tablespace,并可以在其中创建多张表

    • 5、磁盘临时表采用 innodb 存储,并且存储在 innodb temp tablespace 里面,以前是 MyISAM 存储

    • 6、透明表空间压缩功能

    重点】什么是索引?

    索引,类似于书籍的目录,想找到一本书的某个特定的主题,需要先找到书的目录,定位对应的页码。

    MySQL 中存储引擎使用类似的方式进行查询,先去索引中查找对应的值,然后根据匹配的索引找到对应的数据行。

    ? 索引有什么好处?

    1. 提高数据的检索速度,降低数据库IO成本:使用索引的意义就是通过缩小表中需要查询的记录的数目从而加快搜索的速度。
    2. 降低数据排序的成本,降低CPU消耗:索引之所以查的快,是因为先将数据排好序,若该字段正好需要排序,则正好降低了排序的成本。

    ? 索引有什么坏处?

    1. 占用存储空间:索引实际上也是一张表,记录了主键与索引字段,一般以索引文件的形式存储在磁盘上。
    2. 降低更新表的速度:表的数据发生了变化,对应的索引也需要一起变更,从而减低的更新速度。否则索引指向的物理数据可能不对,这也是索引失效的原因之一。

    ? 索引的使用场景?

    • 1、对非常小的表,大部分情况下全表扫描效率更高。

    • 2、对中大型表,索引非常有效。

    • 3、特大型的表,建立和使用索引的代价随着增长,可以使用分区技术来解决。

      实际场景下,MySQL 分区表很少使用,原因可以看看 《互联网公司为啥不使用 MySQL 分区表?》 文章。

      对于特大型的表,更常用的是“分库分表”,目前解决方案有 Sharding Sphere、MyCAT 等等。

    ? 索引的类型?

    索引,都是实现在存储引擎层的。主要有六种类型:

    • 1、普通索引:最基本的索引,没有任何约束。

    • 2、唯一索引:与普通索引类似,但具有唯一性约束。

    • 3、主键索引:特殊的唯一索引,不允许有空值。

    • 4、复合索引:将多个列组合在一起创建索引,可以覆盖多个列。

    • 5、外键索引:只有InnoDB类型的表才可以使用外键索引,保证数据的一致性、完整性和实现级联操作。

    • 6、全文索引:MySQL 自带的全文索引只能用于 InnoDB、MyISAM ,并且只能对英文进行全文检索,一般使用全文索引引擎。

      常用的全文索引引擎的解决方案有 Elasticsearch、Solr 等等。最为常用的是 Elasticsearch 。

    具体的使用,可以看看 《服务端指南 数据存储篇 | MySQL(03) 如何设计索引》

    ? MySQL 索引的“创建”原则?

    注意,是“创建”噢。

    • 1、最适合索引的列是出现在 WHERE 子句中的列,或连接子句中的列,而不是出现在 SELECT 关键字后的列。

    • 2、索引列的基数越大,索引效果越好。

      具体为什么,可以看看如下两篇文章:

    • 3、根据情况创建复合索引,复合索引可以提高查询效率。

      因为复合索引的基数会更大。

    • 4、避免创建过多的索引,索引会额外占用磁盘空间,降低写操作效率。

    • 5、主键尽可能选择较短的数据类型,可以有效减少索引的磁盘占用提高查询效率。

    • 6、对字符串进行索引,应该定制一个前缀长度,可以节省大量的索引空间。

    ? MySQL 索引的“使用”注意事项?

    注意,是“使用”噢。

    • 1、应尽量避免在 WHERE 子句中使用 !=<> 操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

      注意,column IS NULL 也是不可以使用索引的。

    • 2、应尽量避免在 WHERE 子句中使用 OR 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:SELECT id FROM t WHERE num = 10 OR num = 20

    • 3、应尽量避免在 WHERE 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。

    • 4、应尽量避免在 WHERE 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。

    • 5、不要在 WHERE 子句中的 = 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

    • 6、复合索引遵循前缀原则。

    • 7、如果 MySQL 评估使用索引比全表扫描更慢,会放弃使用索引。如果此时想要索引,可以在语句中添加强制索引。

    • 8、列类型是字符串类型,查询时一定要给值加引号,否则索引失效。

    • 9、LIKE 查询,% 不能在前,因为无法使用索引。如果需要模糊匹配,可以使用全文索引。

    关于这块,可以看看 《服务端指南 数据存储篇 | MySQL(04) 索引使用的注意事项》 文章,写的更加细致。

    ? 以下三条 SQL 如何建索引,只建一条怎么建?

    WHERE a = 1 AND b = 1
    WHERE b = 1
    WHERE b = 1 ORDER BY time DESC
    
    
    • 以顺序 b , a, time 建立复合索引,CREATE INDEX table1_b_a_time ON index_test01(b, a, time)
    • 对于第一条 SQL ,因为最新 MySQL 版本会优化 WHERE 子句后面的列顺序,以匹配复合索引顺序。

    ? 想知道一个查询用到了哪个索引,如何查看?

    EXPLAIN 显示了 MYSQL 如何使用索引来处理 SELECT 语句以及连接表,可以帮助选择更好的索引和写出更优化的查询语句。

    使用方法,在 SELECT 语句前加上 EXPLAIN 就可以了。 《MySQL explain 执行计划详细解释》

    【重点】MySQL 索引的原理?

    解释 MySQL 索引的原理,篇幅会比较长,并且网络上已经有靠谱的资料可以看,所以艿艿这里整理了几篇,胖友可以对照着看。

    下面,艿艿对关键知识做下整理,方便胖友回顾。

    几篇好一点的文章:

    《MySQL索引背后的数据结构及算法原理》

    《MySQL 索引原理》

    《深入理解 MySQL 索引原理和实现 —— 为什么索引可以加速查询?》

    MySQL 有哪些索引方法?

    在 MySQL 中,我们可以看到两种索引方式:

    什么是 B-Tree 索引?

    B-Tree 是为磁盘等外存储设备设计的一种平衡查找树。因此在讲 B-Tree 之前先了解下磁盘的相关知识。

    • 系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的,位于同一个磁盘块中的数据会被一次性读取出来,而不是需要什么取什么。
    • InnoDB存储引擎中有页(Page)的概念,页是其磁盘管理的最小单位。InnoDB 存储引擎中默认每个页的大小为 16 KB,可通过参数 innodb_page_size 将页的大小设置为 4K、8K、16K ,在 MySQL 中可通过如下命令查看页的大小:
    mysql> show variables like 'innodb_page_size';
    
    • 而系统一个磁盘块的存储空间往往没有这么大,因此 InnoDB 每次申请磁盘空间时都会是若干地址连续磁盘块来达到页的大小 16KB 。InnoDB 在把磁盘数据读入到磁盘时会以页为基本单位,在查询数据时如果一个页中的每条数据都能有助于定位数据记录的位置,这将会减少磁盘 I/O 次数,提高查询效率。

    B-Tree 结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组 [key, data] ,key 为记录的键值,对应表中的主键值,data 为一行记录中除主键外的数据。对于不同的记录,key值互不相同。

    一棵 m 阶的 B-Tree 有如下特性:

    1. 每个节点最多有 m 个孩子。
      • 除了根节点和叶子节点外,其它每个节点至少有 Ceil(m/2) 个孩子。
      • 若根节点不是叶子节点,则至少有 2 个孩子。
    2. 所有叶子节点都在同一层,且不包含其它关键字信息。
    3. 每个非叶子节点包含 n 个关键字信息(P0,P1,…Pn, k1,…kn)
      • 关键字的个数 n 满足:ceil(m/2)-1 <= n <= m-1
      • ki(i=1,…n) 为关键字,且关键字升序排序。
      • Pi(i=0,…n) 为指向子树根节点的指针。P(i-1) 指向的子树的所有节点关键字均小于 ki ,但都大于 k(i-1) 。

    B-Tree 中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个 3 阶的 B-Tree:

    B-Tree 的结构

    • 每个节点占用一个盘块的磁盘空间,一个节点上有两个升序排序的 key 和三个指向子树根节点的 point ,point 存储的是子节点所在磁盘块的地址。两个 key 划分成的三个范围域,对应三个 point 指向的子树的数据的范围域。
    • 以根节点为例,key 为 17 和 35 ,P1 指针指向的子树的数据范围为小于 17 ,P2 指针指向的子树的数据范围为 [17~35] ,P3 指针指向的子树的数据范围为大于 35 。

    模拟查找 key 为 29 的过程:

    • 1、根据根节点找到磁盘块 1 ,读入内存。【磁盘I/O操作第1次】
    • 2、比较 key 29 在区间(17,35),找到磁盘块 1 的指针 P2 。
    • 3、根据 P2 指针找到磁盘块 3 ,读入内存。【磁盘I/O操作第2次】
    • 4、比较 key 29 在区间(26,30),找到磁盘块3的指针P2。
    • 5、根据 P2 指针找到磁盘块 8 ,读入内存。【磁盘I/O操作第3次】
    • 6、在磁盘块 8 中的 key 列表中找到 eky 29 。

    分析上面过程,发现需要 3 次磁盘 I/O 操作,和 3 次内存查找操作。由于内存中的 key 是一个有序表结构,可以利用二分法查找提高效率。而 3 次磁盘 I/O 操作是影响整个 B-Tree 查找效率的决定因素。B-Tree 相对于 AVLTree 缩减了节点个数,使每次磁盘 I/O 取到内存的数据都发挥了作用,从而提高了查询效率。

    什么是 B+Tree 索引?

