精华内容
下载资源
问答
  • 十进制整数转换二进制采用“除2倒取余”,十进制小数转换二进制小数采用“乘2取整”。 例题: 135D = __ B 解析:如下图所示,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取。得到结果:1000 ...

    1.十进制转R进制

    1.1 十进制转二进制

    十进制整数转二进制

    十进制整数转换成二进制采用“除2倒取余”,十进制小数转换成二进制小数采用“乘2取整”。

    例题: 135D = ______ B

    **解析:**如下图所示,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取。得到结果:1000 0111B.
    这里写图片描述

    图1.十进制整数转二进制

    十进制小数转二进制

    十进制小数转换成二进制小数采用 “乘2取整,顺序排列” 法。

    具体做法是:

    用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数 部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。

    然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

    例题: 0.68D = ______ B(精确到小数点后5位)

    **解析:**如下图所示,0.68乘以2,取整,然后再将小数乘以2,取整,直到达到题目要求精度。得到结果:0.10101B.

    在这里插入图片描述

    图2.十进制小数转二进制

    1.2 十进制转八进制

    思路和十进制转二进制一样,参考如下例题:

    例题: 10.68D = ______ Q(精确到小数点后3位)

    **解析:**如下图所示,整数部分除以8取余数,直到无法整除。小数部分0.68乘以8,取整,然后再将小数乘以8,取整,直到达到题目要求精度。得到结果:12.534Q.

    这里写图片描述

    图3.十进制转八进制

    1.3 十进制转十六进制

    思路和十进制转二进制一样,参考如下例题:

    例题: 25.68D = ______ H(精确到小数点后3位)

    **解析:**如下图所示,整数部分除以16取余数,直到无法整除。小数部分0.68乘以16,取整,然后再将小数乘以16,取整,直到达到题目要求精度。得到结果:19.ae1H.

    这里写图片描述

    图4.十进制转十六进制
    # 2.R进制转十进制 ## 2.1 二进制转十进制 **方法为:**把二进制数按权展开、相加即得十进制数。(具体用法如下图)

    例题: 1001 0110B = ______ D

    **解析:**如下图所示。得到结果:150D.

    这里写图片描述

    图5.二进制转十进制

    2.2 八进制转十进制

    八进制转十进制的方法和二进制转十进制一样。

    例题: 26Q = ______ D

    **解析:**如下图所示。得到结果:22D.

    这里写图片描述

    图6.八进制转十进制

    2.3 十六进制转十进制

    例题: 23daH = ______ D

    **解析:**如下图所示。得到结果:9178D.

    这里写图片描述

    图7.十六进制转十进制

    3.二进制转八进制

    二进制转换成八进制的方法是,取三合一法,即从二进制的小数点为分界点,向左(或向右)每三位取成一位。

    例题: 1010 0100B = ____Q

    **解析:**计算过程如下图所示。得到结果:244Q.

    这里写图片描述

    图8.二进制转八进制

    4.二进制转十六进制

    二进制转换成八进制的方法是,取四合一法,即从二进制的小数点为分界点,向左(或向右)每四位取成一位。

    例题: 1010 0100B = ____H

    **解析:**计算过程如下图所示。得到结果:a4H.

    这里写图片描述

    图9.二进制转十六进制

    5.工欲善其事,必先利其器

    下面的表格是8位二进制所对应的十进制数值,对进制转换以及类似题目的理解非常有用:

    11111111B
    1286432168421D

    注:B:二进制
           D:十进制


    例题: 135D = ______ B

    **解析:**有了上面二进制对应十进制数值的表格,我们就可以将题目给的十进制135拆分为:128+7,再从表格中找到对应的数值,拼凑即可得到答案。
    135D = 128D + 7D = 1000 0111B

    展开全文
  •  首先介绍 二进制转换十进制二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:101100100,转换为10进制为:356用横式计算(从右往左算)0×20+0×21+1×22+0×23+0×24+1×25+1×26...

