精华内容
下载资源
问答
  • 二进制和十进制转换

    万次阅读 多人点赞 2018-04-29 00:06:47
    一、十进制转换二进制 1.1 正整数转二进制 要点:除二取余,倒序排列,高位补零。 方法:将正的十进制数除以二,得到的商再除以二,依次类推直至商为0或1时为止,然后在旁边标出各步的余数,最后倒着写出来,...

    一、十进制转换成二进制

    1.1 正整数转二进制

    要点:除二取余,倒序排列,高位补零。

    方法:将正的十进制数除以二,得到的商再除以二,依次类推直至商为0或1时为止,然后在旁边标出各步的余数,最后倒着写出来,高位补零。

    注:计算机内部表示数的字节单位是定长的,如8位,16位,或32位。所以,位数不够时,高位补零。

    1.2 负整数转二进制

    方法:先将对应的正整数转换成二进制后,对二进制取反,然后对结果再加1。

    1.3 小数转二进制

    方法:对小数点以后的数×2,取结果的整数部分,然后再用小数部分再×2,再取结果的整数部分……以此类推,直到小数部分为0或者位数足够为止。然后把取的整数部分按先后次序排列,就构成了二进制小数部分的序列。

    注:  如果小数的整数部分有大于0的整数时,将整数转换成二进制,小数转换成二进制,然后加在一起。

    二、二进制转换成十进制

    2.1 整数二进制转换为十进制

    方法:首先将二进制数补齐位数,首位如果是0就代表是正整数,如果首位是1则代表是负整数。

    若首位是0的正整数,补齐位数以后,将二进制中的位数分别与对应的值相乘,然后相加得到的就为十进制。

    若二进制补足位数后首位为1时,就需要先取反再换算。

    2.2 小数二进制转换为十进制

    方法:将二进制中的位数分别与对应的值相乘,然后相加,得到的值即为换算后的十进制。

     

    展开全文
  • 二进制、八进制十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是N进制,那么: 对于整数部分,从右往左看,第i位的位权等于Ni-1 对于小数部分,恰好相反,要从左...

    进制转换:二进制、八进制、十六进制、十进制之间的转换

    不同进制之间的转换在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是N进制,那么:

    对于整数部分,从右往左看,第i位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第j位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字53627转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字9FA8C转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… n位的位权就为16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为20=1,第2位的位权为21=2,第3位的位权为22=4,第4位的位权为23=8,第5位的位权为24=16 …… n位的位权就为2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字423.5176转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… m位的位权就为 8-m

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… m位的位权就为 2-m

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为N进制整数采用“N取余,逆序排列”法。具体做法是:

    N作为除数,用十进制整数除以N,可以得到一个商和余数;

    保留余数,用商继续除以N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以N,直到商为0时为止。

    把先得到的余数作为N进制数的低位数字,后得到的余数作为N进制数的高位数字,依次排列起来,就得到了N进制数字。

    下图演示了将十进制数字36926转换成八进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151J30K46.png

    从图中得知,十进制数字36926转换成八进制的结果为110076

    下图演示了将十进制数字42转换成二进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151K641Z0.png

    从图中得知,十进制数字42转换成二进制的结果为101010

    2) 小数部分

    十进制小数转换成N进制小数采用“N取整,顺序排列”法。具体做法是:

    N乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用N乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用N乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用N接着乘以小数部分,直到积中的小数部分为0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为N进制小数的高位数字,后取出的整数作为低位数字,这样就得到了N进制小数。

    下图演示了将十进制小数0.930908203125转换成八进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91Q20520335.png

    从图中得知,十进制小数0.930908203125转换成八进制小数的结果为0.7345

    下图演示了将十进制小数0.6875 转换成二进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91QHI2I2.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345

    十进制数字 42.6875 转换成二进制的结果为 101010.1011

    下表列出了前17个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制0.51对应的二进制为0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制0.72对应的二进制为0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制0.625对应的二进制为0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919102I0949.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919103A2R7.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919104H9539.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F91910553H50.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110

    C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    展开全文
  • 二进制十进制、十六进制、C51十六进制转换器,还有ASCII代码,单个字符转换。
  • 1、计算机中的十进制与二进制的转换【 课 题 】 二进制十进制转换 【教学目的与要求】 1、熟悉数制的概念; 2、掌握位权表示法; 3、熟练掌握各数制之 间的转换方法。【教学重点与难点】 难点:位权表示法 十进制 ...

