精华内容
下载资源
问答
  • 根据这些性质可以得出求行列式的另一种方法,就是利用初等变化,其中过程中要有变号、K倍的计算,最后化简为三角矩阵,利用三角矩阵的性质直接求出行列式的值。 :克拉默法则、体积和线性变化 1.克拉默法则求...


    一:行列式简介

    1.定义:
    前提:方阵
    A可逆------------A的行列式非0
    在这里插入图片描述


    2.行列式求法:

    在这里插入图片描述
    即包含按行展开和按列展开:
    在这里插入图片描述
    在这里插入图片描述


    3.三角矩阵的行列式
    在这里插入图片描述


    二:行列式的性质

    在这里插入图片描述
    根据这些性质可以得出求行列式的另一种方法,就是利用初等行变化,其中过程中要有变号、K倍的计算,最后化简为三角矩阵,利用三角矩阵的性质直接求出行列式的值。


    三:克拉默法则、体积和线性变化

    1.克拉默法则求行列式
    在这里插入图片描述
    在这里插入图片描述
    注:该法则其实对手工计算没有什么意义,因为太复杂,当然像二阶/三阶的可以试试。


    2.求A的逆的另一种方法

    在这里插入图片描述
    在这里插入图片描述
    其中C11、C21等叫做代数余子式,是在余子式的基础上加个符号,上面公式的由来其实是克拉默法则推导来的,书籍P178。


    3.体积和面积
    在这里插入图片描述

    注:不是很全,有些东西了解就好,其实很多都用不到。


    参考书籍:线性代数及其应用(原书第5版)
    书籍下载:https://download.csdn.net/download/qq_37534947/13115301

    展开全文
  • 文章目录说明第 1 章 行列式1.1 第一车砖——行列式长什么样1.2 第车砖——行列式的本质1.3 第三车砖——行列式的基本计算方法... 三行三列行列式的计算3. 大于三行三列行列式的计算1.4 第四车砖——行列式的五条...

    说明

    阅读清华大学出版社-潘鑫(著)-《考研数学三部曲之大话线性代数》笔记。

    第 1 章 行列式

    1.1 第一车砖——行列式长什么样

    1. 双竖线
    2. 行数 = 列数

    1.2 第二车砖——行列式的本质

    行列式的本质是一个数。

    1.3 第三车砖——行列式的基本计算方法

    1.3.1 特殊行列式的计算
    1. 上三角行列式的计算

    对角线:行列式中从左上到右下的那条斜线。
    上三角行列式:对角线下侧的所有数均为 0 的行列式。
    上三角行列式的计算方法:直接将对角线上的数相乘即可。

    2. 下三角行列式的计算

    下三角行列式:对角线上侧的所有数均为 0 的行列式。
    下三角行列式的计算方法:直接将对角线上的数相乘即可。

    3. 对角行列式的计算

    对角行列式指:除了对角线上的数以外的所有数都为 0 的行列式。
    对角行列式的计算方法:直接将对角线上的数相乘即可。

    4. 反对角行列式的计算

    反对角线:行列式中从右上到左下的斜线。
    反对角行列式:除了范对角线上的数以外的所有数都为 0 的行列式。

    0a1...an0=(1)n(n1)2a1a2...an \begin{vmatrix} {\huge 0} & & a_1\\ & ...& \\ a_n & & {\huge 0} \end{vmatrix} = (-1)^\frac{n(n-1)}{2}a_1a_2...a_n

    1.3.2 一般行列式的计算
    1. 两行两列行列式的计算

    abcd=adbc \begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc

    2. 三行三列行列式的计算

    abcdefghi=aei+bfg+cdhcegafhbdi \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}=aei+bfg + cdh-ceg-afh-bdi

    1. 对角线做一项,去掉对角线
    2. 剩余六个数中找到不同行也不同列的三个数字相乘做一项
      bcdfgh \begin{vmatrix} & b & c \\ d & & f \\ g & h & \end{vmatrix}
    3. 反对角线做一项,去掉反对角线
    4. 剩余六个数中找到不同行也不同列的三个数字相乘做一项
      abdfhi \begin{vmatrix} a & b & \\ d & & f \\ & h & i \end{vmatrix}
    3. 大于三行三列行列式的计算

    计算方法:行列式展开法

    1. 尽量选取有 0 的行或列
    2. 特殊行列式用一般的方法即可计算

    1.4 第四车砖——行列式的五条性质

    1.4.1 性质1

    一个行列式的转置等于他本身。
    AT=A A^T=A

    1.4.2 性质2

    互换两行,行列式变号。
    abcd=cdab \begin{vmatrix} a & b \\ c & d \end{vmatrix}=-\begin{vmatrix} c &d \\ a & b \end{vmatrix}
    推论:如果某行列式有两行相同,则这个行列式的值一定为0.