    B+Tree 是在 B-Tree 基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用 B+Tree 实现其索引结构。

    从上一节中的 B-Tree 结构图中可以看到,每个节点中不仅包含数据的 key 值,还有 data 值。而每一个页的存储空间是有限的,如果 data 数据较大时将会导致每个节点(即一个页)能存储的 key 的数量很小,当存储的数据量很大时同样会导致 B-Tree 的深度较大,增大查询时的磁盘 I/O 次数,进而影响查询效率。在 B+Tree 中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储 key 值信息,这样可以大大加大每个节点存储的 key 值数量,降低 B+Tree 的高度。

    B+Tree 相对于 B-Tree 有几点不同:

    • 非叶子节点只存储键值信息。
    • 所有叶子节点之间都有一个链指针。
    • 数据记录都存放在叶子节点中。

    将上一节中的 B-Tree 优化,由于 B+Tree 的非叶子节点只存储键值信息,假设每个磁盘块能存储 4 个键值及指针信息,则变成 B+Tree 后其结构如下图所示:

    B+Tree 的结构

    • 通常在 B+Tree 上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对 B+Tree 进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

    可能上面例子中只有 22 条数据记录,看不出 B+Tree 的优点,下面做一个推算:

    • InnoDB 存储引擎中页的大小为 16KB,一般表的主键类型为 INT(占用4个字节) 或 BIGINT(占用8个字节),指针类型也一般为 4 或 8 个字节,也就是说一个页(B+Tree 中的一个节点)中大概存储 16KB/(8B+8B)=1K 个键值(因为是估值,为方便计算,这里的 K 取值为〖10〗^3)。也就是说一个深度为 3 的 B+Tree 索引可以维护10^3 *10^3 *10^3 = 10亿 条记录。
    • 实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在 2~4 层。MySQL 的 InnoDB 存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要 1~3 次磁盘 I/O 操作。

    B+Tree 有哪些索引类型?

    在 B+Tree 中,根据叶子节点的内容,索引类型分为主键索引非主键索引

    • 主键索引的叶子节点存的数据是整行数据( 即具体数据 )。在 InnoDB 里,主键索引也被称为聚集索引(clustered index)。
    • 非主键索引的叶子节点存的数据是整行数据的主键,键值是索引。在 InnoDB 里,非主键索引也被称为辅助索引(secondary index)。

    辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,需要进过两步:

    • 首先,InnoDB 存储引擎会遍历辅助索引找到主键。
    • 然后,再通过主键在聚集索引中找到完整的行记录数据。

    另外,InnoDB 通过主键聚簇数据,如果没有定义主键,会选择一个唯一的非空索引代替,如果没有这样的索引,会隐式定义个主键作为聚簇索引。

    再另外,可能有胖友有和艿艿的一样疑惑,在辅助索引如果相同的索引怎么存储?最终存储到 B+Tree 非子节点中时,它们对应的主键 ID 是不同的,所以妥妥的。如下图所示:

    相同的索引怎么存储

    聚簇索引的注意点有哪些?

    聚簇索引表最大限度地提高了 I/O 密集型应用的性能,但它也有以下几个限制:

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    什么是索引的最左匹配特性?

    当 B+Tree 的数据项是复合的数据结构,比如索引 (name, age, sex) 的时候,B+Tree 是按照从左到右的顺序来建立搜索树的。

    • 比如当 (张三, 20, F) 这样的数据来检索的时候,B+Tree 会优先比较 name 来确定下一步的所搜方向,如果 name 相同再依次比较 age 和 sex ,最后得到检索的数据。
    • 但当 (20, F) 这样的没有 name 的数据来的时候,B+Tree 就不知道下一步该查哪个节点,因为建立搜索树的时候 name 就是第一个比较因子,必须要先根据 name 来搜索才能知道下一步去哪里查询。
    • 比如当 (张三, F) 这样的数据来检索时,B+Tree 可以用 name 来指定搜索方向,但下一个字段 age 的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是 F 的数据了。

    这个是非常重要的性质,即索引的最左匹配特性。

    MyISAM 索引实现?

    MyISAM 索引的实现,和 InnoDB 索引的实现是一样使用 B+Tree ,差别在于 MyISAM 索引文件和数据文件是分离的,索引文件仅保存数据记录的地址

    MyISAM 索引与 InnoDB 索引的区别?

    • InnoDB 索引是聚簇索引,MyISAM 索引是非聚簇索引。
    • InnoDB 的主键索引的叶子节点存储着行数据,因此主键索引非常高效。
    • MyISAM 索引的叶子节点存储的是行数据地址,需要再寻址一次才能得到数据。
    • InnoDB 非主键索引的叶子节点存储的是主键和其他带索引的列数据,因此查询时做到覆盖索引会非常高效。

    【重点】请说说 MySQL 的四种事务隔离级别?

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    事务就是对一系列的数据库操作(比如插入多条数据)进行统一的提交或回滚操作,如果插入成功,那么一起成功,如果中间有一条出现异常,那么回滚之前的所有操作。

    这样可以防止出现脏数据,防止数据库数据出现问题。

    事务的特性指的是?

    指的是 ACID ,如下图所示:

    事务的特性

    1. 原子性 Atomicity :一个事务(transaction)中的所有操作,或者全部完成,或者全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。即,事务不可分割、不可约简。
    2. 一致性 Consistency :在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设约束触发器级联回滚等。
    3. 隔离性 Isolation :数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
    4. 持久性 Durability :事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

    事务的并发问题?

    实际场景下,事务并不是串行的,所以会带来如下三个问题:

    • 1、脏读:事务 A 读取了事务 B 更新的数据,然后 B 回滚操作,那么 A 读取到的数据是脏数据。
    • 2、不可重复读:事务 A 多次读取同一数据,事务 B 在事务 A 多次读取的过程中,对数据作了更新并提交,导致事务 A 多次读取同一数据时,结果不一致。
    • 3、幻读:系统管理员 A 将数据库中所有学生的成绩从具体分数改为 ABCDE 等级,但是系统管理员 B 就在这个时候插入了一条具体分数的记录,当系统管理员 A 改结束后发现还有一条记录没有改过来,就好像发生了幻觉一样,这就叫幻读。

    小结:不可重复读的和幻读很容易混淆,不可重复读侧重于修改,幻读侧重于新增或删除。解决不可重复读的问题只需锁住满足条件的行,解决幻读需要锁表。

    MySQL 事务隔离级别会产生的并发问题?

    • READ UNCOMMITTED(未提交读):事务中的修改,即使没有提交,对其他事务也都是可见的。

      会导致脏读。

    • READ COMMITTED(提交读):事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。

      会导致不可重复读。

      这个隔离级别,也可以叫做“不可重复读”。

    • REPEATABLE READ(可重复读):一个事务按相同的查询条件读取以前检索过的数据,其他事务插入了满足其查询条件的新数据。产生幻行。

      会导致幻读。

    • SERIALIZABLE(可串行化):强制事务串行执行。

    事务隔离级别脏读不可重复读幻读
    读未提交(read-uncommitted)
    读已提交(read-committed)
    可重复读(repeatable-read)是(x)
    串行化(serializable)
    • MySQL 默认的事务隔离级别为可重复读(repeatable-read) 。
    • 上图的 <X> 处,MySQL 因为其间隙锁的特性,导致其在可重复读(repeatable-read)的隔离级别下,不存在幻读问题。也就是说,上图 <X> 处,需要改成“否”!!!!
    • ? 记住这个表的方式,我们会发现它是自左上向右下是一个对角线。当然,最好是去理解。
    • 具体的实验,胖友可以看看 《MySQL 的四种事务隔离级别》

    【重点】请说说 MySQL 的锁机制?

    表锁是日常开发中的常见问题,因此也是面试当中最常见的考察点,当多个查询同一时刻进行数据修改时,就会产生并发控制的问题。MySQL 的共享锁和排他锁,就是读锁和写锁。

    • 共享锁:不堵塞,多个用户可以同时读一个资源,互不干扰。
    • 排他锁:一个写锁会阻塞其他的读锁和写锁,这样可以只允许一个用户进行写入,防止其他用户读取正在写入的资源。

    ? 锁的粒度?