    《二进制和十进制之间的转换.ppt》由会员分享,提供在线免费全文阅读可下载,此文档格式为ppt,更多相关《二进制和十进制之间的转换.ppt》文档请在天天文库搜索。

    1、计算机中的十进制与二进制的转换【 课 题 】 二进制与十进制转换 【教学目的与要求】 1、熟悉数制的概念; 2、掌握位权表示法; 3、熟练掌握各数制之 间的转换方法。【教学重点与难点】 难点:位权表示法 十进制 转化为二进制 重点:二、十进制间相 互转换通过之前的学习,我们知道计算机系统只能识别二进制数,而我们在利用计算机对数据进行输入的时候用的是熟悉的十进制数,那么计算机是怎么将其转换呢?一、不同进制数的特点 1.十进制的特点 2.二进制的特点 3.位权的含义十进制数的特点1、日常生活中最常见的是十进制数,用十个不同的符号来 表示:0、1、2、3、4、5、6、7、8、9。 基数为:10 运算规则:逢十进一,借一当十 在十进制数的后面加大写字母D以示区别。 对于一个4位的十进制数1234,可以展开为: 1×103+2×102+3×101+4×100=1234 2、按上述规律,如有一个n位十。

    2、进制数a1a2…an,可以表示为 a1×10n-1+a2×10n-2+…+an×100二进制的特点 二进制具有如下特点: 二进制的数码只有两个:0、1,其基数等于二进制数是逢二进一、借一当二。 在二进制数的后面加大写字母B以示区别。  位权的含义位权就是进制的(位数-1)次冥,第n位数字的表示值等于数字乘以进制的n-1次方.比如10进制数1462的第4位1的权是1×10^3,是1000,2进制权就是2^(n-1),比如1000,第4位的1的权就是1×2^3=8.二、数制间的转换   1.二进制数转换为十进制数 2.十进制数转换为二进制数 二进制数转换为十进制数  转换规则: 将二进制的每一数位上的数码值与相应权值的乘积求累加和,即得到对应的十进制数。 公式:K=Kn×Dn-1+Kn-1×Dn-2+…+K1×D0+K-1×D-1+…+K-m×D-m 结果值Kn代表所在数位值基数D代表进制n代。

    3、表数位例:将二进制110101转换为十进制数十进制数转换为二进制数 以小数点为界,整数部分用除法取余的方法获得,小数部分用乘法取进位的方法获得。   整数部分转换方法   小数部分转换方法    整数部分转换方法   整数部分用除法,每次与2相除,余数放一边,直到除到0为止,最后从下到上的写出余数,就是十进制整数部分转换成二进制的结果。例:将十进制数53用二进制表示将十进制数97转换成二进制数将十进制数312转换成二进制数答案:(97)10=( 1100001 )2 (312)10=( 100111000 )2小数部分转换方法 小数部分用乘法,每次与2相乘,整数值入一边,直到乘到0为止,最后从上到下的写出整数值,就是十进制小数部分转换成二进制的结果。例:将十进制数0.375用二进制表示将十进制数35.25转换成二进制数(35.25)10=(100011.01) 2将十进制的0.5转换成二进制 0.5D = _____B1、63D=( )22、1111101B=______D3、89.875D=______B4、判断99D与1100011B的大小。

    展开全文
  • ASCII码表(二进制_十进制_十六进制)转换,包含详细的字符
  • 对于基础薄弱的读者,本节的内容可能略显晦涩枯燥,如果觉得吃力,可以暂时跳过,用到的时候再来...将二进制、八进制、十六进制转换为十进制二进制、八进制十六进制向十进制转换都非常容易,就是“按权相加”。...

