精华内容
下载资源
问答
  • 二维表转化一维表

    2015-06-04 13:46:39
    二维表转化一维表的说明
  • 摘要 数据场景 一维表转换为二维表 二维表转换为一维表

    用pandas处理数据,我们经常获取到的是从数据库或者excel中获取的一维表。而常常需要重排,转换为二维表,类似于excel中的透视。

    举例
    一维表 df

    df = pd.DataFrame(
    {
        'key1':['one','two','three','one','two','four'],
        'key2':['A','B','C','D','C','D'],
        'value':np.random.randn(6)
    }
    )
    

    表一:一维表
    二维表 df2
    在这里插入图片描述

    介绍两种转换方式。

    一、stack & unstack

    stack 和 unstack 的工作机制都是依赖于dataframe本身的多层索引进行转换的。
    默认情况下,最内层是unstack的,也可以指定层级序号或名称来拆分特定层级。

    unstack 将一维表转换为二维表

    # 第一步
    df1 =df.set_index(['key1','key2'])
    # 运用unstack,不写参数,默认转换最里层的index,也就是key2;
    df2=df1.unstack()
    df2.reset_index()
    

    在这里插入图片描述

    # 也可以指定要转换的索引
    df1.unstack('key1')
    # 或
    df1.unstack(0)
    

    最后,可以通过reset_index方法去除索引。

    stack 将二维表转换为一维表

    df2.stack()
    

    二、pivot & melt

    pivot 将一维表转换为二维表

    df.pivot('key1','key2','value')
    

    melt将二维表转换为一维表

    pd.melt(df,['key1','key2'])
    

    也可以指定列的子集为值列

    pd.melt(df,id_vars=['key1'], value_vars=['value'])
    

    Tips

    stack 和unstack方法可以用来处理多层数据。
    也就是行和列索引不只一个的情况。

    可参考 (https://blog.csdn.net/qq_41080850/article/details/86294173)

    multiindex 的索引方式

    外层索引可以包含式地使用内层索引,反过来则不行

    展开全文
  • echarts二维图表举例

    千次阅读 2017-04-06 15:49:05
    echarts二维图表
    //所用数据
    var data1={"date":"2017.2",
                "data":{"专线": [{"key":"联通","value":622},
                                {"key":"电信","value":776},
                                {"key":"移动","value":481},
                                {"key":"其他","value":146}],
                        "VPN": [{"key":"联通","value":467},
                                {"key":"电信","value":400},
                                {"key":"移动","value":20},
                                {"key":"其他","value":38}],
                      "Internet":[{"key":"联通","value":18},
                                 {"key":"电信","value":49},
                                 {"key":"移动","value":16},
                                  {"key":"其他","value":104}]  
                        }
               } 
     //data1.data是一个对象,下面先写下二维数组重组的方法,这种方法可以在非矩阵的情况下重组,比如缺失了{"key":"联通","value":622},如果是矩阵转置,关键是arr[i][j]=newarr[j][i]
    
          //对象转数组的方法
            function transform(obj){
              var arr1 = [];          
              for(var item in obj){
                 arr1.push(obj[item]);            
              }
              return arr1;         
               }       
          //二维数组重组 方法1      
      // var data2={};
      //   for(var index in data1.data){    //遍历对象
      //     for (var i = data1.data[index].length - 1; i >= 0; i--) {
          //   var item={"key":index,"value":data1.data[index][i].value}
      //       if (!data2[data1.data[index][i].key]) {
              //         data2[data1.data[index][i].key] = [];
              //       }
              //       data2[data1.data[index][i].key].push(item);
              //     };
              //   }  
              // console.log(data2)
              //data1.data是原对象,data2是重组后的新对象
    
      //(方法二)   data1.data是原对象 newobj是重组后的新对象
        var obj_Property=Object.getOwnPropertyNames(data1.data)//该方法可以获取对象的属性值,返回一个数组(方法一用的是遍历)
        var newobj={}        
           for (var i = 0; i < obj_Property.length; i++){               
             for (var j = 0; j < data1.data[obj_Property[i]].length; j++) {
                 var obj_Propertynew=Object.getOwnPropertyNames(newobj)
                 var b=obj_Propertynew.indexOf(data1.data[obj_Property[i]][j].key)
                if(b==-1){
                    newobj[data1.data[obj_Property[i]][j].key]=[];
                }
        newobj[data1.data[obj_Property[i]][j].key].push({"key":obj_Property[i],"value":data1.data[obj_Property[i]][j].value})                        
             }
           }
           //以上的方法与下面成图无关,这里从数据data1中提取echart要用的series.data
            var  chart1_xAxis=obj_Propertynew      
            var   chart1_data=new Array()//要组成3*4的数组
              for(var i=0;i<obj_Property.length;i++){  
                 chart1_data[i]=new Array() 
                for(var j=0;j<obj1[obj_Property[i]].length;j++){             
                   chart1_data[i].push(obj1[obj_Property[i]][j].value);       
                }           
              }      
    //下面是图表
    var mychart1=echarts.init(document.getElementById('item1'));
    option1 = {
       title: {
            text: '运营商资源分布('+data1.date+')',
            subtext:'线路数量',
            left:'center'
        },
        tooltip : {
            trigger: 'axis',
            axisPointer : {            
                type : 'shadow'         
            }
        },
        grid: {
            left: '3%',
            right: '4%',
            bottom: '10%',
            containLabel: true
        },
        legend: {
            data: obj_Property,
             right:'3%',
            top:'3%'      
        },
        xAxis : [
            {
                type : 'category',
                data :chart1_xAxis,     
            }
        ],
        yAxis : [
            {
                type : 'value',
                 name: '数量(条)',
            },
    