    1.4.3 性质3

    如果行列式的某一行的数含有公因子,那么可将此公因子提到行列式之外。
    xaxbcd=xabcd=abxcxd \begin{vmatrix} xa & xb \\ c & d \end{vmatrix} = x\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ xc & xd \end{vmatrix}
    推论:如果行列式有两行对应成比例,则行列式的值为 0 。

    1.4.4 性质4

    行列式的某一行中的每个数都可以写成两个数相加的形式,因此一个行列式可以化为两个行列式相加的形式。
    123456789=123134789+123322789 \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 7 & 8 &9 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 7 & 8 &9 \end{vmatrix}

    1.4.5 性质5

    把行列式的每一行乘以 k (k 为任意常数)后,加到另外一行,行列式的值不变。
    abcd=a+cxb+dxcd=abcd+cxdxcd \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a+cx &b+dx \\ c & d \end{vmatrix} = \begin{vmatrix} a &b \\ c & d \end{vmatrix} + \begin{vmatrix} cx & dx \\ c & d \end{vmatrix}

    4.5 第五车砖——克拉默法则

    克拉默法是解方程组用的,且只能用于解特定的方程组。

    1. 方程组中的每一个方程形式如下:
      a1x1+a2x2+a3x3+...+anxn=b a_1x_1+a_2x_2+a_3x_3+...+a_nx_n = b
    2. 方程组中包含的方程个数等于未知数的个数。
    3. 方程组系数行列式 D ≠ 0
      eg:
      {2x1+x25x3+x4=8x13x26x4=92x2x3+2x4=5x1+4x27x3+6x4=0\begin{cases} 2x_1+x_2-5x_3+x_4=8\\ x_1-3x_2-6x_4=9\\ 2x_2-x_3+2x_4=-5\\ x_1+4x_2-7x_3+6x_4=0 \end{cases}
      解:
      D=2151130602122151=27 D= \begin{vmatrix} 2&1 & -5 & 1 \\ 1&-3 & 0 & -6 \\ 0&2 & -1 & 2 \\ 2&1 & -5 & 1 \\ \end{vmatrix}=27
      用方程右侧的常数分别代替系数行列式 D 的第一列、第二列、第三列、…、第 n 列:
      D1=8151930652120151=81 D_1= \begin{vmatrix} 8&1 & -5 & 1 \\ 9&-3 & 0 & -6 \\ -5&2 & -1 & 2 \\ 0&1 & -5 & 1 \\ \end{vmatrix}=81
      D2=2851190605122051=108 D_2= \begin{vmatrix} 2&8 & -5 & 1 \\ 1&9 & 0 & -6 \\ 0&-5 & -1 & 2 \\ 2&0 & -5 & 1 \\ \end{vmatrix}=-108
      D3=2181139602522101=27 D_3= \begin{vmatrix} 2&1 & 8 & 1 \\ 1&-3 & 9 & -6 \\ 0&2 & -5 & 2 \\ 2&1 & 0 & 1 \\ \end{vmatrix}=-27
      D3=2158130902152150=27 D_3= \begin{vmatrix} 2&1 & -5 & 8 \\ 1&-3 & 0 & 9 \\ 0&2 & -1 & -5\\ 2&1 & -5 & 0 \\ \end{vmatrix}=27

      {x1=D1D=3x2=D2D=4x3=D3D=1x4=D4D=1\begin{cases} x_1 =\frac{D_1}{D} = 3\\ x_2=\frac{D_2}{D} = -4\\ x_3=\frac{D_3}{D} = -1\\ x_4=\frac{D_4}{D} = 1\\ \end{cases}

    1.6 第六车砖——矩阵

    行数和列数可以相等,可以不相等,由“()”“[]”包围。

    1.7 第七车砖——矩阵的运算

    1.7.1 矩阵与矩阵相加

    只有行数和列数相等的矩阵才可以相加。
    对应位置的两个数字相加。

    [abcd]+[efgh]=[a+eb+fc+gd+h] \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] +\left[ \begin{matrix} e &f \\ g & h \end{matrix} \right] = \left[ \begin{matrix} a+e & b+f \\ c+g & d+h \end{matrix} \right]

    1.7.2 数字与矩阵相乘

    数字和矩阵中的每一个元素相乘。

    1.7.3 矩阵与矩阵相乘

    Aa×b×Bb×c=Ca×cA_{a×b}×B_{b×c}= C_{a×c}
    eg:
    [a11a12a21a22]×[b11b12b21b22]=[a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22] \left[ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right] × \left[ \begin{matrix} b_{11} & b_{12} \\ b_{21} &b_{22} \end{matrix} \right] = \left[ \begin{matrix} a_{11}b_{11} +a_{12}b_{21} &a_{11}b_{12} +a_{12}b_{22} \\ a_{21}b_{11} +a_{22}b_{21} &a_{21}b_{12} +a_{22}b_{22} \end{matrix} \right]

