精华内容
下载资源
问答
  • 十进制整数转换成二进制采用“除2倒取余”,十进制小数转换成二进制小数采用“乘2取整”。 例题: 135D = __ B 解析:如下图所示,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取。得到结果:1000 ...

    1.十进制转R进制

    1.1 十进制转二进制

    十进制整数转二进制

    十进制整数转换成二进制采用“除2倒取余”,十进制小数转换成二进制小数采用“乘2取整”。

    例题: 135D = ______ B

    **解析:**如下图所示,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取。得到结果:1000 0111B.
    这里写图片描述

    图1.十进制整数转二进制

    十进制小数转二进制

    十进制小数转换成二进制小数采用 “乘2取整,顺序排列” 法。

    具体做法是:

    用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数 部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。

    然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

    例题: 0.68D = ______ B(精确到小数点后5位)

    **解析:**如下图所示,0.68乘以2,取整,然后再将小数乘以2,取整,直到达到题目要求精度。得到结果:0.10101B.

    在这里插入图片描述

    图2.十进制小数转二进制

    1.2 十进制转八进制

    思路和十进制转二进制一样,参考如下例题:

    例题: 10.68D = ______ Q(精确到小数点后3位)

    **解析:**如下图所示,整数部分除以8取余数,直到无法整除。小数部分0.68乘以8,取整,然后再将小数乘以8,取整,直到达到题目要求精度。得到结果:12.534Q.

    这里写图片描述

    图3.十进制转八进制

    1.3 十进制转十六进制

    思路和十进制转二进制一样,参考如下例题:

    例题: 25.68D = ______ H(精确到小数点后3位)

    **解析:**如下图所示,整数部分除以16取余数,直到无法整除。小数部分0.68乘以16,取整,然后再将小数乘以16,取整,直到达到题目要求精度。得到结果:19.ae1H.

    这里写图片描述

    图4.十进制转十六进制
    # 2.R进制转十进制 ## 2.1 二进制转十进制 **方法为:**把二进制数按权展开、相加即得十进制数。(具体用法如下图)

    例题: 1001 0110B = ______ D

    **解析:**如下图所示。得到结果:150D.

    这里写图片描述

    图5.二进制转十进制

    2.2 八进制转十进制

    八进制转十进制的方法和二进制转十进制一样。

    例题: 26Q = ______ D

    **解析:**如下图所示。得到结果:22D.

    这里写图片描述

    图6.八进制转十进制

    2.3 十六进制转十进制

    例题: 23daH = ______ D

    **解析:**如下图所示。得到结果:9178D.

    这里写图片描述

    图7.十六进制转十进制

    3.二进制转八进制

    二进制转换成八进制的方法是,取三合一法,即从二进制的小数点为分界点,向左(或向右)每三位取成一位。

    例题: 1010 0100B = ____Q

    **解析:**计算过程如下图所示。得到结果:244Q.

    这里写图片描述

    图8.二进制转八进制

    4.二进制转十六进制

    二进制转换成八进制的方法是,取四合一法,即从二进制的小数点为分界点,向左(或向右)每四位取成一位。

    例题: 1010 0100B = ____H

    **解析:**计算过程如下图所示。得到结果:a4H.

    这里写图片描述

    图9.二进制转十六进制

    5.工欲善其事,必先利其器

    下面的表格是8位二进制所对应的十进制数值,对进制转换以及类似题目的理解非常有用:

    1 1 1 1 1 1 1 1 B
    128 64 32 16 8 4 2 1 D

    注:B:二进制
           D:十进制


    例题: 135D = ______ B

    **解析:**有了上面二进制对应十进制数值的表格,我们就可以将题目给的十进制135拆分为:128+7,再从表格中找到对应的数值,拼凑即可得到答案。
    135D = 128D + 7D = 1000 0111B

    展开全文
  • 两题搞定进制转换(1)二进制转八进制和十六进制(2)十进制转二进制数注意!!! 1.进位计数法       所谓进位计数法是一种计数方法,咱们最常用的莫过于十进制了,除此之外还有八...


    1.进位计数法

          所谓进位计数法是一种计数方法,咱们最常用的莫过于十进制了,除此之外还有八进制、十六进制等。
    这里不得不提几个概念术语:

    • 基数:比如说十进制、八进制和十六进制,它们的基数分别为10(0~9)、8(0~7)、16(0~15)
    • 数位:比如二进制数1010,这里就有4个数位,从高位到低位依次的数码值为1、0、1、1
    • 数码:比如八进制,那么数码,即数码值的范围为(0~7)
    • 基数和数码的关系:每个数位所用到的不同数码的个数称为基数
    • 位权:每个数码所表示的数值等于该数码值乘以一个与它所在位有关的常数,这个常数称为位权。

    2.两题搞定进制转换

    (1)二进制转八进制和十六进制

    在这里插入图片描述

    (2)十进制转二进制数

    十进制转N进制数,比较常用的方法是基数乘除法,这种方法分两步骤:整数部分用除基取余法,小数部分采用乘基取整法,最后将整数与小数部分拼接起来。

    在这里插入图片描述

    注意!!!