        ],
        series : [
            {
                name:'专线',
                type:'bar',
                barWidth: '20%',
                data:chart1_data[0],
                label: {
                    normal: {
                        show: true,
                        position: 'top'
                    }
                },
            },
            {
                name:'VPN',
                type:'bar',
                barWidth: '20%',
                data:chart1_data[1],
                label: {
                    normal: {
                        show: true,
                        position: 'top'
                    }
                },
            },
            {
                name:'Internet',
                type:'bar',
                barWidth: '20%',
                data:chart1_data[2],
                label: {
                    normal: {
                        show: true,
                        position: 'top'
                    }
                },
            },
        ]
    };
    mychart1.setOption(option1);

    这里写图片描述

    展开全文
  • 数据库复习笔记2——关系模型

    千次阅读 2020-08-16 10:37:13
    关系模型的数据结构是:二维表结构,它是关系型数据库的基础。 关系数据模型由关系数据结构、关系操作和关系完整性约束三部分组成。 关系必须是规范化的,满足一定的规范条件。 关系数据库必须满足1NF范式,即...

    一、关系模型基础知识

    1、关系模型概述

    关系模型的数据结构是:二维表结构,它是关系型数据库的基础。

    关系数据模型由关系数据结构、关系操作和关系完整性约束三部分组成。

    关系必须是规范化的,满足一定的规范条件

    关系数据库必须满足1NF范式,即一张表中不包含子表。(关系的每一个分量必须是一个不可分的数据项, 不允许表中还有表

    关系模型只是常用的数据模型的一种,数据模型按照数据之间的联系可以划分为:

    • 层次模型
    • 网状模型
    • 关系模型
    • 面向对象模型

    2、关系模型的基本概念

    关系模型在1970年提出,操作语言是结构化查询语言SQL(Structural Querry Language)

    • 关系:通常指一张
    • 元组:表中的一行记录
    • 属性:表中的一,有属性名和属性值(分量)
    • 分量:元组中的一个属性值
    • 关系模式:对关系的描述,通常有几张表就有几个关系模式
    • :属性值的取值范围
      • 超键(关键字):在关系中能唯一标识元组的属性集
      • 候选键:不含有多余属性超键(候选键中的所有属性都是必须的,缺少任何一个属性,都不能唯一标识一个元祖)
      • 主键:用户选作元组标识的候选键人为设定
      • 外键如果关系模式R中的属性k是其他关系模式的主键,则k是R中的外键(表与表的关系通过外键来描述)外键表中的外键不能有主键表中不存在的数据。(保证数据的完整性和一致性)
    • 主属性:一个属性只要在任何一个候选键中出现过,这个属性就是主属性。
    • 非主属性:与上面相反,没有在任何候选码中出现过,这个属性就是非主属性。

    举例说明超键、候选键等概念的含义:

    假设有如下两张表:学生信息(学号 身份证号 性别 年龄 身高 体重 宿舍号)和 宿舍信息(宿舍号 楼号)

    超键:只要含有“学号”或者“身份证号”两个属性的集合就叫超键,例如R1(学号 性别)、R2(身份证号 身高)、R3(学号 身份证号)等等都可以称为超键!

    候选键:不含有多余的属性的超键,比如(学号)、(身份证号)都是候选键,又比如R1中学号这一个属性就可以唯一标识元组了,而有没有性别这一属性对是否唯一标识元组没有任何的影响!

    主键就是用户从很多候选键选出来的一个键就是主键,比如你要求学号是主键,那么身份证号就不可以是主键了!

    外键:宿舍号就是学生信息表的外键

    主属性:出现在候选键中的属性称为主属性,如上面学号、身份证号都是主属性。

    非主属性:没有在任何候选键中出现的属性,称为非主属性。如上面性别、年龄、身高、体重、宿舍号都是非主属性。

    关系的完整性约束

    • 实体完整性:关系必须有主键,且主键不能重复不能为空
    • 参照完整性:以外键的形式维护实体间的引用关系,可以为空或者值为被参照关系的主键值
    • 用户自定义完整性:用户由应用环境决定的针对具体关系数据库的约束(属性类型等)

    3、关系代数

    我们以如下的两张表作为原始数据:

    关系代数

    并操作(Union)

    关系(表) R 与关系 S 的并(∪)由属于 R 或属于 S 的元组(记录)组成。

     

    并

                                                                                                 

    差操作(except)

    关系R与关系S的差由属于R而不属于S的所有元组组成。

     

    差

    交操作(intersection)

    关系R与关系S的差由属于R且属于S的所有元组组成。

     