    1.8 第八车砖——矩阵的转置

    行列互换即可。

    1.9 第九车转——方阵、对角阵、单位阵、逆矩阵
    1.9.1 方阵

    行数等于列数的矩阵。

    1.9.2 对角阵

    除对角线外,其他位置元素均为 0 的方阵。

    1.9.3 单位阵

    对角线上均为 1 的对角阵。

    1.9.4 逆矩阵

    AB=BA=EAB=BA=E
    A1=1A×AA^{-1}=\frac{1}{|A|}×A^*

    1.10 第十车砖——矩阵的向量表示法

    A=(147258369) A=\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}

    1. 列向量表示法 A=(αβγ)A=\begin{pmatrix} \vec{\alpha }& \vec{\beta }& \vec{\gamma } \end{pmatrix}

    α=(123),β=(456),γ==(789) \vec{\alpha }= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{\beta }= \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \vec{\gamma }= = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}

    1. 行向量表示法 A=(αβγ)A=\begin{pmatrix} \vec{\alpha }\\ \vec{\beta }\\ \vec{\gamma } \end{pmatrix}

    α=(147),β=(258),γ==(369) \vec{\alpha }= \begin{pmatrix} 1 & 4 & 7 \end{pmatrix}, \vec{\beta }= \begin{pmatrix} 2 &5 & 8 \end{pmatrix}, \vec{\gamma }= = \begin{pmatrix} 3 & 6 & 9 \end{pmatrix}

    1.11 房间 101——关于代数余子式的三句话

    • 改变行列式的一行,行列式的值或许改变,但新行列式中该行每个元素的代数余子式与原行列式中改行每个元素的代数余子式对应相等。
    • 一个行列式某行的每个数分别乘以自己的代数余子式后相加,就是行列式的值;一个行列式某行的每个数分别乘以其他任意一行与其同列的数的代数余子式后相加,等于 0.
    • 对于任意 n 阶行列式来说:X1Am1+X2Am2+...+XnAmnX_1A_{m1}+X_2A_{m2}+...+X_nA_{mn} 的值就是把元行列式的第 m 行变为 X1,X2,...,XnX_1,X_2,...,X_n 后的新行列式的值。
      ps:给的加法式子中的项数必须与行列式的阶数相同才行,否则的话你需要补 0 。

    1.12 房间 102——克拉默法则的推论

    什么是方程组

    1. 方程组中的每一个方程的形式都是:a1x1+a2x2+...+anxn=ba1,a2,...,an,ba_1x_1+a_2x_2+...+a_nx_n = b (a_1,a_2,...,a_n,b 为任意常数)
    2. 方程组包含的方程个数等于未知数个数。
    什么是齐次方程和非齐次方程

    若方程组中所有方程的等式右侧的常数全为0,则该方程组叫做齐次方程组,否则,该方程组叫做非齐次方程组。
    表示为:AX=0AX=β A\vec{X }=\vec{0 } \\ A\vec{X }=\vec{\beta }

    关于齐次与非齐次方程组的充要条件
    齐次方程组
    1. 系数行列式 D=0D = 0 \Leftrightarrow 该齐次方程组有无穷多组解(非唯一解)(非零解)
    2. 系数行列式 D0D≠0 \Leftrightarrow 该齐次方程组有唯一零解
    非齐次方程组
    1. 系数行列式 D=0D = 0 \Leftrightarrow 该非齐次方程组有无穷多组解(非唯一解)或无解
    2. 系数行列式 D0D≠0 \Leftrightarrow 该非齐次方程组有唯一解
    展开全文
  • 行列式计算以及性质\color{red}\textbf{行列式计算以及性质}行列式计算以及性质 行列式的计算除了直接用定义以外,可以使用如下性质进行计算的简化。 1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要...

    马上要开始一大波夏令营面试了,前不久thu叉院的一面问到了概率分布,没有准备好,用了一周左右的时间断断续续的复习了一下线性代数,后面再概率论吧,主要总结了一些基础知识,概念和性质。

    一、行列式-计算方法与重要性质

    行列式定义\color{red}\textbf{行列式定义}
    行列式的定义依赖于逆序数与全排列,需要注意的是,行列式只是方阵的概念。
    在这里插入图片描述


    行列式计算以及性质\color{red}\textbf{行列式计算以及性质}
    行列式的计算除了直接用定义以外,可以使用如下性质进行计算的简化。

    1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型
    2、交换行列式中的两行(列),行列式变号(交换)
    3、行列式中某行(列)的公因子,可以提出放到行列式之外。(倍乘)(注:矩阵是全部元素都乘,都提取)
    4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。(倍加)
    5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两行(列)成比例,行列式为0。
    6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0


    行列式重要公式\color{red}\textbf{行列式重要公式}

    在这里插入图片描述
    拉普拉斯展开式中,m,n分别是A,B矩阵的阶数。


    方阵的行列式\color{red}\textbf{方阵的行列式}

    • AT=A|A^T|=|A|
    • kA=knA|kA|=k^n|A|
    • AB=AB|AB|=|A||B|
    • A=An1|A^*|=|A|^{n-1},A是n阶矩阵。
    • A1=A1|A|^{-1}=|A^{-1}|
    • A的行列数是A所有特征值的乘积。