    不是每一个十进制小数都可以准确的用二进制表示,比如:0.3转换为二进制数,无论经过多少次乘二取整无法获得精确的结果。但任意一个二进制小数都可以用十进制小数表示!!!

    展开全文
  • #二进制转化成八进制print("请输入一个二进制数\n")SUM1=[]SUM2=[]A=0B=0int1=[]#整数部分存放处float1=[]#小数部分存放处a1=int(input("请输入二进制的整数部分"))print("a1=",a1)#整数部分a2=input("请输入二进制...

    #二进制转化成八进制

    print("请输入一个二进制数\n")

    SUM1=[]

    SUM2=[]

    A=0

    B=0

    int1=[]#整数部分存放处

    float1=[]#小数部分存放处

    a1=int(input("请输入二进制的整数部分"))

    print("a1=",a1)#整数部分

    a2=input("请输入二进制的小数部分")

    print("a2=",a2)

    for x in a2:

    float1.append(int(x))

    while(a1&gt=1):

    int1.append(a1%10)

    a1=a1//10

    int3=[]

    int3=int1.copy()

    int3.reverse()

    print("您输入的二进制是:",end="")

    for i in int3:

    print(i,end="")

    print(".",end="")

    for i in float1:

    print(i,end="")

    print("\n")

    def sumint(v):

    j=0

    summ=0

    for i in v:

    summ=summ+i*(2**j)

    j=j+1

    return summ#输入三位二进制,输出一个八进制

    int2=[]

    while(A&ltlen(int1)):

    i=int1[A]

    int2.append(i)

    if len(int2)==3:

    SUM1.append(sumint(int2))

    int2=[]

    elif A+1==len(int1):

    SUM1.append(sumint(int2))

    else:

    pass

    A=A+1

    #整数部分

    float2=[]

    while B&ltlen(float1):

    I=float1[B]

    float2.insert(0,I)

    if len(float2)==3:

    SUM2.append(sumint(float2))

    float2=[]

    elif B+1==len(float1):

    if len(float2)==1:

    SUM2.append(4)

    if len(float2)==2:

    float2.insert(0,0)

    SUM2.append(sumint(float2))

    B=B+1

    #小数部分

    SUM1.reverse()

    print("最终求得的八进制是:",end=" ")

    for i in SUM1:

    print(i,end="")

    print(".",end="")

    for ii in SUM2:

    print(ii,end="")

    print("\n")

    展开全文
  • 进制转换:二进制八进制、十六进制、十进制之间的转换 不同进制之间的转换在编程中经常会用到,尤其是C语言。 将二进制八进制、十六进制转换为十进制 二进制八进制和十六进制向十进制转换都非常容易,就是...

    进制转换:二进制、八进制、十六进制、十进制之间的转换

    不同进制之间的转换在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是N进制,那么:

    对于整数部分,从右往左看,第i位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第j位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字53627转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字9FA8C转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… n位的位权就为16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为20=1,第2位的位权为21=2,第3位的位权为22=4,第4位的位权为23=8,第5位的位权为24=16 …… n位的位权就为2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字423.5176转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… m位的位权就为 8-m

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… m位的位权就为 2-m

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为N进制整数采用“N取余,逆序排列”法。具体做法是:

    N作为除数,用十进制整数除以N,可以得到一个商和余数;

    保留余数,用商继续除以N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以N,直到商为0时为止。

    把先得到的余数作为N进制数的低位数字,后得到的余数作为N进制数的高位数字,依次排列起来,就得到了N进制数字。

    下图演示了将十进制数字36926转换成八进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151J30K46.png

    从图中得知,十进制数字36926转换成八进制的结果为110076

    下图演示了将十进制数字42转换成二进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151K641Z0.png

    从图中得知,十进制数字42转换成二进制的结果为101010

    2) 小数部分

    十进制小数转换成N进制小数采用“N取整,顺序排列”法。具体做法是:

    N乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用N乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用N乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用N接着乘以小数部分,直到积中的小数部分为0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为N进制小数的高位数字,后取出的整数作为低位数字,这样就得到了N进制小数。

    下图演示了将十进制小数0.930908203125转换成八进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91Q20520335.png