    交

    笛卡尔积(cartesian product)

    这里的笛卡尔积严格地讲是广义笛卡尔积。在不会出现混淆的情况下广义笛卡尔积也称为笛卡尔积。

    两个分别为n目和m目的关系R和S的广义笛卡尔积是一个n+m列的元组的集合。元组的前n列是关系R的一个元组,后m列是关系S的一个元组。若R有k1个元组,S有k2个元组,则关系R和关系S的广义笛卡尔积有k1×k2个元组。

    R中的每一行元素与S中的每一行元素连接。

    相当于:select 列名 from 表A,表B 或者select 列名 from 表A join 表B

    笛卡尔积

    投影(projection)

    关系R上的投影是从R中选择出若干属性列组成新的关系。

    相当于:select 列名 from 表名

    选择(selection)

    选择又称为限制(Restriction)。它是在关系R中选择满足给定条件的诸元组

    相当于:select * from 表名 where 条件

    除(division)

    除法运算是一个复合的二目运算。如果把笛卡尔积看作“乘法”运算,则除法运算可以看作这个“乘法”的逆运算。

    若T=R÷S,则S×T的结果应该全部包含在R中。

     

    除

    关系数据库中,除法的计算,详细过程参见https://blog.csdn.net/weixin_42023723/article/details/80876568

    连接(join)

    关系R与关系S的连接运算是从两个关系的广义笛卡尔积中选取属性间满足一定条件的元组形成一个新的连接。(如果不加任何条件,那么默认的连接就是两张表的广义笛卡尔积)。连接可以分为内连接自然连接外连接,其中外连接又可以分为左外连接、右外连接、全外连接。

    (1)等值连接(equal join)

    从关系R和S的广义笛卡尔积中选取A、B属性值相等的那些元组。

    对应的SQL语句为:select * from R join S on R.A = S.B

    (2)自然连接(natural join)

    自然连接是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且在结果中把属性重复的列去掉。

    对应的SQL语句为:select * from R natural join S。

    等值连接与自然连接的区别和联系:

    1、自然连接一定是等值连接,但等值连接不一定是自然连接。

    2、等值连接要求相等的分量,不一定是公共属性;而自然连接要求相等的分量必须是公共属性

    3、等值连接不把重复的属性除去;而自然连接要把重复的属性除去

    (3)内连接(inner join)

    内连接是将两张表中共有某属性值的记录挑选出来。与等值连接类似,二者都是取交集

    内连接

    (4)左外连接(left join)

    在自然连接的基础上,保证左表完全显示,右表若不存在则用null填满

     

    左连接

    (5)右外连接(right join)

    在自然连接的基础上,保证右表完全显示,左表若不存在则用null填满

     

    右连接

    (6)全外连接(OUTER JOIN)

    左连接+右连接+去重=全连接

    全连接

    在MySQL中不支持FULL JOIN(全连接),但是可以通过UNION来实现,通过将左外连接和右外连接的结果求并得到。

    (SELECT * FROM test1 LEFT JOIN test2 on test1.C=test2.d) UNION (SELECT * FROM test1 RIGHT JOIN test2 on test1.c = test2.C);

    4、函数依赖

    平凡的函数依赖

    如果X→Y,但Y∈X,则称X→Y是平凡的函数依赖.

    非平凡的函数依赖

    如果X→Y,但Y∉X,则称X→Y是非平凡的函数依赖。通常情况下总是讨论非平凡的函数依赖.

    完全函数依赖

    如果存在 X 属性集(注意是集合,说明是联合主键)决定唯一的 Y ,且 X 中的任一子集都不能决定 唯一的 Y,则 Y 完全依赖于 X。

    例子:学生数学成绩完全由该学生的学号和数学课决定,所以数学课成绩完全依赖于(学号,数学课)

    部分函数依赖

    如果存在 X 属性集(注意是集合,说明是联合主键)决定唯一的 Y ,且 X 中的任一子集也可以决定 唯一的 Y,则 Y 部分依赖于 X。

    例子:学生学号和姓名可以决定唯一的学生,但是学号也可以决定唯一的学生。

    传递函数依赖

    如果X→Y,Y∉X,Y→Z,Y不完全函数依赖于X,则称Z对X传递依赖

    例如:书的出版编号是唯一,版权归出版社所有,所以只能由该出版社出版。所以存在函数依赖:书出版编号—>出版社名,出版社名—>出版社地址,但是出版社名不能决定唯一的出版书编号(除非出版社只出版过一本书,那我没话说?),则有出版书编号传递依赖于出版社地址。

    5、关系范式

    范式是符合某一种级别的关系模式的集合

    设计性能较优的关系模式称为规范化,规范化主要的理论依据是关系规范化理论。目的是消除插入、删除异常和数据冗余,提高数据库性能。

    一般而言,我们只要让数据库中的所有表符合第三范式或者BCNF即可。

    数据冗余

    数据冗余是指各个数据文件中存在重复的数据。会导致:

