精华内容
下载资源
问答
  • 上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。将二进制、八进制、十六进制转换为十进制二进制、八进制和十六进制向十进制转换都非常容易,...

    上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是 N 进制,那么:

    • 对于整数部分,从右往左看,第 i 位的位权等于Ni-1

    • 对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字 53627 转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… 第n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字 9FA8C 转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… 第n位的位权就为 16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 …… 第n位的位权就为 2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字 423.5176 转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… 第m位的位权就为 8-m再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… 第m位的位权就为 2-m更多转换成十进制的例子:

    • 二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    • 二进制:101.1001 = 1×22 + 0×21 + 1×2+ 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    • 八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    • 八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    • 十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:

    • 将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;

    • 保留余数,用商继续除以 N,又得到一个新的商和余数;

    • 仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;

    • ……

    • 如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。

    把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。下图演示了将十进制数字 36926 转换成八进制的过程:

    b079342a40cf224049346aa9eff6cf70.png

    从图中得知,十进制数字 36926 转换成八进制的结果为 110076。下图演示了将十进制数字 42 转换成二进制的过程:

    38a0f97179ddc42a8b2fed539e52420c.png

    从图中得知,十进制数字 42 转换成二进制的结果为 101010。

    2) 小数部分

    十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:

    • 用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    • 将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;

    • 再将积的整数部分取出,继续用 N 乘以余下的小数部分;

    • ……

    • 如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:

    d7e9cdcdd3bdbe8716ee59f7c8b03c11.png

    从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。下图演示了将十进制小数 0.6875 转换成二进制小数的过程:

    d7b03d3138ce82fb2ac89859aa16e44f.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    • 十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345;

    • 十进制数字 42.6875 转换成二进制的结果为 101010.1011。

    下表列出了前 17 个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制012345678910111213141516
    二进制0110111001011101111000100110101011110011011110111110000
    八进制01234567101112131415161720
    十六进制0123456789ABCDEF10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    • 十进制 0.51 对应的二进制为 0.100000101000111101011100001010001111010111...,是一个循环小数;

    • 十进制 0.72 对应的二进制为 0.1011100001010001111010111000010100011110...,是一个循环小数;

    • 十进制 0.625 对应的二进制为 0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    ee48ec201aec425eed2fbb3583b0add0.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    3928baa538522979b565c3b5e5112a32.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    7ceaefb4a7ff99e0b1670460e4fe52a0.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    4a006a9d5f1da2db04014492b1de290f.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。在C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    总结

    本节前面两部分讲到的转换方法是通用的,任何进制之间的转换都可以采用,只是有时比较麻烦而已。二进制和八进制、十六进制之间的转换有非常简洁的方法,所以没有采用前面的方法。

    展开全文
  • 上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。将二进制、八进制、十六进制转换为十进制二进制、八进制和十六进制向十进制转换都非常容易,...

    上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是 N 进制,那么:

    • 对于整数部分,从右往左看,第 i 位的位权等于Ni-1

    • 对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字 53627 转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… 第n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字 9FA8C 转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… 第n位的位权就为 16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 …… 第n位的位权就为 2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字 423.5176 转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… 第m位的位权就为 8-m再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… 第m位的位权就为 2-m更多转换成十进制的例子:

    • 二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    • 二进制:101.1001 = 1×22 + 0×21 + 1×2+ 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    • 八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    • 八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    • 十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:

    • 将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;

    • 保留余数,用商继续除以 N,又得到一个新的商和余数;

    • 仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;

    • ……

    • 如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。

    把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。下图演示了将十进制数字 36926 转换成八进制的过程:

    ae59c1a73590cbf9eb80c4dc0b4b774d.png

    从图中得知,十进制数字 36926 转换成八进制的结果为 110076。下图演示了将十进制数字 42 转换成二进制的过程:

    d7f968e950d40663a77ab1e215553d7d.png

    从图中得知,十进制数字 42 转换成二进制的结果为 101010。

    2) 小数部分

    十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:

    • 用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    • 将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;

    • 再将积的整数部分取出,继续用 N 乘以余下的小数部分;

    • ……

    • 如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:

    f8998f354faeffe4383c8774fcd6dd8c.png

    从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。下图演示了将十进制小数 0.6875 转换成二进制小数的过程:

    7fc86a2aebe7b4a7a768e3bba578c981.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    • 十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345;