    从图中得知,十进制小数0.930908203125转换成八进制小数的结果为0.7345

    下图演示了将十进制小数0.6875 转换成二进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91QHI2I2.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345

    十进制数字 42.6875 转换成二进制的结果为 101010.1011

    下表列出了前17个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制0.51对应的二进制为0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制0.72对应的二进制为0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制0.625对应的二进制为0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919102I0949.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919103A2R7.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919104H9539.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F91910553H50.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110

    C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    展开全文
  • 如图1所示来看看十进制转八进制,有两种方法:直接法与间接法,先看直接的方法,与十进制转成二进制相同,咱们还是分整数部分转换和小数部分转换。 整数部分,除8取余法,每次将整数部分除以8...
  • 对十进制小数乘2得到的整数部分和小数部分,整数部分既是相应的二进制数码,再用2乘小数部分(之前乘后得到新的小数部分),又得到整数和小数部分. 如此不断重复,直到小数部分为0或达到精度要求为止.第一次所得到为最高位...
  • 二进制八进制、十六进制转换为十进制二进制八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是 N 进制,那么:对于整数部分,从右往左看,第 i 位的位权...
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...
  • 在转换之前先来了解一些基础的知识,二进制八进制的对应关系,左边二进制的000表示右边八进制的0,二进制的001表示八进制的1,后面以此类推,如图所示,记住八进制的最高位是7,二进制只有0和1,记住他们的对应...
  • 如图1所示来看看十进制转八进制,有两种方法:直接法与间接法,先看直接的方法,与十进制转成二进制相同,咱们还是分整数部分转换和小数部分转换。 整数部分,除8取余法,每次将整数部分除以8...
  • 按权展开法,即把各数位乘权的i次方后相加1.2、实例:例1:二进制与十进制的转换,带小数部分01011010.01B=0×2^7+1×2^6+0×2^5+1×2^4+1×2^3+0×2^2+1×2^1+0×2^0+0×2^-1+1×2^-2=90.25例2:八进制与十进制的...
  • 二进制八进制和十六进制转化为十进制: 二进制转化为十进制:print(int("111",2)) 输出为7 八进制转化为十进制:print(int("11",8)) 输出为9 十六进制转化为十进制:print(int("...
  • 上节我们对二进制八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。将二进制八进制、十六进制转换为十进制二进制八进制和十六进制向十进制转换都非常容易,...
  • 1.位,单位是bit,也称为二进制位,是计算机内部数据...举个例子(二进制转换为十进制):整数部分从左至右为2的从0开始的幂次方,小数部分为2的从-1开始的幂次方;如下图所示:3.十进制转换为二进制八进制和十六...
  • 二进制八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,...
  • php二进制八进制、十进制、十六进制相互转换二进制八进制、十...一、 十进制与二进制之间的转换(1) 十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除2取余,逆序排列,即每次将整数部分除以2,余...
  • 二进制:B(Binary) 八进制:O(Octal) 十六进制:H(Hexadecimal) 如:(4B1)16又可写为4B1H (12345)8又可以写为12345O (10011)2又可以写为10011B 1、非十进制与十进制的转换 1.1、基本原则: 按权展开法,即把各...
  • 二进制八进制、十六进制等转换为十进制 二进制八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是 N 进制,那么: 对于整数部分,从右往左看,第 i 位...
  • 对于我们熟悉的十进制数如果带有小数,如将1234.56展开,可用下式表示:►将1101B 转换成十进制数►将3BFH转换成十进制数(这是一个16进制数,数码B的值等于11,F的值等于15)►将374O转换成十进制数(这是一个8进制数)...
  • 上节我们对二进制八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言。将二进制八进制、十六进制转换为十进制二进制八进制和十六进制向十进制转换都非常容易,...
  • 二进制八进制、十六进制转换为十进制 二进制八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是 N 进制,那么: 对于整数部分,从右往左看,第 i 位的...
  • 上节课我们学习了二进制转换十进制,那二进制与常用的八进制之间是如何互相转换的呢... 小数部分从高位向低位每三位用一个等值的八进制数来替换,最后不足三位时在低位补0凑满三位。(为了方便同学们记忆我们可以使用...
  • 十进制转换为二进制八进制、十六进制2.1十进制转换为二进制整数部分:整数部分除2取余数,再取倒序小数部分:小数部分乘2取整,再顺序取小数部分为零时,即为乘完或者按题目要求精度要求取...
  • 如何用c语言把十进制纯小数转换成二进制八进制,十六进制。求代码?谢谢

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 595
精华内容 238
关键字:

二进制转八进制小数