    • 浪费存储空间,降低检索效率
    • 潜在的数据不一致性

    在文件管理系统中各数据文件中难免有许多数据相互重复,数据的冗余度比较大。数据库系统更注重文件之间的联系。数据库系统中的数据具有共享性,因而尽可能地避免了数据的重复存储,减少和控制了数据的冗余。

    然而,DBS中也不是不存在数据冗余的现象。当存在传递依赖或者部分依赖时,必然会出现数据冗余现象,我们要依据关系范式进行数据表分解,从而减轻冗余。

    第一范式1NF(原子性)

    表中的每一列都是不可分解的基本数据项,每一个属性不可拥有多个值。是关系数据库的基本要求。需要满足原子性

    第二范式2NF(消除部分依赖)

    前提是满足1NF。此外:一个表必须有主键,非主属性必须完全依赖于主键。消除非主属性对主键的部分依赖

     

    第三范式3NF(消除传递依赖)

    前提是满足2NF。此外:任意一个非主属性都不可传递依赖于主键。(消除非主属性对主键的传递依赖)(要求依赖右侧全部为候选键或者它的成员)

    3NF

    BC范式BCNF(主属性不能依赖于主属性)

    前提是满足3NF。此外:不能存在主键的一部分被另一部分或者非主键的其它部分所决定。(消除所有部分依赖与传递依赖)(要求依赖右侧全部为候选键)

    第四范式

    要求把同一表内的多对多关系删除。

    第五范式

    从最终结构重新建立原始结构。

    6、闭包

    闭包指的是:由一个属性或者属性组直接或间接推导出的所有属性的集合

    求闭包的算法:循环迭代,每一次迭代过程中找到能够被当前闭包中的属性直接推出的属性加入到闭包中。直到无法加入新属性。

    7、关系型数据库和非关系型数据库

    数据库 类型特性优点缺点
    关系型数据库:SQLite、Oracle、mysql1、关系型数据库,是指采用了关系模型来组织数据的数据库;
    2、关系型数据库的最大特点就是事务的一致性
    3、简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。
    1、容易理解:二维表结构是非常贴近逻辑世界一个概念,关系模型相对网状、层次等其他模型来说更容易理解;
    2、使用方便:通用的SQL语言使得操作关系型数据库非常方便;
    3、易于维护:丰富的完整性:实体完整性、参照完整性和用户定义的完整性。大大减低了数据冗余和数据不一致的概率;
    4、支持SQL,可用于复杂的查询。
    1、为了维护一致性所付出的巨大代价就是其读写性能比较差
    2、固定的表结构
    3、不适合高并发读写需求;
    4、不适合海量数据的高效率读写;
    非关系型数据库:MongoDb、redis、HBase1、使用键值对(也可以是文档形式、图片形式等)存储数据;
    2、支持分布式
    3、一般不支持事务的ACID特性
    4、非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合
    1、无需经过sql层的解析,读写性能很高
    2、基于键值对,数据没有耦合性容易扩展
    3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,而关系型数据库则只支持基础类型。
    1、不提供sql支持,学习和使用成本较高
    2、无事务处理,附加功能bi和报表等支持也不好;

    数据的持久存储,尤其是海量数据的持久存储,还是需要一种关系数据库

    参考资料:

    1、https://blog.csdn.net/weixin_42023723/article/details/80876568

    2、https://hillzhang1999.gitee.io/2020/05/29/shu-ju-ku-fu-xi-ji-yu-mysql/#toc-heading-39

    展开全文
  • 关系模型介绍

    千次阅读 多人点赞 2020-04-10 16:04:06
    如果Di(i=1, 2,…, n)为有限集,其基数(Cardinal number)为mi (i=1, 2,…, n),则 D1×D2×…×Dn的基数为: 笛卡尔积可以表示为一个二维表, 表中 【例1】 笛卡尔积举例。 给出3个域: D1=学号集合stno={121001, ...

    一、【关系数据结构】

    1、关系

    1)域(Domain)

    定义1–域是一组具有相同数据类型的值的集合。
    例如,整数、正整数、实数、大于等于0且小于等于100的正整数、{0,1,2,3,4}等都可以是域。

    2)笛卡尔积(Cartesian Product)

    定义2–设定一组域D1, D2, …, Dn,在这组域中可以是相同的域。定义D1, D2, …, Dn,的笛卡 尔积为D1×D2×…×Dn={(d1, d2, …, dn) | di∈Di, i=1, 2, …, n}

    其中每一个元素(d1, d2, …, dn)叫做一个n元组(n-tuple)或简称元组(Tuple),元素中的每个 值di(i=1, 2,…, n)叫做一个分量(Component)。 如果Di(i=1, 2,…, n)为有限集,其基数(Cardinal number)为mi (i=1, 2,…, n),则 D1×D2×…×Dn的基数为:
    在这里插入图片描述

    笛卡尔积可以表示为一个二维表,
    表中
    在这里插入图片描述
    在这里插入图片描述

    【例1】 笛卡尔积举例。

    给出3个域:
    D1=学号集合stno={121001, 121002 }
    D2=姓名集合stname={李贤友, 周映雪}
    D3=性别集合 stsex={男, 女}
    则D1, D2, D3,的笛卡尔积为:
    D1×D2×D3={(121001, 李贤友, 男), (121001, 李贤友, 女), (121001, 周映雪, 男), (121001, 周映雪, 女), (121002, 李贤友, 男), (121002, 李贤友, 女), (121002, 周映雪, 男), (121002, 周映雪, 女)} 其中(121001, 李贤友, 男), (121001, 李贤友, 女), (121002, 周映雪, 男)等都是元组, 121001, 121002, 李贤友, 周映雪