    最近在学习计算机基础 研究到进制转换,颇有心得,在此做个解释和记录;

     首先介绍       二进制转换十进制

    二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
    所以,设有一个二进制数:101100100,转换为10进制为:356
    用横式计算(从右往左算)
    0×2 0+0×2 1+1×2 2+0×2 3+0×2 4+1×2 5+1×2 6+0×2 7+1×2 8=356
    0乘以多少都是0,所以我们也可以直接跳过值为0的位:
    1×2 2+1×2 5+1×2 6+1×2 8=356
    4+32+64+256 =356

    然后介绍       十进制转换二进制

         十进制转换2进制的方法可以总结的说 就是除2取余 除二取余······

        例如

          画图来说:


    展开全文
  • 进制转换二进制、八进制、十六进制、十进制之间的转换 不同进制之间的转换在编程中经常会用到,尤其是C语言。 将二进制、八进制、十六进制转换十进制 二进制、八进制和十六进制向十进制转换都非常容易,就是...

    进制转换:二进制、八进制、十六进制、十进制之间的转换

    不同进制之间的转换在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是N进制,那么:

    对于整数部分,从右往左看,第i位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第j位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字53627转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字9FA8C转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… n位的位权就为16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为20=1,第2位的位权为21=2,第3位的位权为22=4,第4位的位权为23=8,第5位的位权为24=16 …… n位的位权就为2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字423.5176转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… m位的位权就为 8-m

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… m位的位权就为 2-m

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为N进制整数采用“N取余,逆序排列”法。具体做法是:

    N作为除数,用十进制整数除以N,可以得到一个商和余数;

    保留余数,用商继续除以N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以N,直到商为0时为止。

    把先得到的余数作为N进制数的低位数字,后得到的余数作为N进制数的高位数字,依次排列起来,就得到了N进制数字。

    下图演示了将十进制数字36926转换成八进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151J30K46.png

    从图中得知,十进制数字36926转换成八进制的结果为110076

    下图演示了将十进制数字42转换成二进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151K641Z0.png

    从图中得知,十进制数字42转换成二进制的结果为101010

    2) 小数部分

    十进制小数转换成N进制小数采用“N取整,顺序排列”法。具体做法是:

    N乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用N乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用N乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用N接着乘以小数部分,直到积中的小数部分为0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为N进制小数的高位数字,后取出的整数作为低位数字,这样就得到了N进制小数。

    下图演示了将十进制小数0.930908203125转换成八进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91Q20520335.png

    从图中得知,十进制小数0.930908203125转换成八进制小数的结果为0.7345

    下图演示了将十进制小数0.6875 转换成二进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91QHI2I2.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345

    十进制数字 42.6875 转换成二进制的结果为 101010.1011

    下表列出了前17个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制0.51对应的二进制为0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制0.72对应的二进制为0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制0.625对应的二进制为0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919102I0949.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919103A2R7.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919104H9539.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F91910553H50.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110

    C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    展开全文
  • 十进制就是我们在计算中常用的进制,所以就不再举例(即逢十进一) 十六进制 十六进制与其它进制有所不同,在10到15用英文字母进行表示。 上面就是对进制的简单介绍,下面就是对进制转换而进行介绍。 1.二进制...

    二进制

    二进制就是计算机常用的进制,即逢二进一。例如:1010

    八进制

    八进制即逢八进一。例如:626

    十进制

    十进制就是我们在计算中常用的进制,所以就不再举例(即逢十进一)

    十六进制

    十六进制与其它进制有所不同,在10到15用英文字母进行表示。

    上面就是对进制的简单介绍,下面就是对进制转换而进行介绍。

    1.二进制转八进制

    拿二进制数10010110举例

    首先需要3个二进制数各划分一个区域,不足时则补零。我们可以看出该二进制数为八位,我们需要补充一位,

    即010010110

    从左到右依次是:(计算方法是从右向左依次乘上2的n次幂,n从零开始,^符号表示次幂)