    相关博文:

    https://blog.csdn.net/xuejianbest/article/details/85051344utm_medium=distribute.pc_relevant.none-task-blog-baidujs-2
    https://blog.csdn.net/xuejianbest/article/details/85050784?ops_request_misc=&request_id=&biz_id=102&utm_term=%E8%A1%8C%E5%88%97%E5%BC%8F&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-6-85050784
    https://blog.csdn.net/wuxintdrh/article/details/98424632?ops_request_misc=&request_id=&biz_id=102&utm_term=%E8%A1%8C%E5%88%97%E5%BC%8F%E7%9A%84%E4%B8%BB%E8%A6%81%E5%85%AC%E5%BC%8F&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-98424632

    二、矩阵的秩,特征值与特征多项式

    矩阵的特征值刻画矩阵的奇异性、反映矩阵所有对角元素的结构、刻画矩阵的正定性。


    \color{red}\textbf{秩}
    一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

    如果A中,存在一个i阶子式不为0,且所有i+1阶子式对应的行列式值为0,那么r(A)=i(所谓的i阶子式即在矩阵中人去一个i*i的方阵)

    求矩阵的秩时,除了利用定义法和上面的观察法,主要是通过性质,经过初等变换,矩阵秩不变。若A可逆,则r(AB)=r(BA)=r(B)


    特征值与特征向量\color{red}\textbf{特征值与特征向量}
    在这里插入图片描述
    物理意义:我们可以将矩阵看成是一个力的混合体,但需要注意的是,这个力的混合体中各个力是相互独立的!即特征向量之间线性无关,是无法做力的合成(这里只是假设其无法合成,有更好的解释以后会补充)的。其中力的个数为矩阵的秩,力的大小为特征值的大小,力的方向即为特征向量的方向

    详细解释见深度理解矩阵的奇异值,特征值

    特征多项式\color{red}\textbf{特征多项式}
    A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。
    在这里插入图片描述


    特征值相关的重要性质\color{red}\textbf{特征值相关的重要性质}

    • AA是n阶矩阵,λ1,..,λn\lambda_1,..,\lambda_n是矩阵AA的特征值,那么我们有如下两条性质1:λi=aii2:λi=A1:\sum\lambda_i=\sum a_{ii},2:\prod\lambda_i=|A|
    • 不同特征值对应的特征向量线性无关。
    • 实对阵矩阵AA的不同特征值λi\lambda_i所对应的特征向量αi\alpha_i必然正交。实对称矩阵A的特征值都是实数,特征向量都是实向量。
    • 下三角矩阵,上三角矩阵,对角矩阵的特征值就是矩阵主对角线上的元素。

    三、逆,奇异,正交,伴随,实对称,正定矩阵

    理解矩阵\color{red}\textbf{理解矩阵}
    一片很好的文章,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。

    简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。这就是线性代数中所说的坐标变换

    是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。(chensh,说你呢!)


    矩阵的逆以及计算\color{red}\textbf{矩阵的逆以及计算}

    AAnn阶矩阵,如果存在nn阶矩阵BB,使得AB=BA=E()AB=BA=E(单位矩阵)成立,那么称AA可逆矩阵或者非奇异矩阵

    求出逆矩阵的3种手算方法:

    • 待定系数法:对矩阵AA,直接设一个全为未知数的矩阵BB,使得AB=EAB=E,解方程得到BB的所有值。
    • 伴随矩阵法、A的伴随矩阵是一个n×n的矩阵(记作adj(A)),使得其第i 行第j 列的元素是A关于第j 行第i 列的代数余子式。
    • 初等变换法(初等行变化用的比较多),将矩阵AA,增广为AEA|E的形式,通过初等变化将其变为EA1EA^{-1}

    这三种方法百度百科讲的无比清楚


    奇异矩阵和非奇异矩阵\color{red}\textbf{奇异矩阵和非奇异矩阵}
    以下内容来自于这里

    首先需要说明的值奇异矩阵和非奇异矩阵都是针对方阵而言的。奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵

    非奇异矩阵的英文是nonsingular matrices,从对应的英文单词nonsingular上来讲,singular有一个含义是单数的,那么nonsingular是非单数,与非奇异矩阵的性质对上了,即有矩阵A,矩阵B,满足条件:AB=BA=I,I是一个单元矩阵,那么矩阵A和矩阵B均为非奇异矩阵。非奇异,即A不是单个的,是成对的。

    奇异矩阵的判定方法:

    行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;

    非奇异矩阵的判定方法:

    一个矩阵非奇异当且仅当它的行列式不为零。
    一个矩阵非奇异当且仅当它代表的线性变换是个自同构。
    一个矩阵非奇异当且仅当它的秩为n。
    (R(A)<n则行列式为0) 可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。**


    正交矩阵及其性质\color{red}\textbf{正交矩阵及其性质}
    如果:AAT=EAA^T=E(E为单位矩阵,ATA^T表示“矩阵A的转置矩阵”。)或ATA=EA^TA=E,则nn阶实矩阵AA称为正交矩阵。