    男, 女等都是分量,这个笛卡尔积的基数是2×2×2=8,即共有8个元组, 可列成一张二维表,如表1-所示。

    在这里插入图片描述
    ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑表1–D1, D2, D3的笛卡尔积

    3)关系(Relation)

    定义3–笛卡尔积D1×D2×…×Dn的子集称为D1,D2,…,Dn上的关系,表示为 R(D1,D2,…,Dn) 这里的R 表示关系的名称,n是关系的目或度(Degree)。

    • 当n=1时,称该关系为单元关 系或一元关系。
    • 当n=2时,称该关系为二元关系。
    • 当n=m 时,称该关系为m 元关系。

    关系中的每个元素是关系中的元组,通常用t 表示。 在一般情况下,D1,D2,…,Dn的笛卡尔积是没有实际意义的,只有它的某个子集才 有实际意义,举例如下。

    【例2】 关系举例

    在例1–的笛卡尔积中,许多元组是没有意义的,因为一个学号只标识一个学生的姓名,一个 学生只有一个性别,表1–的一个子集才有意义,才可以表示学生关系,将学生关系取名为S, 表示为S(stno, stname, stsex),列成二维表如表2–所示。

    ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓表2–S关系
    在这里插入图片描述

    • (1)关系的元组、属性和候选码

    关系是笛卡尔积的有限子集,所以关系也是一个二维表。
    • 元组(Tuple) 表的每一行,对应一个元组。
    • 属性(Attribute) 表的每一列,对应一个域,由于域可以相同,为了加以区分,必须对每一列起一个唯一的 名字,称为属性。
    • 候选码(Candidate key) 若关系中某一属性组的值能唯一地标识一个元组,则称该属性组为候选码。

    候选键码中的诸属性称为主属性(Prime attribute),不包含在任何候选码中的属性称为 非主属性(Non-prime attribute)或非码属性((Non-key attribute)。 在最简单的情况下,候选码只包含一个属性,在最极端的情况下,关系模式的所有属性 组成这个关系模式的候选码,称为全码(All-key)。
    • 主码(Primary key) 在一个关系中有多个候选码,从中选定一个作为主码。
    在这里插入图片描述

    • (2)关系的类型

    关系有3种类型:基本关系(又称基本表或基表)、查询表和视图表。
    • 基本关系:实际存在的表,是实际存储数据的逻辑表示;
    • 查询表 :查询结果对应的表;
    • 视图表 :由基本表或其它视图标导出的表,是虚表,不对应实际存储的数据;

    • (3)关系的性质

    • 关系具有以下的性质:

    • 列的同质性:每一列中的分量是同一类型的数据,来自同一个域。
    • 列名唯一性:每一列具有不同的属性名,但不同列的值可以来自同一个域。
    • 元组相异性:关系中任意两个元组的候选码不能相同。
    • 行序的无关性:行的次序可以互换。
    • 列序的无关性:列的次序可以互换。
    • 分量原子性:分量值是原子的,即每一个分量都必须是不可分的数据项。

    • (4)规范化

    关系模型要求关系必须是规范化(normalization)的,规范化要求关系必须满足一定的规 范条件,而在规范条件中最基本的一条是每一个分量必须是不可分的数据项。规范化的关系简 称为范式(Normal Form)。

    例如,表3–所示的关系就是不规范的,存在”表中有表”的现象。
    在这里插入图片描述

    2、关系模式

    在关系数据库中,关系模式是型,关系是值。
    关系是元组的集合,关系模式是对关系的描述,所以关系模式必须指出这个元组集合的结 构,即它由哪些属性构成,这些属性来自哪些域。

    定义4--关系模式(Relation Schema)可以形式化地表示为R (U, D, DOM, F )

    • 其中:R是关系名,U 是组成该关系的属性名集合,D 是属性所来自的域,DOM是属性 向域的映象集合,F 是属性间的数据依赖关系集合。

    关系模式通常可以简记为 R (U ) 或R(A1, A2, …, An) 其中,R是关系名,A1, A2, …, An 为属性名。 关系是关系模式在某一时刻的状态或内容。关系模式是静态的、稳定的,而关系是动态的、 随时间不断变化的,因为关系操作在不断地更新着数据库中的数据。

    在实际应用中,我们常常把关系模式和关系统称为关系。
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    9个 结果再此不展示

    3. 关系数据库

    在一个给定的应用领域中,所有实体及实体之间联系的关系的集合构成一个关系数据库。 关系数据库的型称为关系数据库模式,是对关系数据库的描述,包括若干域的定义和在这 些域上定义的若干关系模式。 关系数据库的值是这些关系模式在某一时刻对应的关系的集合。