    • 表锁:系统开销最小,会锁定整张表,MyIsam 使用表锁。
    • 行锁:最大程度的支持并发处理,但是也带来了最大的锁开销,InnoDB 使用行锁。

    ? 什么是悲观锁?什么是乐观锁?

    1)悲观锁

    它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。

    在悲观锁的情况下,为了保证事务的隔离性,就需要一致性锁定读。读取数据时给加锁,其它事务无法修改这些数据。修改删除数据时也要加锁,其它事务无法读取这些数据。

    2)乐观锁

    相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

    而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

    什么是死锁?

    多数情况下,可以认为如果一个资源被锁定,它总会在以后某个时间被释放。而死锁发生在当多个进程访问同一数据库时,其中每个进程拥有的锁都是其他进程所需的,由此造成每个进程都无法继续下去。简单的说,进程 A 等待进程 B 释放他的资源,B 又等待 A 释放他的资源,这样就互相等待就形成死锁。

    虽然进程在运行过程中,可能发生死锁,但死锁的发生也必须具备一定的条件,死锁的发生必须具备以下四个必要条件:

    • 互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
    • 请求和保持条件:指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。
    • 不剥夺条件:指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。
    • 环路等待条件:指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合 {P0,P1,P2,•••,Pn} 中的 P0 正在等待一个 P1 占用的资源;P1 正在等待 P2 占用的资源,……,Pn 正在等待已被 P0 占用的资源。

    下列方法有助于最大限度地降低死锁:

    • 设置获得锁的超时时间。

      通过超时,至少保证最差最差最差情况下,可以有退出的口子。

    • 按同一顺序访问对象。

      这个是最重要的方式。

    • 避免事务中的用户交互。

    • 保持事务简短并在一个批处理中。

    • 使用低隔离级别。

    • 使用绑定连接。

    ? MySQL 中 InnoDB 引擎的行锁是通过加在什么上完成(或称实现)的?为什么是这样子的??

    InnoDB 是基于索引来完成行锁。例如:SELECT * FROM tab_with_index WHERE id = 1 FOR UPDATE

    • FOR UPDATE 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么 InnoDB 将完成表锁,并发将无从谈起。

    【重要】MySQL 查询执行顺序?

    MySQL 查询执行的顺序是:

    (1)     SELECT
    (2)     DISTINCT <select_list>
    (3)     FROM <left_table>
    (4)     <join_type> JOIN <right_table>
    (5)     ON <join_condition>
    (6)     WHERE <where_condition>
    (7)     GROUP BY <group_by_list>
    (8)     HAVING <having_condition>
    (9)     ORDER BY <order_by_condition>
    (10)    LIMIT <limit_number>
    

    具体的,可以看看 《SQL 查询之执行顺序解析》 文章。

    【重要】聊聊 MySQL SQL 优化?

    可以看看如下几篇文章:

    另外,除了从 SQL 层面进行优化,也可以从服务器硬件层面,进一步优化 MySQL 。具体可以看看 《MySQL 数据库性能优化之硬件优化》

    编写 SQL 查询语句的考题合集

    MySQL 数据库 CPU 飙升到 500% 的话,怎么处理?

    当 CPU 飙升到 500% 时,先用操作系统命令 top 命令观察是不是 mysqld 占用导致的,如果不是,找出占用高的进程,并进行相关处理。

    如果此时是 IO 压力比较大,可以使用 iostat 命令,定位是哪个进程占用了磁盘 IO 。

    如果是 mysqld 造成的,使用 show processlist 命令,看看里面跑的 Session 情况,是不是有消耗资源的 SQL 在运行。找出消耗高的 SQL ,看看执行计划是否准确, index 是否缺失,或者实在是数据量太大造成。一般来说,肯定要 kill 掉这些线程(同时观察 CPU 使用率是否下降),等进行相应的调整(比如说加索引、改 SQL 、改内存参数)之后,再重新跑这些 SQL。

    也可以查看 MySQL 慢查询日志,看是否有慢 SQL 。

    也有可能是每个 SQL 消耗资源并不多,但是突然之间,有大量的 Session 连进来导致 CPU 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等。

    ? 在 MySQL 服务器运行缓慢的情况下输入什么命令能缓解服务器压力?

    1)检查系统的状态

    通过操作系统的一些工具检查系统的状态,比如 CPU、内存、交换、磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为 CPU 可能正等待IO的完成。除此之外,还应观注那些占用系统资源(CPU、内存)的进程。

    • 使用 sar 来检查操作系统是否存在 IO 问题。
    • 使用 vmstat 监控内存 CPU 资源。
    • 磁盘 IO 问题,处理方式:做 raid10 提高性能 。
    • 网络问题,telnet 一下 MySQL 对外开放的端口。如果不通的话,看看防火墙是否正确设置了。另外,看看 MySQ L是不是开启了 skip-networking 的选项,如果开启请关闭。

    2)检查 MySQL 参数

    • max_connect_errors
    • connect_timeout
    • skip-name-resolve
    • slave-net-timeout=seconds
    • master-connect-retry

    3)检查 MySQL 相关状态值

    • 关注连接数
    • 关注下系统锁情况
    • 关注慢查询(slow query)日志

    Innodb 的事务与日志的实现方式

    ? 有多少种日志?

    • redo 日志
    • undo 日志

    ? 日志的存放形式?

    • redo:在页修改的时候,先写到 redo log buffer 里面, 然后写到 redo log 的文件系统缓存里面(fwrite),然后再同步到磁盘文件(fsync)。
    • undo:在 MySQL5.5 之前,undo 只能存放在 ibdata* 文件里面, 5.6 之后,可以通过设置 innodb_undo_tablespaces 参数把 undo log 存放在 ibdata* 之外。

    ? 事务是如何通过日志来实现的,说得越深入越好

    艿艿:这个流程的理解还是比较简单的,实际思考实现感觉还是蛮复杂的。

    基本流程如下:

    • 因为事务在修改页时,要先记 undo ,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 redo(里面包括 undo 的修改)一定要比数据页先持久化到磁盘。
    • 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态。
    • 崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo 把该事务的修改回滚到事务开始之前。如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。

    MySQL binlog 的几种日志录入格式以及区别

    ? 各种日志格式的涵义

    binlog 有三种格式类型,分别如下:

    1)Statement

    每一条会修改数据的 SQL 都会记录在 binlog 中。

    • 优点:不需要记录每一行的变化,减少了 binlog 日志量,节约了 IO,提高性能。(相比 row 能节约多少性能与日志量,这个取决于应用的 SQL 情况,正常同一条记录修改或者插入 row 格式所产生的日志量还小于 Statement 产生的日志量,但是考虑到如果带条件的 update 操作,以及整表删除,alter 表等操作,ROW 格式会产生大量日志,因此在考虑是否使用 ROW 格式日志时应该跟据应用的实际情况,其所产生的日志量会增加多少,以及带来的 IO 性能问题。)

    • 缺点:由于记录的只是执行语句,为了这些语句能在 slave 上正确运行,因此还必须记录每条语句在执行的时候的一些相关信息,以保证所有语句能在 slave 得到和在 master 端执行时候相同 的结果。另外 MySQL 的复制,像一些特定函数功能,slave 可与 master 上要保持一致会有很多相关问题(如 sleep() 函数,last_insert_id(),以及 user-defined functions(udf) 会出现问题)。

    • 使用以下函数的语句也无法被复制:

      • LOAD_FILE()

      • UUID()

      • USER()

      • FOUND_ROWS()

      • SYSDATE() (除非启动时启用了 --sysdate-is-now 选项)

        同时在 INSERT …SELECT 会产生比 RBR 更多的行级锁 。

    2)Row

    不记录 SQL 语句上下文相关信息,仅保存哪条记录被修改。

    • 优点:binlog 中可以不记录执行的 SQL 语句的上下文相关的信息,仅需要记录那一条记录被修改成什么了。所以 rowlevel 的日志内容会非常清楚的记录下每一行数据修改的细节。而且不会出现某些特定情况下的存储过程,或 function ,以及 trigger 的调用和触发无法被正确复制的问题。
    • 缺点:所有的执行的语句当记录到日志中的时候,都将以每行记录的修改来记录,这样可能会产生大量的日志内容,比如一条 Update 语句,修改多条记录,则 binlog 中每一条修改都会有记录,这样造成 binlog 日志量会很大,特别是当执行 alter table 之类的语句的时候,由于表结构修改,每条记录都发生改变,那么该表每一条记录都会记录到日志中。

    3)Mixedlevel

    是以上两种 level 的混合使用。

    • 一般的语句修改使用 Statement 格式保存 binlog 。
    • 如一些函数,statement 无法完成主从复制的操作,则采用 Row 格式保存 binlog 。

    MySQL 会根据执行的每一条具体的 SQL 语句来区分对待记录的日志形式,也就是在 Statement 和 Row 之间选择 一种。

    新版本的 MySQL 中对 row level 模式也被做了优化,并不是所有的修改都会以 row level 来记录。

    • 像遇到表结构变更的时候就会以 Statement 模式来记录。
    • 至于 Update 或者 Delete 等修改数据的语句,还是会记录所有行的变更,即使用 Row 模式。

    ? 适用场景?