    正交矩阵的性质:

    1)ATA^T是正交矩阵
    2)AA各行是单位向量且两两正交
    3)AA各列是单位向量且两两正交
    4)A=1|A|=1或-1


    实对称矩阵\color{red}\textbf{实对称矩阵}

    如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。
    主要性质:
    1.实对称矩阵A的不同特征值对应的特征向量是正交的。
    2.实对称矩阵A的特征值都是实数,特征向量都是实向量。
    3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
    4.若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)至多为n-k,其中E为单位矩阵。


    正定,半正定矩阵定义与重要性质\color{red}\textbf{正定,半正定矩阵定义与重要性质}

    在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。

    (1)广义定义:设MMnn方阵,如果对任何非零向量zz,都有zTMz>0\mathbf{z^TMz> 0},其中zTz^T 表示zz的转置,就称MM为正定矩阵。

    例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

    (2)狭义定义:一个nn阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz>0z^TMz> 0。其中zTz^T表示zz的转置。


    重要性质:

    正定矩阵有以下性质 :
    (1)正定矩阵的行列式恒为正;
    (2)实对称矩阵A正定当且仅当A与单位矩阵合同;
    (3)若A是正定矩阵,则A的逆矩阵也是正定矩阵;
    (4)两个正定矩阵的和是正定矩阵;
    (5)正实数与正定矩阵的乘积是正定矩阵。


    等价命题:

    对于n阶实对称矩阵A,下列条件是等价的:
    (1)A是正定矩阵;
    (2)A的一切顺序主子式均为正;
    (3)A的一切主子式均为正;
    (4)A的特征值均为正;
    (5)存在实可逆矩阵C,使A=C′C;
    (6)存在秩为n的m×n实矩阵B,使A=B′B;
    (7)存在主对角线元素全为正的实三角矩阵R,使A=R′R [3] 。


    判定方法:

    根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:
    (1)求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
    (2)计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

    四、向量组与线性相关(无关)

    线性无关的定义\color{red}\textbf{线性无关的定义}
    在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 (linearly independent),反之称为线性相关(linearly dependent)。

    线性相关(Linear dependent)与线性无关(Linear independent)对于理解子空间的基,子空间的维数,以及矩阵的秩等等是重要的.

    数学定义:

    如果线性空间X中的向量组x1,x2,...,xj\mathbf{x_1,x_2,...,x_j}存在如下线性关系:

    k1x1+k2x2+,...,+kjxj=0,\mathbf{k_1x_1+k_2x_2+,...,+k_jx_j=0, }

    其中k1,...,kjk_1,...,k_j不全为零的实数.则称x1,x2,...,xj\mathbf{x_1,x_2,...,x_j}线性相关.如果只有当k1,...,kjk_1,...,k_j全为零时才满足上式,则称x1,x2,...,xj\mathbf{x_1,x_2,...,x_j}线性无关.


    向量组的秩\color{red}\textbf{向量组的秩}
    通俗的说,就是把这一组向量中的垃圾向量踢出后剩下的高品质向量的个数,假设这一组有5个向量,踢出两个垃圾,还剩3个。

    那么这个向量组的秩就是3。那什么是垃圾向量呢?就是能被别人线性表示的向量。比如说向量α1能被α2和α3线性表示,也就是它的工作能被别人取代。那么α1就是垃圾向量!

    正式定义:

    一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩;若向量组的向量都是0向量,则规定其秩为0.向量组α1,α2,···,αs的秩记为R{α1,α2,···,αs}或rank{α1,α2,···,αs}。

    极大线性无关组:

    极大线性无关组(maximal linearly independent system)是线性空间的基对向量集的推广。设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。V中子集的极大线性无关组不是惟一的,例如,V的基都是V的极大线性无关组。它们所含的向量个数(基数)相同。V的子集S的极大线性无关组所含向量的个数(基数),称为S的秩。只含零向量的子集的秩是零。V的任一子集都与它的极大线性无关组等价。特别地,当S等于V且V是有限维线性空间时,S的秩就是V的维数。–百度百科

    五、线性方程组的解,与秩的关系

    先给出两个写的很好的blog,12,然后结合他俩&书总结一下。

    线性方程组什么时候无解?多个解?唯一解?\color{red}\textbf{线性方程组什么时候无解?多个解?唯一解?}
    线非齐次线性方程组
    非齐次线性方程组:化简后的有效方程组个数小于未知数个数,有多个解
    非齐次线性方程组:化简后的有效方程组个数等于未知数个数,有唯一解
    非齐次线性方程组:化简后的有效方程组出现(0=d)型式不兼容方程,则无解 。

    下面从左到右依次是原方程,增广矩阵(非齐次线性方程组,就是方程组的等式右边不为0的方程组,系数加上方程等式右边的矩阵,叫做增广矩阵),以及化简后的增广矩阵,化简后的方程组。
    在这里插入图片描述
    这样,x2可以通过x3来表示,x1也可以通过x3来表示,这样x3就叫做自由变量,x3可以取任意值。所以x1,x2,x3就有无穷多个解。即化简后的有效方程组个数,小于未知数个数。这样的方程组有无穷多个解