    二、【关系操作】

    1、基本的关系操作

    关系操作包括查询(Query)操作和插入(Insert)、删除(Delete)、修改(Update)操作两大部分。

    查询操作是关系操作最重要的部分,可分为选择(Select)、投影(Project)、连接(Join)、除 (Devide)、并(Union)、差(Except)、交(Intersection)、笛卡尔积等。其中的5种基本操作是并、 差、笛卡尔积,选择、投影,其它操作可由基本操作来定义和导出。 关系操作的特点是集合操作方式,即操作的对象与结果都是集合。这种操作方式亦称为一次 一集合(set-at-a-time)方式,相应地,非关系模型的数据操作方式则为一次一记录(record-at-a- time)方式。

    2、关系操作语言

    关系操作语言是数据库管理系统提供的用户接口,是用户用来操作数据库的工具,关系 操作语言灵活方便,表达能力强大,可分为关系代数语言、关系演算语言和结构化查询语言三 类。
    • (1)关系代数语言 用对关系的运算来表达查询要求的语言。
    • (2)关系演算语言 用谓词来表达查询要求的语言,又分为元组关系演算语言和域关系演算语言,前者如 ALPHA,后者QBE。
    • (3)结构化查询语言 介于关系代数和关系运算之间,具有关系代数和关系演算双重特点,如SQL。 以上三种语言,在表达能力上是完全等价的。 关系操作语言是一章高度非过程化语言,存取路径的选择由数据库管理系统的优化机制自 动完成。

    三、【关系的完整性】

    1、实体完整性(Entity Integrity)

    规则1–实体完整性规则 若属性(一个或一组属性) A是基本关系R的主属性,则A不能取 空值。空值(null value)指”不知道”或”不存在”的值。 例如,在学生关系S(stno, stname, stsex)中,学号stno是这个关系的主码,则stno不能 取空值。又如在选课关系——选课(学号, 课程号, 分数)中,”学号, 课程号”为主码,则”学 号”和”课程号”两个属性都不能取空值。

    实体完整性规则说明如下:

    • (1)实体完整性规则是针对基本关系而言。一个基本表通常对应现实世界的一个实体集。
    • (2)现实世界中的实体是可区分的,即它们具有某种唯一性标识。
    • (3)相应地,关系模型中以主码作为唯一性标识。
    • (4)主码中的属性即主属性不能取空值。

    2、参照完整性(Referential Integrity)

    在现实世界中实体之间存在的联系,在关系模型中都是用关系来描述,自然存在关系与 关系间的引用,参照完整性一般指多个实体之间的联系,一般用外码实现,举例如下。

    【例3】 学生实体与学院实体可用以下关系表示,其中的主码用下划线标识。

    学生S(学号, 姓名, 性别, 出生日期, 专业, 总学分, 学院号)
    学院C(学院号, 学院名, 院长)

    这两个关系存在属性的引用,学生关系引用了学院关系的主码”学院号”,学生关系”学 院号”必须是确实存在的学院的学院号,即学院关系有该学院的记录。

    【例4】 学生、课程、学生与课程之间的联系可用以下3个关系表示,其中的主码用下划 线标识。

    学生S(学号, 姓名, 性别, 出生日期, 专业, 总学分)
    课程L(课程号,课程名,学分)
    选课C(学号,课程号,分数)

    这3个关系存在属性的引用,选课关系引用了学生关系的主码”学号”和课程关系的主码” 课程号”,选课关系”学号”和”课程号”的取值需要参照学生关系的”学号”取值和课程关 系的”课程号”取值。

    【例5】学生关系的内部属性之间存在引用关系,其中的主码用下划线标识。

    学生(学号, 姓名, 性别, 出生日期, 专业, 总学分, 班长学号)
    在该关系中,
    ”学号”属性是主码,
    ”班长学号”属性是所在班级班长的学号,
    它引用了 本关系”学号”属性,即”班长学号”必须是确实存在的学生学号。

    定义5--设F 是基本关系R的一个或一组属性,但不是关系R的码,Ks是基本关系S的主码。 如果F与Ks相对应,则称F是R是的外码(Foreign Key)。并称基本关系R为参照关系 (Referencing Relation),基本关系S为被参照关系(Referenced Relation)或目标关系(Target Relation)。关系R和S不一定是不同的关系。

    • 在例3–中,学生关系的”学院号”与学院关系的主码”学院号”相对应,所以,”学院 号”属性是学生关系的外码,学生关系是参照关系,学院关系是被参照关系。
    • 在例4–中,选课关系”学号”和学生关系的主码”学号”相对应,选课关系”课程号” 和课程关系的主码”课程号”相对应,
      所以,”学号”属性和”课程号”属性是选课关系的外码,选课关系是参照关系,学生关 系和课程关系都是被参照关系。
    • 在例5–中,学生关系的主码名是”学号”,外码名是” 班长学号”。但在实际应用中,为了便于识别,当外码与相应的主码属于不同的关系时,往往 取相同的名字。 参照完整性规则就是定义外码与主码之间的引用规则。