    在一条 SQL 操作了多行数据时, Statement 更节省空间,Row 更占用空间。但是, Row 模式更可靠。

    因为,互联网公司,使用 MySQL 的功能相对少,基本不使用存储过程、触发器、函数的功能,选择默认的语句模式,Statement Level(默认)即可。

    ? 结合第一个问题,每一种日志格式在复制中的优劣?

    • Statement 可能占用空间会相对小一些,传送到 slave 的时间可能也短,但是没有 Row 模式的可靠。
    • Row 模式在操作多行数据时更占用空间,但是可靠。

    所以,这是在占用空间和可靠之间的选择。

    如何在线正确清理 MySQL binlog?

    MySQL 中的 binlog 日志记录了数据中的数据变动,便于对数据的基于时间点和基于位置的恢复。但日志文件的大小会越来越大,占用大量的磁盘空间,因此需要定时清理一部分日志信息。

    # 首先查看主从库正在使用的binlog文件名称
    show master(slave) status
    
    # 删除之前一定要备份
    purge master logs before'2017-09-01 00:00:00'; # 删除指定时间前的日志
    purge master logs to'mysql-bin.000001'; # 删除指定的日志文件
    
    # 自动删除:通过设置binlog的过期时间让系统自动删除日志
    show variables like 'expire_logs_days'; # 查看过期时间
    set global expire_logs_days = 30; # 设置过期时间
    

    MySQL 主从复制的流程是怎么样的?

    MySQL 的主从复制是基于如下 3 个线程的交互(多线程复制里面应该是 4 类线程):

    • 1、Master 上面的 binlog dump 线程,该线程负责将 master 的 binlog event 传到 slave 。
    • 2、Slave 上面的 IO 线程,该线程负责接收 Master 传过来的 binlog,并写入 relay log 。
    • 3、Slave 上面的 SQL 线程,该线程负责读取 relay log 并执行。
    • 4、如果是多线程复制,无论是 5.6 库级别的假多线程还是 MariaDB 或者 5.7 的真正的多线程复制, SQL 线程只做 coordinator ,只负责把 relay log 中的 binlog 读出来然后交给 worker 线程, woker 线程负责具体 binlog event 的执行。

    ? MySQL 如何保证复制过程中数据一致性?

    • 1、在 MySQL5.5 以及之前, slave 的 SQL 线程执行的 relay log 的位置只能保存在文件( relay-log.info)里面,并且该文件默认每执行 10000 次事务做一次同步到磁盘, 这意味着 slave 意外 crash 重启时, SQL 线程执行到的位置和数据库的数据是不一致的,将导致复制报错,如果不重搭复制,则有可能会导致数据不一致。
      • MySQL 5.6 引入参数 relay_log_info_repository,将该参数设置为 TABLE 时, MySQL 将 SQL 线程执行到的位置存到 mysql.slave_relay_log_info 表,这样更新该表的位置和 SQL 线程执行的用户事务绑定成一个事务,这样 slave 意外宕机后,slave 通过 innodb 的崩溃恢复可以把 SQL 线程执行到的位置和用户事务恢复到一致性的状态。
    • 2、MySQL 5.6 引入 GTID 复制,每个 GTID 对应的事务在每个实例上面最多执行一次, 这极大地提高了复制的数据一致性。
    • 3、MySQL 5.5 引入半同步复制, 用户安装半同步复制插件并且开启参数后,设置超时时间,可保证在超时时间内如果 binlog 不传到 slave 上面,那么用户提交事务时不会返回,直到超时后切成异步复制,但是如果切成异步之前用户线程提交时在 master 上面等待的时候,事务已经提交,该事务对 master 上面的其他 session 是可见的,如果这时 master 宕机,那么到 slave 上面该事务又不可见了,该问题直到 5.7 才解决。
    • 4、MySQL 5.7 引入无损半同步复制,引入参 rpl_semi_sync_master_wait_point,该参数默认为 after_sync,指的是在切成半同步之前,事务不提交,而是接收到 slave 的 ACK 确认之后才提交该事务,从此,复制真正可以做到无损的了。
    • 5、可以再说一下 5.7 的无损复制情况下, master 意外宕机,重启后发现有 binlog 没传到 slave 上面,这部分 binlog 怎么办???分 2 种情况讨论, 1 宕机时已经切成异步了, 2 是宕机时还没切成异步??? 这个怎么判断宕机时有没有切成异步呢??? 分别怎么处理???

    ? MySQL 如何解决主从复制的延时性?

    5.5 是单线程复制,5.6 是多库复制(对于单库或者单表的并发操作是没用的),5.7 是真正意义的多线程复制,它的原理是基于 group commit, 只要 master 上面的事务是 group commit 的,那 slave 上面也可以通过多个 worker线程去并发执行。 和 MairaDB10.0.0.5 引入多线程复制的原理基本一样。

    ? 工作遇到的复制 bug 的解决方法?

    5.6 的多库复制有时候自己会停止,我们写了一个脚本重新 start slave 。

    ? 你是否做过主从一致性校验,如果有,怎么做的,如果没有,你打算怎么做?

    主从一致性校验有多种工具 例如 checksum、mysqldiff、pt-table-checksum 等。

    聊聊 MySQL 备份方式?备份策略是怎么样的?

    具体的,胖友可以看看 《MySQL 高级备份策略》 。主要有几个知识点:

    • 数据的备份类型

      • 【常用】完全备份

        这是大多数人常用的方式,它可以备份整个数据库,包含用户表、系统表、索引、视图和存储过程等所有数据库对象。但它需要花费更多的时间和空间,所以,一般推荐一周做一次完全备份。

      • 增量备份

        它是只备份数据库一部分的另一种方法,它不使用事务日志,相反,它使用整个数据库的一种新映象。它比最初的完全备份小,因为它只包含自上次完全备份以来所改变的数据库。它的优点是存储和恢复速度快。推荐每天做一次差异备份。

      • 【常用】事务日志备份

        事务日志是一个单独的文件,它记录数据库的改变,备份的时候只需要复制自上次备份以来对数据库所做的改变,所以只需要很少的时间。为了使数据库具有鲁棒性,推荐每小时甚至更频繁的备份事务日志。

      • 文件备份

        数据库可以由硬盘上的许多文件构成。如果这个数据库非常大,并且一个晚上也不能将它备份完,那么可以使用文件备份每晚备份数据库的一部分。由于一般情况下数据库不会大到必须使用多个文件存储,所以这种备份不是很常用。

    • 备份数据的类型

      • 热备份
      • 温备份
      • 冷备份
    • 备份工具

      • cp
      • mysqldump
      • xtrabackup
      • lvm2 快照

    MySQL 几种备份方式?

    MySQL 一般有 3 种备份方式。

    1)逻辑备份

    使用 MySQL 自带的 mysqldump 工具进行备份。备份成sql文件形式。

    • 优点:最大好处是能够与正在运行的 MySQL 自动协同工作,在运行期间可以确保备份是当时的点,它会自动将对应操作的表锁定,不允许其他用户修改(只能访问)。可能会阻止修改操作。SQL 文件通用方便移植。
    • 缺点:备份的速度比较慢。如果是数据量很多的时候,就很耗时间。如果数据库服务器处在提供给用户服务状态,在这段长时间操作过程中,意味着要锁定表(一般是读锁定,只能读不能写入数据),那么服务就会影响的。

    2)物理备份

    艿艿:因为现在主流是 InnoDB ,所以基本不再考虑这种方式。

    直接拷贝只适用于 MyISAM 类型的表。这种类型的表是与机器独立的。但实际情况是,你设计数据库的时候不可能全部使用 MyISAM 类型表。你也不可能因为 MyISAM 类型表与机器独立,方便移植,于是就选择这种表,这并不是选择它的理由。

    • 缺点:你不能去操作正在运行的 MySQL 服务器(在拷贝的过程中有用户通过应用程序访问更新数据,这样就无法备份当时的数据),可能无法移植到其他机器上去。

    3)双机热备份。

    当数据量太大的时候备份是一个很大的问题,MySQL 数据库提供了一种主从备份的机制,也就是双机热备。

    • 优点:适合数据量大的时候。现在明白了,大的互联网公司对于 MySQL 数据备份,都是采用热机备份。搭建多台数据库服务器,进行主从复制。

    数据库不能停机,请问如何备份? 如何进行全备份和增量备份?