    线齐次线性方程组

    齐次线性方程组,就是方程组的等式右边全部是0的方程组,只有系数矩阵,不需要增广矩阵,所以不会出现{0=d}形式的不相容方程。所以不会出现无解的情况,那么显然,齐次线性方程组的秩与其系数矩阵的秩肯定是相等(因为增广了一列0,不影响秩的,也就是说它肯定有解。这个也好理解,零向量肯定是他的解嘛。关键问题在于,它什么时候会有非零解

    对于Ax=0的齐次线性方程组,列出其系数矩阵(不需要增广矩阵),使用高斯消元法化简,化为阶梯形矩阵,化简后,判断有效方程组个数是否小于未知数个数,

    如果有效方程组个数小于未知数个数,叫做有非零解(多个解)
    如果等于,叫做只有零解(唯一解)


    通过矩阵的秩判断线性方程组的解\color{red}\textbf{通过矩阵的秩判断线性方程组的解}
    线性方程组什么时候无解,有多个解,唯一解?

    对于非齐次线性方程组,用矩阵的秩r(A)来判断

    对线性方程组进行初等变换(高斯消元法),化为最简型(阶梯形)矩阵,

    考查系数矩阵r(A)r(A),增广矩阵r(A,b)r(A,b),以及方程组未知数个数nn

    • 如果系数矩阵的秩r(A)r(A)小于增广矩阵的秩r(A,b)r(A,b)r(A)<r(A,b)r(A)<r(A,b),那么方程组无解r(A)<r(A,b)r(A)<r(A,b),那么方程组无解,即bb不能由AA的列向量线性表出;
    • 如果系统矩阵的秩小于方程组未知数个数,r(A)=r(A,b)<nr(A)=r(A,b)<n,那么方程组有多个解r(A)=r(A,b)<nr(A)=r(A,b)<n,那么方程组有多个解。
    • 如果系统矩阵的秩等于方程组未知数个数,r(A)=r(A,b)=nr(A)=r(A,b)=n,那么方程组有唯一解r(A)=r(A,b)=nr(A)=r(A,b)=n,那么方程组有唯一解。

    对于齐次线性方程组,用行列式的值 detA来判断。

    • 不存在无解的情况

    • r(A)<nr(A)<n时,等价于AA的列向量线性相关,那么方程的数目小于未知数的数目,一定有非零解。

    • r(A)=nr(A)=n,即A0|A|≠0AA满秩,则只有零解(只有唯一解)

    • 设齐次方程组系数矩阵的秩r(A)=r<nr(A)=r<n,则Ax=0Ax=0的基础解系由nr(A)n-r(A)个线性无关的解向量所构成。


    线性方程组的求解\color{red}\textbf{线性方程组的求解}
    写出系数矩阵 -> 行初等变换为行简化矩阵 -> 求基础解系 -> 写出通解

    这个例子还不错,就是增广矩阵不断的进行初等变换,化为行最简矩阵(在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。)
    在这里插入图片描述
    然后每个方程中的第一个未知量通常称为主变量,其余的未知量称之为自由变量。对自由变量x1,...,xkx_1,...,x_k依次取1,其余取0时求得的解向量即方程的一个解向量,有多少个自由变量,就能求出多少解向量。总结一下:

    在这里插入图片描述

    对非齐次线性方程组而言:
    在这里插入图片描述

    六、二次型的基本内容和重要结论

    二次型的定义\color{red}\textbf{二次型的定义}

    二次型(quadratic-form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。二次型理论与域的特征有关。

    二次型是n个变量上的二次齐次多项式。下面给出一个、两个、和三个变量的二次形式:(注意齐次这个定义很重要,每一项都是二次的,而不是二次函数可以有一次项,可以有常数项。)

    在这里插入图片描述
    将上面的多项式写成矩阵的形式:
    f(x1,x2,...,xi)=xTAxf(x_1,x_2,...,x_i)=\mathbf{x^TAx}
    其中A=[aij]\mathbf{A}=[a_{ij}]AT=A\mathbf{A}^T=\mathbf{A}是一个对称矩阵,那么称AA二次型的矩阵,秩r(A)r(A)称为二次型的秩,记为r(f)r(f)


    标准形,规范形,正定二次型\color{red}\textbf{标准形,规范形,正定二次型}

    1. 标准形:如果二次型中只含有变量的平方项
    2. 规范形:在标准形中,各平方项的系数为1,-1,0。
    3. 正负惯性指数:在二次型xTAxx^TAx的标准形中,正平方项的个数称为二次型的正惯性指数,负平方项的系数称为二次型的负惯性指数。
    4. 正定二次型:对二次型xTAxx^TAx,如果对任何x0x\neq0,恒友xTAx>0x^TAx>0,则称二次型是正定二次型,且实对称矩阵AA正定矩阵
    展开全文
  • 线性代数mooc课(