    规则2–参照完整性规则 若属性(或属性组) F 是基本关系R 的外码,它与基本关系S 的主码Ks 相对应(基本关系R 和S 不一定是不同的关系),则对于R 中每个元组在F上的值必须为
    • 或者取空值(F 的每个属性值均为空值);
    • 或者等于S 中某个元组的主码值。

    在例3–中,学生关系每个元组的”学院号”属性只能取下面两类值: (1)空值,表示尚未给该学生分配学院;
    (2)非空值,被参照关系”学院号”中一定存在一个元组,它的主码值等于该参照关系” 学院号”中的外码值。

    3. 用户定义完整性(User-defined Integrity)

    用户定义的完整性是针对某一具体关系数据库的约束条件,使某一具体应用涉及数据必须满 足语义要求。
    用户定义的完整性数据也称为域完整性或语义完整性,通过这些规则限制数据库只接受符合 完整性约束条件的数据值,不接受违反约束条件的数据,从而保证数据库的中数据的有效性和可 靠性。
    按应用语义,属性数据有:
    (1)类型与长度限制。
    (2)取值范围限制。
    如学生关系中”性别”数据只能是男或女,选课关系中”成绩”数据为1到100之间,等等。

    在这里插入图片描述

    关系代数是一种抽象的查询语言,它用对关系的运算来表达查询。关系代数是施加于关系上 的一组集合代数运算,关系代数的运算对象是关系,运算结果也是关系。

    关系代数中的操作可以分为两类:

    (1)传统的集合运算,如并、交、差、笛卡儿积。这类运算将关系看成元组的集合,运算时 从行的角度进行。
    (2)专门的关系运算,如选择、投影、连接等。这些运算不仅涉及行而且也涉及到列。

    关系代数使用的运算符:

    (1)传统的集合操作: (并)、-(差)、 (交)、 (笛卡儿积)。 (2)专门的关系操作: (选择)、 (投影)、 (连接)、÷(除)。 (3)比较运算符:>(大于)、≥(大于等于)、<(小于)、≤(小于等于)、=(等于)、≠(不等于)。
    (4)逻辑运算符: (与)、 (或)、 (非)。

    在这里插入图片描述

    第二部分会在以后的章节详细介绍

    展开全文
  • 31_多维列表_二维列表

    2020-08-06 17:03:27
    二维列表可以帮助我们存储二维、表格的数据。例如下的数据: 姓名 年龄 薪资 城市 onepis 18 30000 北京 twopis 19 20000 上海 threepis 20 10000 深圳 源码: In [1]: a=[ ...: ["onepis",18,...
  • (转)Powershell 创建二维数组

    千次阅读 2019-09-26 15:05:17
    PowerShell在函数中返回二维数组,之所以要写这篇文章,是因为有一个小陷阱,需要一个小窍门去规避。 第一个例子:伪二维数组 1 2 3 4 5 6 7 8 9 10 11 ...
  • 二维数据,是一维数据的组合形式,由多个一维数据组合形成 多维数据,由一维数据或者二维数据在新维度上形成的 高维数据,仅利用最基本的二元关系展示数据间的复杂结构 数据的操作周期 存储,在文件中的表现形式...
  • 基于SolidWorks讨论了三维模型在转化为二维工程图后的标准化问题。针对滚动轴承和齿轮的标准化表达,提出了基于配置技术的解决方法;并对剪裁视图在图纸标准化中的作用做了举例说明。所提方法已在企业中得到应用,且...
  • 本文实例讲述了Python实现二维数组按照某行或列排序的方法。分享给大家供大家参考,具体如下:lexsort支持对数组按指定行或列的顺序排序;是间接排序,lexsort不修改原数组,返回索引。(对应lexsort 一维数组的是...
  • 二维离散余弦变换(2D-DCT)

    千次阅读 2020-12-24 09:41:01
    图像处理中常用的正交变换除了傅里叶变换以外,还有一些其它常用的正交变换,其中离散余弦变换DCT就是一种,这是JPEG图像压缩算法里的核心算法,这里我们也主要讲解JPEG压缩算法里所使用8*8矩阵的二维离散余弦正变换...
  • 需求:二维矩阵用颜色图像显示;并且将对应的colorbar放置在图像的下面,并且要为"colorbar加标题"!A = zeros(1000,1000);% 假设有这样的一个1000x1000,数值分为2层的矩阵:for row = 1:1000for col = 1:1000if ...
  • c语言中二维数组哪个是行,哪个是列二维数组的第一个参数是行,第二个参数是列。二维数组定义的一般形式是: 类型说明符 数组名[常量表达式1][常量表达式2],其中常量表达式1表示第一维下标的长度,常量表达式2 表示...
  • Matlab二维、三维作图

    千次阅读 多人点赞 2019-01-23 08:19:05
    二维作图命令 MATLAB 中最常用也是最基本二维作图命令为plot, plot函数针对向量或矩阵的列来绘制曲线的. 调用plot函数的常用格式有以下几种 • plot(x): 当x为一向量时, 以x元素的值为纵坐标, x的序号为横坐标值...
  • 一维数组及其二维数组的表示