    可以使用逻辑备份和双机热备份。

    • 完全备份:完整备份一般一段时间进行一次,且在网站访问量最小的时候,这样常借助批处理文件定时备份。主要是写一个批处理文件在里面写上处理程序的绝对路径然后把要处理的东西写在后面,即完全备份数据库。
    • 增量备份:对 ddl 和 dml 语句进行二进制备份。且 5.0 无法增量备份,5.1 后可以。如果要实现增量备份需要在 my.ini 文件中配置备份路径即可,重启 MySQL 服务器,增量备份就启动了。

    ? 你的备份工具的选择?备份计划是怎么样的?

    视库的大小来定,一般来说 100G 内的库,可以考虑使用 mysqldump 来做,因为 mysqldump 更加轻巧灵活,备份时间选在业务低峰期,可以每天进行都进行全量备份(mysqldump 备份出来的文件比较小,压缩之后更小)。

    100G 以上的库,可以考虑用 xtrabackup 来做,备份速度明显要比 mysqldump 要快。一般是选择一周一个全备,其余每天进行增量备份,备份时间为业务低峰期。

    备份恢复时间是多长?

    物理备份恢复快,逻辑备份恢复慢。

    这里跟机器,尤其是硬盘的速率有关系,以下列举几个仅供参考:

    • 20G 的 2 分钟(mysqldump)
    • 80G 的 30分钟(mysqldump)
    • 111G 的 30分钟(mysqldump)
    • 288G 的 3 小时(xtrabackup)
    • 3T 的 4 小时(xtrabackup)

    逻辑导入时间一般是备份时间的 5 倍以上。

    备份恢复失败如何处理?

    首先在恢复之前就应该做足准备工作,避免恢复的时候出错。比如说备份之后的有效性检查、权限检查、空间检查等。如果万一报错,再根据报错的提示来进行相应的调整。

    ? mysqldump 和 xtrabackup 实现原理?

    1)mysqldump

    mysqldump 是最简单的逻辑备份方式。

    • 在备份 MyISAM 表的时候,如果要得到一致的数据,就需要锁表,简单而粗暴。
    • 在备份 InnoDB 表的时候,加上 –master-data=1 –single-transaction 选项,在事务开始时刻,记录下 binlog pos 点,然后利用 MVCC 来获取一致的数据,由于是一个长事务,在写入和更新量很大的数据库上,将产生非常多的 undo ,显著影响性能,所以要慎用。
    • 优点:简单,可针对单表备份,在全量导出表结构的时候尤其有用。
    • 缺点:简单粗暴,单线程,备份慢而且恢复慢,跨 IDC 有可能遇到时区问题

    2)xtrabackup

    xtrabackup 实际上是物理备份+逻辑备份的组合。

    • 在备份 InnoDB 表的时候,它拷贝 ibd 文件,并一刻不停的监视 redo log 的变化,append 到自己的事务日志文件。在拷贝 ibd 文件过程中,ibd文件本身可能被写”花”,这都不是问题,因为在拷贝完成后的第一个 prepare 阶段,xtrabackup 采用类似于 Innodb 崩溃恢复的方法,把数据文件恢复到与日志文件一致的状态,并把未提交的事务回滚。
    • 如果同时需要备份 MyISAM 表以及 InnoDB 表结构等文件,那么就需要用 flush tables with lock 来获得全局锁,开始拷贝这些不再变化的文件,同时获得 binlog 位置,拷贝结束后释放锁,也停止对 redo log 的监视。

    如何从 mysqldump 产生的全库备份中只恢复某一个库、某一张表?

    具体可见 《MySQL 全库备份中恢复某个库和某张表以及 mysqldump 参数 –ignore-table 介绍》 文章。

    聊聊 MySQL 集群?

    艿艿:这块艿艿懂的少,主要找了一些网络上的资料。

    ? 对于简历中写有熟悉 MySQL 高可用方案?

    我一般先问他现在管理的数据库架构是什么,如果他只说出了主从,而没有说任何 HA 的方案,那么我就可以判断出他没有实际的 HA 经验。

    不过这时候也不能就是断定他不懂 MySQL 高可用,也许是没有实际机会去使用,那么我就要问 MMM 以及 MHA 以及 MM + keepalived 等的原理、实现方式以及它们之间的优势和不足了,一般这种情况下,能说出这个的基本没有。

    • MMM 那东西好像不靠谱,据说不稳定,但是有人在用的,和 mysql-router 比较像,都是指定可写的机器和只读机器。
    • MHA 的话一句话说不完,可以搜索下相关博客。

    聊聊 MySQL 安全?

    感兴趣的胖友,可以看看:

    MySQL 有哪些日志?

    • 错误日志:记录了当 mysqld 启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。

    • 二进制文件:记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,不包括数据查询语句。语句以“事件”的形式保存,它描述了数据的更改过程。(定期删除日志,默认关闭)。

      就是我们上面看到的 MySQL binlog 日志。

    • 查询日志:记录了客户端的所有语句,格式为纯文本格式,可以直接进行读取。(log 日志中记录了所有数据库的操作,对于访问频繁的系统,此日志对系统性能的影响较大,建议关闭,默认关闭)。

    • 慢查询日志:慢查询日志记录了包含所有执行时间超过参数long_query_time(单位:秒)所设置值的 SQL 语句的日志。(纯文本格式)

      重要,一定要开启。

    另外,错误日志和慢查询日志的详细解释,可以看看 《MySQL 日志文件之错误日志和慢查询日志详解》 文章。

    聊聊 MySQL 监控?

    你是如何监控你们的数据库的?

    监控的工具有很多,例如 Zabbix ,Lepus ,我这里用的是 Lepus

    对一个大表做在线 DDL ,怎么进行实施的才能尽可能降低影响?

    使用 pt-online-schema-change ,具体可以看看 《MySQL 大表在线 DML 神器–pt-online-schema-change》 文章。

    另外,还有一些其它的工具,胖友可以搜索下。

    展开全文
  • mysql面试题

    千次阅读 2019-09-23 12:28:36
     适用联合(UNION)来代替手动创建的临时表  事务处理  锁定表、优化事务处理  适用外键,优化锁定表  建立索引  优化查询语句   简单描述mysql中,索引,主键,唯一索引,联合索引的区别,对...

    最全MySQL面试题和答案

    Mysql 的存储引擎,myisam和innodb的区别。

    答:

    1.MyISAM 是非事务的存储引擎,适合用于频繁查询的应用。表锁,不会出现死锁,适合小数据,小并发。

    2.innodb是支持事务的存储引擎,合于插入和更新操作比较多的应用,设计合理的话是行锁(最大区别就在锁的级别上),适合大数据,大并发。

    数据表类型有哪些

           答:MyISAM、InnoDB、HEAP、BOB,ARCHIVE,CSV等。
           MyISAM:成熟、稳定、易于管理,快速读取。一些功能不支持(事务等),表级锁。
           InnoDB:支持事务、外键等特性、数据行锁定。空间占用大,不支持全文索引等。

    MySQL数据库作发布系统的存储,一天五万条以上的增量,预计运维三年,怎么优化?

    a. 设计良好的数据库结构,允许部分数据冗余,尽量避免join查询,提高效率。
    b. 选择合适的表字段数据类型和存储引擎,适当的添加索引。
    c. mysql库主从读写分离。
    d. 找规律分表,减少单表中的数据量提高查询速度。
    e。添加缓存机制,比如memcached,apc等。
    f. 不经常改动的页面,生成静态页面。
    g. 书写高效率的SQL。比如 SELECT * FROM TABEL 改为 SELECT field_1, field_2, field_3 FROM TABLE.

    对于大流量的网站,您采用什么样的方法来解决各页面访问量统计问题?

    答:a. 确认服务器是否能支撑当前访问量。
    b. 优化数据库访问。
    c. 禁止外部访问链接(盗链), 比如图片盗链。
    d. 控制文件下载。
    e. 使用不同主机分流。
    f. 使用浏览统计软件,了解访问量,有针对性的进行优化。

    如何进行SQL优化?