    2017-04-06 12:22:59
    行列式计算。 余子式 和 代数余子式 矩阵A, 余子式Mij就是去掉了 i...行列式计算, 一般二阶行列式都是直接算的。 四五阶的就先通过向量加减乘/转置 等方法让某一尽可能多的0, 再展开计算。 这里

    行列式的计算。


    余子式 和 代数余子式

    矩阵A, 余子式Mij就是去掉了 i行和j列之后变小了的矩阵M的行列式。

    代数余子式就是考虑上符号而已, 在 Mij 的基础上,(i+j)是奇数就是负号。


    首先行列式有几个性质:

    交换某两行/列,det 符号改变

    转置不改变det的值;

    行向量加加减减不改变det的值;

    列向量加加减减不改变det的值;

    某行或者某列都乘以一个系数k,行列式值也变k倍;

    行列式的分拆公式 矩阵A的某一行可以分解为  两个向量p、q之和。 那么det(A) = det(B)+ det(C),  其中B、C只有一行是不同的,分别为p,q。

    行列式的展开,沿着某一排展开  代数余子式Aij*aij的和。


    行列式的计算, 一般二阶三阶行列式都是直接算的。

    四五阶的就先通过行向量加减乘/转置 等方法让某一行尽可能多的0, 再展开计算。


    这里踩到了几个坑。

    A = [ a1   a2   a3 .... ]  这里的ai是列向量。  A‘ 表示转置,此时ai就变成了行向量。

    在行向量加加减减的时候,注意新向量放置的位置!!

    ai - aj 的结果应当放回第 i 行。如果放在第 j 行, 就相当于进行了一次行互换,det的符号被改变了。


    为了尽可能让某一行多一些0, 经常需要 放缩某行再加加减减,

    例如  ai - k*aj 的情况, 这种情况是不改变 det的值的,根据行列式的分拆公式, 拆出来的k*aj 对应的新矩阵C,det是0,因为有两行是成比例k的.

    但是如果是 k*ai - aj,  这个时候就跪了,因为行列式的值被放缩了 k 倍。。  就是这细节导致的我好几题一直觉得是答案错了 

    展开全文
  • 高性能并行计算

    2011-09-20 20:04:57
    3.3.1 Cholesky 分解格式的并行计算. . . . . . . . . . . . .41 3.3.2 双曲变换Cholesky 分解. . . . . . . . . . . . . . . . .42 3.3.3 修正的双曲变换Cholesky 分解. . . . . . . . . . . . . .44 3.4 对...
  • 考研线性代数大纲.pdf

    2020-04-27 21:05:50
    会应用行列式的性质和行列式()展开定理计算行列式. 、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的 转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 ...
  •  1.2.1 行列式   1.2.2 n阶行列式的定义   1.3 行列式的性质   1.3.1 行列式的另外表示及行列式的转置   1.3.2 行列式的性质   1.4 行列式按一()展开   1.4.1 余子式、代数...
  • 4 行列式的展开.余因子 5 子式、用子式表示余因子 6 行列式的实际计算 7 克拉默法则 8 任意阶的子式,拉普拉斯定理 9 关于行列式之间的线性关系 第章 线性空间 10 引论 11 线性空间的定义 12 ...
  • 如何做到小于10显示位小数,大于10显示一位小数 如何根据数值的正负加上“+”“-”符号 120,000显示为12.0 121,999显示为12.2 自定义单元格格式将单元格中的数全部变成万元表示 有何办法实现将一张表中的数据由...
  • EXCEL函数公式集

    热门讨论 2010-03-16 03:26:38
    如何做到小于10显示位小数,大于10显示一位小数 如何根据数值的正负加上“+”“-”符号 120,000显示为12.0 121,999显示为12.2 自定义单元格格式将单元格中的数全部变成万元表示 有何办法实现将一张表中的数据由...
  • 017 计算满足一定条件的一、级教师工作量之差 58 018 汇总销售部和市场部迟到的人数 60 019 计算低值易耗品采购总金额 61 020 计算男性员工人数 63 021 统计购买铂金戒指的男性会员人数 64 022 汇总...
  • 2.7行列式计算 习题2 第3章线性方程组 3.1 Gauss消元法 3.2方程组与矩阵的秩 3.3向量空间和向量空间 3.4矩阵的秩和秩 3.5线性方程组解的结构 3.6例题 3.7结式与消去法 习题3 第4章矩阵的运算与相抵 4.1...
  • 2.4.6 MDETERM——计算数组的矩阵行列式的值 86 2.4.7 MINVERSE——计算数组的逆矩阵 87 2.4.8 MMULT——计算两个数组的矩阵乘积 88 2.4.9 MUNIT——返回指定维度的单位矩阵 89 2.4.10 RAND——返回0到1之间的...
  • excel的使用