    千次阅读 2018-11-03 12:12:49
    一维数组:是指由相同数据类型的数据 经过 在同一方向 有序排列,一维数组 结构单一,但却是二维数组、多维数组的集合 二维数组:一维数组的叠加,将一维数组看做是一个 “数据”,则将多个数据 依照一位数组 在 另...
  • 二维数组写入文件并读取

    千次阅读 2020-07-05 16:46:23
    二维数组的概述 二维数组其实就是一个元素为一维数组的数组; 格式1: 数据类型[ ][ ] 变量名=new 数据类型[m][n]; m表示这个二维数组有多少个数组 n表示每一个一维数组的元素个数 举例: int[ ][ ] arr=new int[3]...
  • Flink实时数仓:双流 join、维表 join

    千次阅读 2020-07-31 18:12:53
    这里我们主要介绍两大实时 ETL 场景:维表 join 和双流 join。 流 join维表 预加载维表(读取维度数据库,将数据全量的加载到内存) 热存储关联(Redis、HBase 这样的一些热存储中) 广播维表 Temporal table ...
  • 二维数组

    千次阅读 2016-07-18 16:17:31
    一、二维数组的定义当一维数组的元素类型也是一维数组的时候,便构成了“数组的数组”,即二维数组,二维数组的书写格式如下: 数据类型 数组名[常量表达式1][常量表达式2]; 例如: int a[4][10]; 说明:a数组...
  • 一维/二维数组的几种初始化方法

    千次阅读 2020-08-03 20:54:18
    数组的初始化方法 方式一:静态初始化 数据类型[] 数组名 = {元素1,元素2,元素3...};//必须在一个语句中完成,不能分开两个语句写 举例: 定义存储1,2,3,4,5整数的数组容器 int[] arr = {1,2,3,...
  • 最近在做图像去噪方面涉及到二维空间变换,在此总结 二维空间变换1.综述2.平移仿射变换举例Step 1: 导入要变换的图像Step 2: 定义空间变换Step 3: 创建TFORM结构体Step 4: 执行变换Step 5: 观察输出图像3.定义空间...
  • Matlab绘图-详细,全面(二维&三维等)

    万次阅读 多人点赞 2018-09-28 15:12:47
    plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。plot函数的应用格式 plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。 例51...
  • java实现,求二维数组的鞍点

    千次阅读 2015-02-06 17:11:00
    该实例用于求出二维数组中的鞍点。鞍点就是二维数组中的一个元素,同时满足在该列上的最大值,在该行上的最小值:如10 4 99 6 84 2 3中,鞍点就是1行1列上的6该实例在二维数组不存在鞍点的情况下,作出提示 ...
  • 二维数组的定义和引用

    千次阅读 2015-10-21 09:37:11
    1 二维数组的定义 面介绍的数组只有一个下标,称为一维数组,其数组元素也称为单下标变量。在实际问题中有很多量是二维的或多维的,因此C语言允许构造多维数组。多维数组元素有多个下标,以标识它在数组中的位置...
  • 运用二维数组完成杨辉三角

    千次阅读 2020-06-06 01:53:54
    简单举例来说,我们可以将一维数组的元素看作小瓶的口服液,那么一维数组就是装口服液的包装盒,而二维数组就是装着包装盒的箱子. 二维数组的定义格式: ​ 动态初始化: 数据类型 [] [] 数组名称 = new 数据类型 [m] [n]...
  • 二维数组初始化的形式有?

    千次阅读 2017-07-14 16:30:51
    二维数组初始化的形式有?
  • 使用EXCEL表建立事实表与维表

    千次阅读 2016-09-30 17:02:05
     事实表与维表的概述与举例1. 事实表事实表通常是记录了整件事件发生的信息。比如:销售表1 记录了销售事件 包含了销售时间,销售地区,产品名称, 及销售数量。2. 维表维表是围绕着事实表建立的.对事实表里的字段做...
  • 如何构建n*n二维矩阵并转变为一维一一对应矩阵 利用matlab构建双列矩阵 在数据处理过程中,我们经常会遇到将二维矩阵转变为一维矩阵。如图1所示。 向构建图1右侧的样子的矩阵,其原始结构就是左侧那种。 如果行列数...
  • 二维数组与指针的指针深度剖析

    千次阅读 2016-10-09 22:40:06
    二位数组,数组指针,指针数组,指针的指针。这四者之间的关系希望大家看完这篇文章后在也不会分不清楚了。...以前认为二位数组是一个二级指针,现在发现理解错了,二维数组名也是个一级指针,指向一个类型并且
  • C语言实现 输出二维数组的鞍点

    千次阅读 2019-11-19 19:40:28
    题目:编写程序,输出二维数组中行上为最大、列上为最小的元素(称为鞍点)及其位置(行、列下标)。如果不存在任何鞍点也输出相应信息。 首先我们来认识一下鞍点,简单来说,鞍点就是二维数组中行最大元素所在列该...
  • Oracle存储过程 一维数组 二维数组 (范例) /* 在PL/SQL中是没有数组(Array)概念的。但是如果程序员想用Array的话,就得变通一下,用TYPE 和Table of Record来代替多维数组,一样挺好用的。 emp_type 就好象一个...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 33,688
精华内容 13,475
热门标签
关键字:

二维表举例