    答:
    (1)选择正确的存储引擎
    以 MySQL为例,包括有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。
    MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。

    InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。但是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。

     

    (2)优化字段的数据类型

    记住一个原则,越小的列会越快。如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。当然,你也需要留够足够的扩展空间。

     

    (3)为搜索字段添加索引

    索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么最好是为其建立索引,除非你要搜索的字段是大的文本字段,那应该建立全文索引。

     

    (4)避免使用Select *从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。即使你要查询数据表的所有字段,也尽量不要用*通配符,善用内置提供的字段排除定义也许能给带来更多的便利。

     

    (5)使用 ENUM 而不是 VARCHAR

    ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。例如,性别、民族、部门和状态之类的这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。

     

    (6)尽可能的使用 NOT NULL

    除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。 NULL其实需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。

     

    (7)固定长度的表会更快

    如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。

     

    固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。

     

    并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。

     

    如何设计一个高并发的系统

    ① 数据库的优化,包括合理的事务隔离级别、SQL语句优化、索引的优化

    ② 使用缓存,尽量减少数据库 IO

    ③ 分布式数据库、分布式缓存

    ④ 服务器的负载均衡

    锁的优化策略

    ① 读写分离

    ② 分段加锁

    ③ 减少锁持有的时间

    ④ 多个线程尽量以相同的顺序去获取资源

    等等,这些都不是绝对原则,都要根据情况,比如不能将锁的粒度过于细化,不然可能会出现线程的加锁和释放次数过多,反而效率不如一次加一把大锁。这部分跟面试官谈了很久

    索引的底层实现原理和优化

    B+树,经过优化的B+树

    主要是在所有的叶子结点中增加了指向下一个叶子节点的指针,因此InnoDB建议为大部分表使用默认自增的主键作为主索引。

     什么情况下设置了索引但无法使用 

    ① 以“%”开头的LIKE语句,模糊匹配

    ② OR语句前后没有同时使用索引

    ③ 数据类型出现隐式转化(如varchar不加单引号的话可能会自动转换为int型)

    SQL语句的优化 

    order by要怎么处理

    alter尽量将多次合并为一次

    insert和delete也需要合并

    等等

    实践中如何优化MySQL

    我当时是按以下四条依次回答的,他们四条从效果上第一条影响最大,后面越来越小。

    ① SQL语句及索引的优化

    ② 数据库表结构的优化

    ③ 系统配置的优化

    ④ 硬件的优化

    sql注入的主要特点

    变种极多,攻击简单,危害极大

    sql注入的主要危害

    未经授权操作数据库的数据

    恶意纂改网页

    私自添加系统账号或者是数据库使用者账号

    网页挂木马

    优化数据库的方法

    1.  选取最适用的字段属性,尽可能减少定义字段宽度,尽量把字段设置NOTNULL,例如’省份’、’性别’最好适用ENUM
    2.  使用连接(JOIN)来代替子查询
    3.  适用联合(UNION)来代替手动创建的临时表
    4.  事务处理
    5.  锁定表、优化事务处理
    6.  适用外键,优化锁定表
    7.  建立索引
    8.  优化查询语句

     

    简单描述mysql中,索引,主键,唯一索引,联合索引的区别,对数据库的性能有什么影响(从读写两方面)

    索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。

    普通索引(由关键字KEY或INDEX定义的索引)的唯一任务是加快对数据的访问速度。

     

    普通索引允许被索引的数据列包含重复的值。如果能确定某个数据列将只包含彼此各不相同的值,在为这个数据列创建索引的时候就应该用关键字UNIQUE把它定义为一个唯一索引。也就是说,唯一索引可以保证数据记录的唯一性。

     

    主键,是一种特殊的唯一索引,在一张表中只能定义一个主键索引,主键用于唯一标识一条记录,使用关键字 PRIMARY KEY 来创建。

    索引可以覆盖多个数据列,如像INDEX(columnA, columnB)索引,这就是联合索引。

     

    索引可以极大的提高数据的查询速度,但是会降低插入、删除、更新表的速度,因为在执行这些写操作时,还要操作索引文件。

    数据库中的事务是什么?

    事务(transaction)是作为一个单元的一组有序的数据库操作。如果组中的所有操作都成功,则认为事务成功,即使只有一个操作失败,事务也不成功。如果所有操作完成,事务则提交,其修改将作用于所有其他数据库进程。如果一个操作失败,则事务将回滚,该事务所有操作的影响都将取消。ACID 四大特性,原子性、隔离性、一致性、持久性。

    了解XSS攻击吗?如何防止?

    XSS是跨站脚本攻击,首先是利用跨站脚本漏洞以一个特权模式去执行攻击者构造的脚本,然后利用不安全的Activex控件执行恶意的行为。
    使用htmlspecialchars()函数对提交的内容进行过滤,使字符串里面的特殊符号实体化。

    SQL注入漏洞产生的原因?如何防止?

    SQL注入产生的原因:程序开发过程中不注意规范书写sql语句和对特殊字符进行过滤,导致客户端可以通过全局变量POST和GET提交一些sql语句正常执行。

    防止SQL注入的方式:
    开启配置文件中的magic_quotes_gpc 和 magic_quotes_runtime设置

    执行sql语句时使用addslashes进行sql语句转换

    Sql语句书写尽量不要省略双引号和单引号。

    过滤掉sql语句中的一些关键词:update、insert、delete、select、 * 。

    提高数据库表和字段的命名技巧,对一些重要的字段根据程序的特点命名,取不易被猜到的。

    Php配置文件中设置register_globals为off,关闭全局变量注册

    控制错误信息,不要在浏览器上输出错误信息,将错误信息写到日志文件中。

     

     

    为表中得字段选择合适得数据类型(物理设计)

     字段类型优先级: 整形>date,time>enum,char>varchar>blob,text
     优先考虑数字类型,其次是日期或者二进制类型,最后是字符串类型,同级别得数据类型,应该优先选择占用空间小的数据类型

    存储时期

    Datatime:以 YYYY-MM-DD HH:MM:SS 格式存储时期时间,精确到秒,占用8个字节得存储空间,datatime类型与时区无关
    Timestamp:以时间戳格式存储,占用4个字节,范围小1970-1-1到2038-1-19,显示依赖于所指定得时区,默认在第一个列行的数据修改时可以自动得修改timestamp列得值
    Date:(生日)占用得字节数比使用字符串.datatime.int储存要少,使用date只需要3个字节,存储日期月份,还可以利用日期时间函数进行日期间得计算
    Time:存储时间部分得数据
    注意:不要使用字符串类型来存储日期时间数据(通常比字符串占用得储存空间小,在进行查找过滤可以利用日期得函数)
    使用int存储日期时间不如使用timestamp类型

     

    对于关系型数据库而言,索引是相当重要的概念,请回答有关索引的几个问题:

    a)、索引的目的是什么?
    快速访问数据表中的特定信息,提高检索速度

    创建唯一性索引,保证数据库表中每一行数据的唯一性。

    加速表和表之间的连接

    使用分组和排序子句进行数据检索时,可以显著减少查询中分组和排序的时间

    b)、索引对数据库系统的负面影响是什么?
    负面影响:
    创建索引和维护索引需要耗费时间,这个时间随着数据量的增加而增加;索引需要占用物理空间,不光是表需要占用数据空间,每个索引也需要占用物理空间;当对表进行增、删、改、的时候索引也要动态维护,这样就降低了数据的维护速度。

    c)、为数据表建立索引的原则有哪些?
    在最频繁使用的、用以缩小查询范围的字段上建立索引。

    在频繁使用的、需要排序的字段上建立索引

    d)、 什么情况下不宜建立索引?
    对于查询中很少涉及的列或者重复值比较多的列,不宜建立索引。

    对于一些特殊的数据类型,不宜建立索引,比如文本字段(text)等

     简述在MySQL数据库中MyISAM和InnoDB的区别

    区别于其他数据库的最重要的特点就是其插件式的表存储引擎。切记:存储引擎是基于表的,而不是数据库。

    InnoDB与MyISAM的区别:

    InnoDB存储引擎: 主要面向OLTP(Online Transaction Processing,在线事务处理)方面的应用,是第一个完整支持ACID事务的存储引擎(BDB第一个支持事务的存储引擎,已经停止开发)。

    特点:

    · 行锁设计、支持外键,支持事务,支持并发,锁粒度是支持mvcc得行级锁;

     MyISAM存储引擎: 是MySQL官方提供的存储引擎,主要面向OLAP(Online Analytical Processing,在线分析处理)方面的应用。
    特点:

    不支持事务,锁粒度是支持并发插入得表级锁,支持表所和全文索引。操作速度快,不能读写操作太频繁;

     解释MySQL外连接、内连接与自连接的区别

    先说什么是交叉连接: 交叉连接又叫笛卡尔积,它是指不使用任何条件,直接将一个表的所有记录和另一个表中的所有记录一一匹配。

    内连接 则是只有条件的交叉连接,根据某个条件筛选出符合条件的记录,不符合条件的记录不会出现在结果集中,即内连接只连接匹配的行。
    外连接 其结果集中不仅包含符合连接条件的行,而且还会包括左表、右表或两个表中
    的所有数据行,这三种情况依次称之为左外连接,右外连接,和全外连接。

    左外连接,也称左连接,左表为主表,左表中的所有记录都会出现在结果集中,对于那些在右表中并没有匹配的记录,仍然要显示,右边对应的那些字段值以NULL来填充。右外连接,也称右连接,右表为主表,右表中的所有记录都会出现在结果集中。左连接和右连接可以互换,MySQL目前还不支持全外连接。

    写出三种以上MySQL数据库存储引擎的名称(提示:不区分大小写)

    MyISAM、InnoDB、BDB(BerkeleyDB)、Merge、Memory(Heap)、Example、Federated、
    Archive、CSV、Blackhole、MaxDB 等等十几个引擎

    Myql中的事务回滚机制概述

    事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位,事务回滚是指将该事务已经完成的对数据库的更新操作撤销。

    要同时修改数据库中两个不同表时,如果它们不是一个事务的话,当第一个表修改完,可能第二个表修改过程中出现了异常而没能修改,此时就只有第二个表依旧是未修改之前的状态,而第一个表已经被修改完毕。而当你把它们设定为一个事务的时候,当第一个表修改完,第二表修改出现异常而没能修改,第一个表和第二个表都要回到未修改的状态,这就是所谓的事务回滚

     

    SQL语言包括哪几部分?每部分都有哪些操作关键字?