    0  1  0                                    0  1  0                                        1  1  0

    0*2^2+1*2^1+0*2^0=2          0*2^2+1*2^1+0*2^0=2               1*2^2+1*2^1+0*2^0=6

    然后合并得到226就是转换后的八进制数。

    2.二进制转十进制

    拿二进制数10010110举例

    这里就不需要划分区域,而是直接进行计算。(计算方法是从右向左依次乘上2的n次幂,n从零开始,^符号表示次幂)

    1*2^7+0*2^6+0*2^5+1*2^4+0*2^3+1*2^2+1*2^1+0*2^0=150

    3.二进制转十六进制

    拿二进制数100101100举例

    二进制转十六进制和二进制转八进制类似,不过转十六进制划分区域为4个,不足也是补零

    000100101100

    0001                                               0010                                                1100

    0*2^3+0*2^2+0*2^1+1*2^0=1        0*2^3+0*2^2+1*2^1+0*2^0=2        1*2^3+1*2^2+0*2^1+0*2^0=12(12也就是十六进制中的C)

    合并为12C

    4.八进制转二进制

    八进制转二进制是二进制转换成八进制的逆过程。(不足时也是补零)

    拿八进制数226举例(需要取余数,采用倒叙过程)

    2                                                         2                                                                  6

    2/2=1(余数为0)                                  2/2=1(余数为0)                                            6/2=3(余数为0) 

    1/2=0(余数为1)                                  1/2=0(余数为1)                                            3/2=1(余数为1)   

                                                                                                                                  1/2=0(余数为1)    

                                                      

    所以取余数为10,不足三位,则补零,为010.                                                       余数为110

    最后合并,最终转换的二进制数为10010110

    5.八进制转十进制

    拿八进制数226举例(由右向左依次乘以8的n次幂,n从零开始)

    2*8^2+2*8^1+6*8^0=150

    6.八进制转十六进制

    八进制不能直接转换为十六进制。可以采用间接转换法来进行转换。

    1.先把八进制转换为二进制,然后再转换为十六进制。

    2.先把八进制转换为十进制,然后再转换为十六进制。

    拿八进制数226举例,从上面可以看出转换为二进制为10010110,然后我们再把它转换为16进制。

    划分区域

    1001                                                   0110

    1*2^3+0*2^2+0*2^1+1*2^0=9            0*2^3+1*2^2+1*2^1+0*2^0=6

    合并为96,所以八进制226转换为十六进制为96.

    第二种也是一样,小编在这里就不再举例,大家可以试试看,也是一样的结果。

    7.十进制转二进制

    十进制转二进制就是二进制转十进制的逆过程。同样,我们也拿十进制150来举例。

    150/2=75(余数为0)

    75/2=37(余数为1)

    37/2=18(余数为1)

    18/2=9(余数为0)

    9/2=4(余数为1)

    4/2=2(余数为0)

    2/2=1(余数为0)

    1/2=0(余数为1)

    整合为10010110即是转换的二进制。

    8.十进制转八进制

    十进制转八进制和八进制转十进制是互逆的,我们拿150来举例。

    150/8=18(余数为6)

    18/8=2(余数为2)

    2/8=0(余数为2)

    整合为226,得到八进制数。

    9.十进制转十六进制

    十进制转十六进制和十六进制转十进制是互逆的,我们拿150来举例。

    150/16=9(余数为6)

    9/16=0(余数为9)

    整合为96,得到十六进制数。

    10.十六进制转二进制

    十六进制转二进制和二进制转十六进制是互逆的,我们拿12C来举例。(不足的位数补零)

    1                                                             2                                                               C(转化为12)

    1/2=0(余数为1)                                      2/2=1(余数为0)                                         12/2=6(余数为0)  

                                                                  1/2=0(余数为1)                                          6/2=3(余数为0)

                                                                                                                                    3/2=1(余数为1)

                                                                                                                                    1/2=0(余数为1)