    • 十进制数字 42.6875 转换成二进制的结果为 101010.1011。

    下表列出了前 17 个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制012345678910111213141516
    二进制0110111001011101111000100110101011110011011110111110000
    八进制01234567101112131415161720
    十六进制0123456789ABCDEF10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    • 十进制 0.51 对应的二进制为 0.100000101000111101011100001010001111010111...,是一个循环小数;

    • 十进制 0.72 对应的二进制为 0.1011100001010001111010111000010100011110...,是一个循环小数;

    • 十进制 0.625 对应的二进制为 0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    2f228882be2f4509bfc039078cd03476.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    81388fae2afe47f52afe9e2b0f675fa3.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    cbe0b5e10581ff3c24fb64e15cf86cb0.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    7fd2ae85a4de6dec8f8ba8c1532e0934.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。在C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    总结

    本节前面两部分讲到的转换方法是通用的,任何进制之间的转换都可以采用,只是有时比较麻烦而已。二进制和八进制、十六进制之间的转换有非常简洁的方法,所以没有采用前面的方法。

    展开全文
  • 如题,今天我们来写十进制转16进制和 2进制。二进制前面我们写过。16进制的算法和二进制差不多。都是先对进制本身进行取余作为第一位,然后对进制做除法得到的商再对进制取余作为第二位。。循环往复 下面我附上我的...

    如题,今天我们来写十进制转16进制和 2进制。二进制前面我们写过。16进制的算法和二进制差不多。都是先对进制本身进行取余作为第一位,然后对进制做除法得到的商再对进制取余作为第二位。。循环往复

    下面我附上我的代码

    #include <stdio.h>
    
    void to_binary(unsigned long num)
    {
    	int r;
    
    	r = num % 2;
    
    	if(num >= 2)
    	{
    		to_binary(num/2);
    	}
    
    	putchar(r + '0');
    
    }
    
    void sixteen_band(unsigned long num)
    {
    	int r;
    
    	r = num % 16;
    	
    	if(num >= 16)
    	{
    		sixteen_band(num / 16);
    	}
    
    	if(r > 9)
    	{
    		putchar(r - 10 + 'A');
    	}
    	else
    	{
    		putchar(r + '0');
    	}
    }
    
    int main()
    {
    	
    	unsigned long num;
    
    	printf("enter an integer(q to quit):\n");
    	while(scanf("%ul",&num) == 1)
    	{
    		printf("16 进制:");
    		sixteen_band(num);
    		putchar('\n');
    		printf("2 进制:");
    		to_binary(num);
    		putchar('\n');
    		printf("enter an integer(q to quit):\n");
    	}
    
        return 0;
    }
    

    下面我附上我的运行截图


    展开全文
  • 进制转换的函数 ...int() *进制转10进制 各进制之间转换 ↓ 2进制 8进制 10进制 16进制 2进制 - bin(int(x, 8)) bin(int(x, 10)) bin(int(x, 16)) 8进制 oct(int(x, 2)) - oct(int(x, 10)) oc...

    进制转换的函数

    • bin() 10进制转2进制
    • oct() 10进制转8进制
    • hex()10进制转16进制
    • int() *进制转10进制

    各进制之间转换

    2进制 8进制 10进制 16进制
    2进制 - bin(int(x, 8)) bin(int(x, 10)) bin(int(x, 16))
    8进制 oct(int(x, 2)) - oct(int(x, 10)) oct(int(x, 16))
    10进制 int(x, 2) int(x, 8) - int(x, 16)
    16进制 hex(int(x, 2)) hex(int(x, 8)) hex(int(x, 10)) -

    规律:

    1. 10进制可以通过对应函数直接转为2,8,16进制
    2. 2,8,16…进制通过int函数可以转为10进制
    3. 2, 8,16进制之间转换使用10进制作为中转

    备注:int传入str字符串类型

    参考
    Python内置函数进制转换的用法

    展开全文
  • //%d后不要加\n换行符,不然每一个二进制位都会换行 if ( i % 4 == 0 ) //为了美观,四个二进制空一个空格 printf ( " " ) ; } printf ( "\n" ) ; } int main ( int argc , char const...
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...
  • 编写函数,将一个二进制数(以字符串形式表示)转换为十进制数。函数原型如下: double binTodec(char *str); 其中str为接收的二进制数,函数的返回值为对应的十进制数。 如输入: 1010 则输出为: 10 又如...
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...
  • 在我的印象里面进制互相转换确实是很常见的问题,所以在Python中,自然也少不了把下面这些代码收为util。.../usr/bin/env python# -*- coding: utf-8 -*-# 2/10/16 base trans. wrote by srcdog on 20th...
  • 二进制转换