    2012-11-25 17:06:01
    如果用得到,你还可以利用EXCEL来完成行列式、矩阵的各种计算,进行简单的积分运算,利用迭代求函数值(如x^2=x^7+4,可用迭代方法求x值),等等,凡是涉及计算方面的事,找EXCEL来帮忙,它一定会给你一个满意的答案...
  • 内容涉及Excel工作环境和基本操作、数据的输入和导入、数据整理和编辑、数据查询、分类汇总和合并计算等方面的使用技巧,以及数据透视表、模拟运算表、单变量求解工具和规划求解工具等数据分析工具的使用方法和技巧...
  • 第一参数为ROW时先行后取值,为COLUMN时先(不分大小写),第参数开始为引用区域。 函数名称:消除空值 函数功能与参数:消除空值函数。可以选择多行多,按先行后之方式返回值.两个参数,一为区域一为...
  • 行列奇偶选择】 可视化对当前工作表的进行快速的奇偶或奇偶快速选定操作。 【查找与替换】 增强型EXCEL内置查找与替换功能。可以按设置搜索任何字符串(包括*或?符以及公式中包含的某字符),也可以将...
  • 行列奇偶选择】 可视化对当前工作表的进行快速的奇偶或奇偶快速选定操作。 【查找与替换】 增强型EXCEL内置查找与替换功能。可以按设置搜索任何字符串(包括*或?符以及公式中包含的某字符),也可以将...
  • EXCEL集成工具箱V6.0

    2010-09-11 01:44:37
    行列奇偶选择】 可视化对当前工作表的进行快速的奇偶或奇偶快速选定操作。 【查找与替换】 增强型EXCEL内置查找与替换功能。可以按设置搜索任何字符串(包括*或?符以及公式中包含的某字符),也可以将...
  • 行列奇偶选择】 可视化对当前工作表的进行快速的奇偶或奇偶快速选定操作。 【查找与替换】 增强型EXCEL内置查找与替换功能。可以按设置搜索任何字符串(包括*或?符以及公式中包含的某字符),也可以将...
  • 行列奇偶选择】 可视化对当前工作表的进行快速的奇偶或奇偶快速选定操作。 【查找与替换】 增强型EXCEL内置查找与替换功能。可以按设置搜索任何字符串(包括*或?符以及公式中包含的某字符),也可以将...
  • word使用技巧大全

    热门讨论 2011-03-18 20:37:53
    () 更新目录的方法 2 、自动生成目录图片演示 2 4.用标题1,2,3分别去定义文中的每一章节 4 四、如何自动生成目录? 6 五、奇偶页显示不同内容 7 六、在页眉中显示章编号及章标题内容 7 七、修改页眉中的划线...
  • 修改高级表格支持库,解决插入/插入在未指定行号/号的情况下插入位置不正确的BUG。 7. 修改文本语音转换支持库,增加“机读文本.重新创建并初始化()”方法。 8. 修改应用接口支持库,增强“取快捷方式目标...
  • │ │ 技巧226 根据行列条件返回结果.xls │ │ 技巧227 返回引用的单元格地址.xls │ │ 技巧228 逆向查询数据.xls │ │ 技巧229 模糊查找数据.xls │ │ 技巧230 返回字符串中连续数值.xls │ │ 技巧231 ...
  • 实例105 输出维数组任一任一值 实例106 使用指针查找数列中的最大值和最小值 实例107 用指针数组构造字符串数组 实例108 将若干字符串按照字母顺序输出 实例109 用指向函数的指针比较大小 实例110 用...
  • 实例105 输出维数组任一任一值 实例106 使用指针查找数列中的最大值和最小值 实例107 用指针数组构造字符串数组 实例108 将若干字符串按照字母顺序输出 实例109 用指向函数的指针比较大小 实例110 用...
  • Linux 操作系统基础教程 清华大学信息学院计算机系 ...从网上下载的,但是我不推荐易用这种方法得到 Linux,因为仅仅核心就有几十个 Mbit 的 数据量,而一个完整的发行版本大概都是 1Gbit 左右的数据量...
  • 智能扫地机VHDL FPGA

    2012-07-12 19:02:40
    数码管:第一位表示键盘输入字,第二三位表示温度,第四位表示湿度。 操作:  输入、输出接口 键盘输入输出接口; 点阵板扫描、显示接口。 4、实现方案:  核心问题  如何设计地图设置方案,并且将...
  • Proteus仿真—40个单片机初学程序.

    热门讨论 2009-04-13 13:00:56
    9. 方法二(C语言源程序) #include void main(void) { while(1) { if(P1_4==0) { P1_0=0; } else { P1_0=1; } if(P1_5==0) { P1_1=0; } else { P1_1=1; } if(P1_6==0) { P1_2=0; } else { P1_2=1; } if(P1_7==0)...
  • 9.8.14 修正隔行插入功能,支持隔行或隔插入任意,支持复制标题. 9.8.15 新增GetOnlyValue()取唯一值、OutputSameTimes()取重复值等扩展函数. 9.8.16 窗体界面及子程序统一改为中文简体或中文繁体显示,...

空空如也

空空如也

1 2
收藏数 35
精华内容 14
关键字:

二行三列行列式计算方法