    0001                                                     0010                                                            1100

    整合为000100101100

    11.十六进制转八进制

    八进制不能直接转换为十六进制。那么十六进制也不能直接转化为八进制,可以采用间接转换法来进行转换。

    1.先把十六进制转换为二进制,然后再转换为八进制。

    2.先把十六进制转换为十进制,然后再转换为八进制。

    这里就不再介绍转化的过程,和八进制转化为十六进制一样,这里就是一个逆过程。

    12.十六进制转十进制

    拿十六进制96来举例(由右向左依次乘以16的n次幂,n从零开始)

    9*16^1+6*16^0=150

    好了,上面就是二进制,八进制,十进制,十六进制之间的转换。我们可以进行分类记忆,并总结规律。

    注意:1.我们在将进制数除以2的时候一定要选择逆顺序。

               2.在乘以次幂的时候也是从右往左的顺序,由零次幂依次递增。

               3.在选择区域的时候一定要看清是转换十六进制还是八进制,否则就会出错,记住不足的位数一定要补零哦。

    这些就是小编要提醒的注意事项,当然了,通过实例,自己多多练习,相信进制的转换对于大家来说就是很简单的啦。

    感谢朋友们对小编文章的评价哦!小编在后期也补充了小数部分的进制转换。请参考文章https://blog.csdn.net/mez_Blog/article/details/102468841希望大家多多支持哦^_^

    Endeavor

    展开全文
  • 进制转换进制转换十进制二进制二进制转十进制二进制转八进制 及 八进制转十进制二进制转十六进制 及 十六进制转十进制 进制转换 进制转换是人们利用符号来计数的方法。今天主要说一下十进制、二进制、八进制...
  • 现在大家都有电脑,利用电脑自带的计算机进行进制转换是最简便的方法,下面是由百分网小编为大家准备的计算机进制转换方法,喜欢的可以收藏一下!了解更多详情资讯,请关注应届毕业生考试网!计算机中常用的进制主要...
  • C语言算法之将十进制转换二进制

    万次阅读 多人点赞 2018-06-20 14:35:29
    导语:在C语言中没有将其他进制的数直接输出为二进制数的工具或方法,输出为八进制数可以用%o,输出为十六进制可以用%x,输出为二进制就要我们自行解决了。下面给大家讲述一下如何编程实现将十进制转换二进制数...
  • 进制换算在工作中是一项必不可少的技能,例如在RTC中得到的数据为十六进制的,但是我们使用时用的是十进制。这就免不了进行进制之间的换算。进制之间的换算可以手动计算进行换算,也可以编写程序进行换算。这里主要...
  • 一、基本概念 日常生活中通常采用十进制来描述整数数据,逢十进一,权重是:100、101、102、……10^0 、10^1 、10^2、 ……计算机...十进制二进制之间的转换a)、正十进制转换二进制的方式 方法一:除二取余法,让
  • 释放双眼,带上耳机,听听看~!1、计算机的数制介绍数制:计数的方法,指用一组固定的符号和统一的规则来...2、数制的表示方法3、数制的计算4、进制之间的转换4.1、正整数的十进制转换二进制将一个十进制数除以二,...
  • 进制转换二进制和十六进制的方法 十进制数转换成二进制数-般分为两个步骤,即整数部分的转换和小数部分的转换。 (1 )整数部分的转换 *除2取余法:*这种方法是由于D10=N2 =dn-1x2n-1十dn-2x2n-2 +… d1x21十d0x20,...
  • 计算机进制转换二进制、八进制、十进制、十六进制一、什么是进制在生活中,我们通常都是使用阿拉伯数字计数的,也就是10进制,以10为单位,遇10进一,所以是由0,1,2、3、4、5、6、7、8、9组成的;而在计算机中,...
  • 十进制整数转换二进制为倒取余数, 但是小数需要另行方式计算, 最后一整合就是十进制的浮点数转为二进制的结果。
  • 一、正整数的十进制转换二进制:要点:除二取余,倒序排列解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果例如把52换算成二进制数,计算...
  • 二进制到十进制数字转换使用加权列来标识数字的顺序以确定数字的最终值将二进制转换十进制(base-2到base-10) )数字和背面是一个重要的概念,因为二进制编号系统构成了所有计算机和数字系统的基础。十进制或...
  • 二进制十进制八进制 → 十进制十六进制 → 十进制十进制) → (二、八、十六进制) 十进制二进制十进制 → 八进制十进制 → 十六进制 (二进制) ↔ (八、十六进制) 二进制
  • 二进制数01011010扩大2倍之后是多少?急求~先把它转换成为 10进制 变成...简便算法:111111=1000000-1(二进制)1000000(二进制)=1*2的六次方=64(十进制)1(二进制)=1(十进制)111111(二进制)=64-1=63(十进制) 普通换算...
  • 二进制 转换方法