    对于基础薄弱的读者,本节的内容可能略显晦涩和枯燥,如果觉得吃力,可以暂时跳过,用到的时候再来阅读。但是本节所讲的内容是学习编程的基础,是程序员的基本功,即使现在不学,迟早也要回来学。

    上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是 N 进制,那么:

    对于整数部分,从右往左看,第 i 位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j。

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字 53627 转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… 第n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字 9FA8C 转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… 第n位的位权就为 16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 …… 第n位的位权就为 2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字 423.5176 转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… 第m位的位权就为 8-m。

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… 第m位的位权就为 2-m。

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20+ 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:

    将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;

    保留余数,用商继续除以 N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。

    把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。

    下图演示了将十进制数字 36926 转换成八进制的过程:

    bf34eb60b56d9343bed9a15e54e49db6.png

    从图中得知,十进制数字 36926 转换成八进制的结果为 110076。

    下图演示了将十进制数字 42 转换成二进制的过程:

    5ac13e9d9daa3fc7c4626ae596e3c4ed.png

    从图中得知,十进制数字 42 转换成二进制的结果为 101010。

    2) 小数部分

    十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:

    用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用 N 乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。

    下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:

    67bbce757e5e2cc276adda32ef3cc16e.png

    从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。

    下图演示了将十进制小数 0.6875 转换成二进制小数的过程:

    49ecdf92fe173fd20d7fb1abeffeaadb.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 369260.930908203125 转换成八进制的结果为 110076.7345;

    十进制数字 42.0.6875 转换成二进制的结果为 101010.1011。

    下表列出了前 17 个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制 0.51 对应的二进制为 0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制 0.72 对应的二进制为 0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制 0.625 对应的二进制为 0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    4d20189158bd5009f71e26664e7c201d.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    caba1e8b4bb541f952c4f28fda3e6751.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    3646535f2f4ebfb8ff87273857a981bc.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    39e2a46be45746662e6a072e460c5df5.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。

    在C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    总结

    本节前面两部分讲到的转换方法是通用的,任何进制之间的转换都可以采用,只是有时比较麻烦而已。二进制和八进制、十六进制之间的转换有非常简洁的方法,所以没有采用前面的方法。

    展开全文
  • 文章目录1、十进制二进制字符串的思路2、二进制字符串转十进制的思路3、示例代码4、版权声明 在实际开发中,我们可以用01的字符串来表达信息,例如某设备有八个传感器,每个传感器的状态用1表示正常,用0表示...
  • 1.转成二进制主要有以下几种: 正整数转二进制, 负整数转二进制, 正小数转二进制; 负小数转二进制;(1)正整数转二进制(原码)...哎呀,还是举例说明吧,比如42转换二进制,如图1所示操作。42除以2得到
  • 二进制和十进制可以并易于互相转换 便于逻辑判断,10对应是否,真假等 二进制具有抗干扰能力强,可靠性高等特点 二进制和十进制的互相转换 二进制十进制时,每个数乘以2的n-1次方,为当个数字所在序位(倒序 ...
  • IC方向,常见的进制表达,一般有二进制十进制、十六进制。另外,还有高位补零的需求。 mark,以备不时之需。二进制十进制、十六进制的表达方式qilei@AFAAW-704030720:~$ cat 11.pl #!/usr/bin/perl use ...
  • 二进制、八进制十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是 N 进制,那么: 对于整数部分,从右往左看,第 i 位的位权等于Ni-1 对于小数部分,恰好相反,要...
  • 十进制整数转换二进制有三种方法,分别是①除二取余、②计算器转换和③经验法。十进制小数的转换方法最后做简单的介绍。 除二取余法 除二取余法是转换时的最基本方法,也是最通用的方法。规则为:使用十进制和 2 ...
  • 二进制只使用数字0 1 ,其中每个数字对应于一位( 二进制位)。通常,我们将每4 位或8 位作为一组,分别称它们为半字节(nibble) 字节...2-1 列出了半字节字节中各位代表的十进制值。别忘了,半字节包含4 位, ...
  • 二进制、八进制、十进制、十六进制关系及转换