    答:SQL语言包括数据定义(DDL)、数据操纵(DML),数据控制(DCL)和数据查询(DQL)四个部分。

    数据定义:Create Table,Alter Table,Drop Table, Craete/Drop Index等

    数据操纵:Select ,insert,update,delete,

    数据控制:grant,revoke

    数据查询:select

     

    完整性约束包括哪些?


    答:数据完整性(Data Integrity)是指数据的精确(Accuracy)和可靠性(Reliability)。

    分为以下四类:

    1) 实体完整性:规定表的每一行在表中是惟一的实体。

    2) 域完整性:是指表中的列必须满足某种特定的数据类型约束,其中约束又包括取值范围、精度等规定。

    3) 参照完整性:是指两个表的主关键字和外关键字的数据应一致,保证了表之间的数据的一致性,防止了数据丢失或无意义的数据在数据库中扩散。

    4) 用户定义的完整性:不同的关系数据库系统根据其应用环境的不同,往往还需要一些特殊的约束条件。用户定义的完整性即是针对某个特定关系数据库的约束条件,它反映某一具体应用必须满足的语义要求。

    与表有关的约束:包括列约束(NOT NULL(非空约束))和表约束(PRIMARY KEY、foreign key、check、UNIQUE) 。

     

    什么是事务?及其特性?


    答:事务:是一系列的数据库操作,是数据库应用的基本逻辑单位。

    事务特性:

    (1)原子性:即不可分割性,事务要么全部被执行,要么就全部不被执行。

    (2)一致性或可串性。事务的执行使得数据库从一种正确状态转换成另一种正确状态

    (3)隔离性。在事务正确提交之前,不允许把该事务对数据的任何改变提供给任何其他事务,

    (4) 持久性。事务正确提交后,其结果将永久保存在数据库中,即使在事务提交后有了其他故障,事务的处理结果也会得到保存。

    或者这样理解:

    事务就是被绑定在一起作为一个逻辑工作单元的SQL语句分组,如果任何一个语句操作失败那么整个操作就被失败,以后操作就会回滚到操作前状态,或者是上有个节点。为了确保要么执行,要么不执行,就可以使用事务。要将有组语句作为事务考虑,就需要通过ACID测试,即原子性,一致性,隔离性和持久性。

     

    什么是锁?


      答:数据库是一个多用户使用的共享资源。当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。

    加锁是实现数据库并发控制的一个非常重要的技术。当事务在对某个数据对象进行操作前,先向系统发出请求,对其加锁。加锁后事务就对该数据对象有了一定的控制,在该事务释放锁之前,其他的事务不能对此数据对象进行更新操作。

    基本锁类型:锁包括行级锁和表级锁

     

    什么叫视图?游标是什么?


    答:视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增,改,查,操作,视图通常是有一个表或者多个表的行或列的子集。对视图的修改不影响基本表。它使得我们获取数据更容易,相比多表查询。

      游标:是对查询出来的结果集作为一个单元来有效的处理。游标可以定在该单元中的特定行,从结果集的当前行检索一行或多行。可以对结果集当前行做修改。一般不使用游标,但是需要逐条处理数据的时候,游标显得十分重要。

     

    什么是存储过程?用什么来调用?


    答:存储过程是一个预编译的SQL语句,优点是允许模块化的设计,就是说只需创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次SQL,使用存储过程比单纯SQL语句执行要快。可以用一个命令对象来调用存储过程。

     

    索引的作用?和它的优点缺点是什么?


    答:索引就一种特殊的查询表,数据库的搜索引擎可以利用它加速对数据的检索。它很类似与现实生活中书的目录,不需要查询整本书内容就可以找到想要的数据。索引可以是唯一的,创建索引允许指定单个列或者是多个列。缺点是它减慢了数据录入的速度,同时也增加了数据库的尺寸大小。

     

    如何通俗地理解三个范式?  


    答:第一范式:1NF是对属性的原子性约束,要求属性具有原子性,不可再分解;

    第二范式:2NF是对记录的惟一性约束,要求记录有惟一标识,即实体的惟一性;  

    第三范式:3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,它要求字段没有冗余。。

    范式化设计优缺点:

    优点:

    可以尽量得减少数据冗余,使得更新快,体积小

    缺点:对于查询需要多个表进行关联,减少写得效率增加读得效率,更难进行索引优化

    反范式化:

    优点:可以减少表得关联,可以更好得进行索引优化

    缺点:数据冗余以及数据异常,数据得修改需要更多的成本

     

    什么是基本表?什么是视图?


    答:基本表是本身独立存在的表,在 SQL 中一个关系就对应一个表。  视图是从一个或几个基本表导出的表。视图本身不独立存储在数据库中,是一个虚表  

     

    试述视图的优点?


    答:(1) 视图能够简化用户的操作  (2) 视图使用户能以多种角度看待同一数据; (3) 视图为数据库提供了一定程度的逻辑独立性; (4) 视图能够对机密数据提供安全保护。

     

     NULL是什么意思


    答:NULL这个值表示UNKNOWN(未知):它不表示“”(空字符串)。对NULL这个值的任何比较都会生产一个NULL值。您不能把任何值与一个 NULL值进行比较,并在逻辑上希望获得一个答案。

    使用IS  NULL来进行NULL判断

     

    主键、外键和索引的区别?


    主键、外键和索引的区别

    定义:

     主键–唯一标识一条记录,不能有重复的,不允许为空

     外键–表的外键是另一表的主键, 外键可以有重复的, 可以是空值

     索引–该字段没有重复值,但可以有一个空值

    作用:

     主键–用来保证数据完整性

     外键–用来和其他表建立联系用的

     索引–是提高查询排序的速度

    个数:

     主键–主键只能有一个

     外键–一个表可以有多个外键

     索引–一个表可以有多个唯一索引

     

    你可以用什么来确保表格里的字段只接受特定范围里的值?


    答:Check限制,它在数据库表格里被定义,用来限制输入该列的值。

    触发器也可以被用来限制数据库表格里的字段能够接受的值,但是这种办法要求触发器在表格里被定义,这可能会在某些情况下影响到性能。

     

    说说对SQL语句优化有哪些方法?(选择几条)


    (1)Where子句中:where表之间的连接必须写在其他Where条件之前,那些可以过滤掉最大数量记录的条件必须写在Where子句的末尾.HAVING最后。

    (2)用EXISTS替代IN、用NOT EXISTS替代NOT IN。

    (3) 避免在索引列上使用计算

    (4)避免在索引列上使用IS NULL和IS NOT NULL

    (5)对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

    (6)应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描

    (7)应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描

     

    SQL语句中‘相关子查询’与‘非相关子查询’有什么区别?


    答:子查询:嵌套在其他查询中的查询称之。

    子查询又称内部,而包含子查询的语句称之外部查询(又称主查询)。

    所有的子查询可以分为两类,即相关子查询和非相关子查询

    (1)非相关子查询是独立于外部查询的子查询,子查询总共执行一次,执行完毕后将值传递给外部查询。

    (2)相关子查询的执行依赖于外部查询的数据,外部查询执行一行,子查询就执行一次。

    故非相关子查询比相关子查询效率高

     

    char和varchar的区别?