    千次阅读 2019-03-31 14:51:29
      我一开始的思路是找110这个负二进制10这个原本的二进制之间的关系,但是方向错了。后来又在网上搜了下,知道了怎么操作,但是网上的资料说的不清不楚,没有明确说我们整除到什么条件停止,因此在研究这上面...
  • 二进制、八进制、十进制、十六进制关系及转换

    万次阅读 多人点赞 2019-02-21 21:20:22
    二进制,八进制,十进制,十六进制之间的关系是什么?浮点数是什么回事? 本文内容参考自王达老师的《深入理解计算机网络》一书&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;中国水利水电出版社&amp;amp;amp;amp...
  • 进制转二进制进制转二进制的方法 toString()方法 toSrting()方法可把一个 Number 对象转换为一个字符串 NumberObject.toString...3、举例:2 的二进制10,第 1 位为 0,第 2 位为 1 示例 //输入 128, 8
  • 上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。SANFUC:进制学习(1):二进制、八进制和十六进制​zhuanlan.zhihu.com将二进制、八进制、...
  • 昨天给大家分享了PLC编程的进制的...用2依次相除至结果为1 ,将余数和最后的1从下向上倒序写 就是结果二进制转十进制二进制转十六进制从2#低位到高位依次每4位分别乘以2的0-3次方,高位不够4位的补0。例如2#10110...
  • /*我们知道,以二进制作为基数来看01序列1010,则对应的十进制数为1*8+0*4+1*2+0*1=10。如果用斐波那契数列作为基数来看01序列1010,那对应的十进制数又是多少呢?已知斐波那契数列的前几项为:1,1, 2, 3, 5, 8, 13...
  • 二进制 二进制的基数是2,进位规则是“逢二进一”,借位规则是“借一当二” 八进制 八进制,一种以8为基数的计数法,采用0、1、2、3、4、5、6、7八个...二进制转八进制 以11001010为例 首先自右向左补全(每3个二进制数
  • 进制转换

    2020-03-26 15:40:25
    生活中我们日常使用的进制是十进制,...二进制转十进制 转换方法为 “按权相加” ,权又称作位权。如下图中的01234567既是该二进制数每个位的位权。 十进制数 == 每个二进制位上的值 * 2^(位权)相加 例: 二进制...
  • 编程中的进制转换

    2014-10-08 16:13:00
    (二进制,八进制,十进制,十六进制)  二进制是由0和1组成 【十进制转二进制】 如23写成二进制为10111  23/2=11余1  11/2=51 ...【二进制转十进制公式】  a*2^0+b*2^1+……+m*2^(n-...
  • 输入格式共三行,第一行是一个正整数,表示需要转换的数的进制n(2≤n≤16),第行是一个n进制数,若n>10则用大写字母A-F表示数码10-15,并且该n进制数对应的十进制的值不超过1000000000,第三行也是一个正整数,...
  • 编程,输入一个10进制正整数,然后输出它所对应的八进制数。 输入 无 输出 无 样例输入 10 样例输出 12 #include <stdio.h> int main( ) { int num,m=0,a[100],i=0,k=0; //num由键盘...
  • 用8086/8088汇编语言编程,实现十进制或十六进制向二进制的转换。要求通过键盘输入数字,有H为16进制、无H为10进制,然后按照二进制输出。例如:输入1、2、回车,那么第二行应该显示1100;如果输入1、2、H、回车,...
  • 内存中是用二进制存储的,当要显示的时候。用十进制显示。 随意进制间的转换 n进制转m进制 String s = “2001201102” 3进制转换为5进制 先转换为2进制。再转换为5进制 /* 随意进制间的转换 n进制转m进制 ...
  • 例如,将整数 10 转换为十进制字符串表示为 10,或将其字符串表示为二进制 1010。虽然有很多算法来解决这个问题,包括在栈部分讨论的算法,但递归的解决方法非常优雅。让我们看一个十进制数 769 的具体示例。假设...
  • =10),编程要求过滤掉字符串中所有非Q进制数对应的字符组成一个新的字符串,该字符串无正负号,将该字符串表示的Q进制数转换为T进制数的字符串输出。 输入格式: 第一行输入一个整数Q, 代表Q进制(2<=Q<=10) ...
  • *将十进制数转换为二进制 */ public class Convert10to2 {  public static void main(String[] args) {  int n,k;  int[] m=new int[32];  int num=0;  n=Short.parseShort(args[0]);  k=n;  w

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 545
精华内容 218
关键字:

二进制转10进制编程