    2021-05-15 17:23:24
    1、二进制转换十进制方法 以二进制8举例: 即为1000 2、十进制转换为二进制方法十进制的1000举例: 1 0 0 0 累加 1*2^3=8 0*2...
  • 二进制十进制计算方法

    万次阅读 2018-11-22 12:28:44
    口诀: 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 ........ 11111111 (2) 从右往左数平方 0开始 =1x20+1x21+1x22+1x23+1x24+1x...
  • 先理解什么是二进制 二进制(binary)是在数学和数字电路中指以2为基数的记数系统,是以2为基数代表系统的二进位制。这一系统中,通常用两个不同的符号0(代表...先将上面的数字计算二进制 1-> 00000001 7-> 0
  • 二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码...二进制转换十进制公式:abcd.efg(2)=d*2^0+c*2^1+b*2^2+a*2^3+e*2^-1+f*2^-2+g*2^-3(10)例如二进制数据110.11,其权的大小顺序为2^2、2^1、2^0...
  • 一.本文所涉及的内容... 二进制十进制 八进制 → 十进制 十六进制 → 十进制十进制) → (二、八、十六进制) 十进制二进制 十进制 → 八进制 十进制 → 十六进制 (...
  • 1、计算机中的十进制二进制的转换【 课 题 】 二进制与十进制转换 【教学目的与要求】 1、熟悉数制的概念; 2、掌握位权表示法; 3、熟练掌握各数制之 间的转换方法。【教学重点与难点】 难点:位权表示法 十进制 ...
  • 进制转换是人们利用符号来计数的方法进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。 数位是指,数字符号在一个数中所处的位置。 基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符...
  • 十进制与二进制的转换2.1对应关系2.2举例一:二进制1011转换十进制2.3举例二:二进制10111转换十进制2.3举例三:十进制45转换成二进制2.4举例四:十进制小数0.25转换成二进制3.八进制与二进制3.1对应关系3.2举例一:...
  • 二进制转换十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。 步骤 [1] 从最后一位开始算,依次列为第0、1、2...位第n位的数...
  • 在解决该题之前,我们先来了解一下十进制转换二进制方法将十进制转换二进制方法方法一:利用Interger.toBinaryString()的方法方法二:除基倒取余法 输入一个十进制数n,每次用n除以2,把余数记下来,再用...
  • 常见的进制为:二进制,八进制,十进制,十六进制 二进制的基数为:0,1 即二进制数都用0和1来表示 八进制的基数为:0,1,2,3,4,5,6,7 ...该转换与二进制转换十进制方法一致,只需计算时将2换成
  • 二进制十进制转换

    万次阅读 多人点赞 2018-04-29 00:06:47
    一、十进制转换二进制 1.1 正整数转二进制 要点:除二取余,倒序排列,高位补零。 方法:将正的十进制数除以二,得到的商再除以二,依次类推直至商为0或1时为止,然后在旁边标出各步的余数,最后倒着写出来,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 125,512
精华内容 50,204
关键字:

二进制转换十进制计算方法