    答:是一种固定长度的类型,varchar则是一种可变长度的类型,它们的区别是:  

    char(M)类型的数据列里,每个值都占用M个字节,如果某个长度小于M,MySQL就会在它的右边用空格字符补足.(在检索操作中那些填补出来的空格字符将被去掉)在varchar(M)类型的数据列里,每个值只占用刚好够用的字节再加上一个用来记录其长度的字节(即总长度为L+1字节).  

    varchar得适用场景:

    字符串列得最大长度比平均长度大很多 2.字符串很少被更新,容易产生存储碎片 3.使用多字节字符集存储字符串

    Char得场景:

        存储具有近似得长度(md5值,身份证,手机号),长度比较短小得字符串(因为varchar需要额外空间记录字符串长度),更适合经常更新得字符串,更新时不会出现页分裂得情况,避免出现存储碎片,获得更好的io性能。

    展开全文
  • 数据库面试

    千次阅读 多人点赞 2019-02-13 09:03:42
    答:触发器是一种特殊的存储过程,主要是通过事件来触发而被执行的。 它可以强化约束,来维护数据的完整性和一致性,可以跟踪数据库内的操作从而不允许未经许可的更新和变化。可以联级运算。如,某表上的触发器上...
  • 2021年前端面试题及答案

    万次阅读 多人点赞 2020-02-11 19:29:34
    302 Found 类似于301,但新的URL应该被视为临时性的替代,而不是永久性的。注意,在HTTP1.0中对应的状态信息是“Moved Temporatily”。出现该状态代码时,浏览器能够自动访问新的URL,因此它是一个很有用的状态代码...
  • 测试开发笔记

    万次阅读 多人点赞 2019-11-14 17:11:58
    CMM与CMMI的区别 23 第五章 SQL 24 约束: 29 1主键约束 29 2 非空约束 not null 30 3 外键约束 FOREIGN KEY 30 4 默认约束 31 5 检查约束 check 31 6 唯一约束 unique 32 SQL语句 32 创建数据库. 32 表、字段、...
  • 前端面试题

    万次阅读 多人点赞 2019-08-08 11:49:01
    补充按钮事件的函数,确认用户是否退出当前页面,确认之后关闭窗? 69 写出简单描述html标签(不带属性的开始标签和结束标签)的正则表达式,并将以下字符串中的html标签去除掉 70 完成foo()函数的内容,要求能够...
  • Linux 命令面试题

    万次阅读 多人点赞 2019-07-24 09:40:04
    秒 clock -w 将时间修改保存到 BIOS 关机 (系统的关机、重启以及登出 ) shutdown -h now 关闭系统(1) init 0 关闭系统(2) telinit 0 关闭系统(3) shutdown -h hours:minutes & 按预定时间关闭系统 shutdown -c...
  • C#基础教程-c#实例教程,适合初学者

    万次阅读 多人点赞 2016-08-22 11:13:24
    而在C#语言中使用using语句导入名字空间,using System语句意义是导入System名字空间,C#中的using语句的用途与C++中#include语句的用途基本类似,用于导入预定义的变量和函数,这样在自己的程序中就可以自由地使用...
  • 这种临时表只对当前用户可见,当前会话结束的时候,该临时表会自动关闭。这种临时表的命名与非临时表可以同名(同名后非临时表将对当前会话不可见,直到临时表被删除)。 内部临时表 内部临时表是一种特殊轻量级的...
  • mysql触发器+事件+存储过程+临时

    千次阅读 2019-06-06 23:08:16
    MySQL临时表 一. MySQL事件Event 1. 事件简介 事件(event)是MySQL在相应的时刻调用的过程式数据库对象。一个事件可调用一次,也可周期性的启动,它由一个特定的线程来管理的,也就是所谓的“事件调度器”。 ...
  • PHP引擎php.ini参数优化

    千次阅读 2017-09-13 22:52:25
    一般php在没有连接到数据库或者其他情况下会有提示错误,一般错误信息中会包含php脚本当前的路径信息或者查询的SQL语句等信息,这类信息提供给黑客后,是不安全的,所以一般服务器建议禁止错误提示。 该参数默认配置...
  • if exists(select * from tempdb..sysobjects where id=object_id(‘tempdb..#temp’)) drop ... SQL 语句使用 CREATE TABLE 语句中为 table_name 指定的名称引用临时表: CREATE TABLE #MyTempTable (cola INT PRIMA
  • MySQL学习总结

    千次阅读 2019-05-21 14:39:29
    所谓数据库对象是存储、管理和使用数据的不同结构形式,主要包含表、视图、存储过程、函数、触发器和事件等。 2.存储引擎 在MySQL中查看数据库的存储引擎: ü show engines; 或者 showengines \G 或者 show ...
  • Java笔试面试题整理第八波

    万次阅读 多人点赞 2016-06-14 11:07:41
    方法中的临时变量,只需要在使用前保证了初始化就可以。不一定要在定义的时候就初始化,但必须要在开始使用这个变量前初始化。 如下例子: public class VarTest { final int i ; public...
  • MySql创建临时表和特殊关联语句

    千次阅读 2015-09-24 11:18:25
    临时表只在当前连接可见,当这个连接关闭的时候,会自动drop。这就意味着你可以在两个不同的连接里使用相同的临时表名,并且相互不会冲突,或者使用 已经存在的表,但不是临时表的表名。(当这个临时表存在的时候,...
  • AOF:append only file 可以进行实时备份 往一个文件中实时追加命令 重启后 再次执行命令即可 开启方式:appendonly yes 默认关闭 22、kafka常见消息引擎泛型 a:消息队列模型 多用于处理进程/线程间的通信 生产...
  • 因为电脑卡,我重启之后下了个360清理了下,结果当我再打开plsql的时候,之前提示恢复语句的窗口没有了!!好多重要语句都没有保存啊!请问大神门怎么找回来啊,谢谢!
  • verilog 综合注意事项

    万次阅读 多人点赞 2016-07-29 15:46:40
    函数代表一个组合逻辑,所有内部定义的变量都是临时的,这些变量综合后为wire。 17、任务: 任务可能是组合逻辑或者时序逻辑,取决于何种情况下调用任务。 18、Z: Z会综合成一个三态门,必须在条件语句中...
  • python 入门题库————python语句和基础数理

    万次阅读 多人点赞 2018-10-25 15:59:07
    python 入门题库python 题库Python使用符号_______表示注释Python不支持的数据类型有查看python版本的命令是在Python中,print(type(16/4))的结果是什么类型的在Python3中,执行下列语句后的显示结果是执行下列语句...
  • Oracle数据库临时

    千次阅读 2019-04-05 00:07:32
    一、前言 我们在创建数据表的时候,若没有特殊的指明,那么我们创建的表是一个永久的关系型表格,也就是说,这个...当一个会话结束或者事务结束的时候,这个临时表中的数据,不用用户自己删除,数据库自己会自动...
  • mysql创建临时

    万次阅读 2017-08-21 18:12:05
    今天@小北童鞋遇到一个oracle的...我想到的做法就是把查询结果放到一个临时表,对临时表进行update后再次查询。 解决办法: 当临时表不存在时,将查询结果保存在临时表中:CREATE TEMPORARY TABLE tmp_table SELECT * F
  • 《数据库系统概论》复习

    千次阅读 多人点赞 2019-05-27 12:13:27
    《数据库系统概论》复习 第一章 绪论 1.1 数据库系统概述 1、数据库系统的四个基本概念 数据(Data):描述事物的符号记录称为数据,数据是数据库存储的基本对象。 ...数据库(DB):长期存储在计算机内、有组织的...
  • MySQL常用SQL语句大全

    万次阅读 多人点赞 2017-12-21 19:22:28
     3、创建临时表:  >CREATE TEMPORARY TABLE tb_name(这里和创建普通表一样);  4、查看数据库中可用的表:  >SHOW TABLES;  5、查看表的结构:  >DESCRIBE tb_name;  也可以...
  • Linux实用教程(第三版)

    万次阅读 多人点赞 2019-08-27 22:55:59
    2.3注销、关闭和重启Linux系统 2.4 FirewallD防火墙 第三章 字符界面操作基础 本章内容 字符界面简介 在Linux系统下获取帮助 Shell基础知识 3.4使用bash 3.5Shell实用功能 3.6重定向 3.7 vi编辑器 命令模式命令 末行...
  • MySQL定时任务(EVENT|事件)如何配置,必会技能!

    千次阅读 多人点赞 2020-11-20 17:30:31
    修改事件语句跟创建语句如出一辙,语法如下: ALTER EVENT event_name [ONSCHEDULE schedule] [old_NAME TO new_NAME] [ON COMPLETION [NOT] PRESERVE] [COMMENT 'comment'] [ENABLE | DISABLE] [DO sql_statement] ...
  • 如何在SQL Server中删除临时

    千次阅读 2020-07-16 19:13:05
    如果关闭了创建本地临时表的会话,则SQL Server将自动删除该临时表。 The following query will create a local temporary table: 以下查询将创建一个本地临时表: CREATE TABLE #LocalCustomer ( CustomerId int, ...
  • MySQL数据库:sql语句的执行

    千次阅读 2018-10-24 16:50:12
    ctrl+w 关闭当前查询窗口 1) 进入查询界面执行sql语句 2) 进入命令列界面执行sql语句   2. 常用sql语句 所用数据下载 百度云链接:提取码( aw7s ) 创建数据库 ...
  • 如何创建全局的临时表?

    千次阅读 2018-08-10 14:22:19
    当创建会话终止后,SQL Server才会自动尝试删除该表,其他会话中对其提交的所有语句都将结束,并释放它们所保持的所有锁。  但在某些情况下,你可能想创建一个不属于任何会话的全局临时表。这时,无论哪个会话打开...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 109,042
精华内容 43,616
关键字:

临时关闭事件的语句