    万次阅读 多人点赞 2019-02-21 21:20:22
    二进制,八进制,十进制,十六进制之间的关系是什么?浮点数是什么回事? 本文内容参考自王达老师的《深入理解计算机网络》一书<中国水利水电出版社&amp...
  • 一.本文所涉及的内容... 二进制十进制 八进制 → 十进制 十六进制 → 十进制十进制) → (二、八、十六进制) 十进制二进制 十进制 → 八进制 十进制 → 十六进制 (...
  • 八进制、十六进制和十进制之间的转换可通过二进制作为中介。 十进制小数转二进制小数 乘不尽的小数进制转换 0.8、0.6、0.2... ...一些数字在进制之间的转化过程中确实存在麻烦。 就比如0.8的十六进制,无论怎么...
  • 十进制二进制转换2.1对应关系2.2举例一:二进制1011转换十进制2.3举例二:二进制10111转换十进制2.3举例三:十进制45转换二进制2.4举例四:十进制小数0.25转换二进制3.八进制与二进制3.1对应关系3.2举例一:...
  • 十进制二进制,把要转换的数,除以2,得到商余数,将商继续除以2,直到商为0。最后将所有余数倒序排列,得到转换结果。如图,以十进制的6为例,三次相除得到余数分别为0、1、1,倒序排列为110,所以十进制6转换...
  • 二进制十进制的相互转换

    万次阅读 多人点赞 2018-12-04 17:23:56
    二进制如何转十进制十进制如何转二进制 十进制二进制 转成二进制主要有以下几种:正整数转二进制,负整数转二进制,小数转二进制; 1、 正整数转成二进制。要点一定一定要记住哈:除二取余,然后倒序排列,...
  • 二进制、八进制十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是N进制,那么: 对于整数部分,从右往左看,第i位的位权等于Ni-1 对于小数部分,恰好相反,要从左往...
  • 二进制十进制 十进制二进制 十六进制 转 十进制 十进制 转 十六进制 二进制 转 十六进制 十六进制 转 二进制 ©本文由博主原创,未经允许,不得转载相关博文内容 介绍 我相信很多大学计算机专业...
  • 1、二进制转八进制: /*二进制转八进制*/ #include<stdio.h> #include<stdlib.h> #include<math.h> #define MAXSIZE 20 #define ...
  • 十进制整数转换二进制和十六进制形式十进制整数转换二进制形式二进制形式转换十进制整数十进制整数转换为十六进制形式十六进制形式转换十进制整数 十进制整数转换二进制形式 十进制整数转换二进制形式...
  • 在计算机语言中常用的进制有二进制、八进制、十进制和十六进制,十进制是最主要的表达形式。 对于进制,有两个基本的概念:基数运算规则。 基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字...
  • -- postgre 按位运算符 以及结果 注释的后面为结果 SELECT 1|2 ;...postgre 二进制十进制,十六进制表达以及转换 转载地址: https://www.cnblogs.com/ode/p/postgresql_to_hex_decimal.html
  • Python中实现的进制间的转换 在python中可以使用Python的内置函数进行进制间的转换。...int():其他进制转十进制 hex():其他进制转十六进制 二进制、八进制、十六进制的形式 二进制:以“0b”开头,如:0...
  • 十六进制转换表 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 二进制 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 ...
  • itoa()strtol()可以实现...1.十进制转换为其他进制 使用itoa(int dec,char str, int R),将十进制数dec转换为R进制的数存放到str数组中 参数: dec:十进制整数 str :char 类型的字符串 R:进制 int dec=10;//将...
  • 二进制和十进制之间的相互转换

    千次阅读 2016-01-05 11:51:44
    上一篇中我们说过js的一个关于计算的奇葩问题,比如0.1+0.7居然不等于0.8,今天就来刨根挖底的解剖为什么会出现这样的问题,简单的讲就是因为计算机识别的是二进制语言,而我们常用的是十进制,十进制转换二进制的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 126,329
精华内容 50,531
关键字:

二进制和十进制转换表