精华内容
下载资源
问答
  • 进制转换算法原理(二进制 八进制 十进制 十六进制),以前上学那会确实学过,长时间不用都忘了。
  • private string zhuanTwo(int chushu)  {  string res = "";  if (chushu )  {  return chushu.ToString();  }  else  {  int shang ;...//返回二进制序列  }    }

     private string  zhuanTwo(int chushu)
            {
                string res = "";
                if (chushu < 2)
                {
                    return chushu.ToString();
                }
                else
                {
                    int shang ;           
                  do
                  {
                      res = res + chushu % 2;//取出余数
                      chushu = chushu / 2;//除2,然后继续取余数
                      shang = chushu / 2;

                  }while(shang>0);//商小于0了 结束循环
                  res = res + chushu % 2;//得到了余数序列
                   //开始反转字符串
                  char[] temp = res.ToCharArray();             
                  StringBuilder sb = new StringBuilder();
                  for (int i = temp.Length-1; i >=0 ; i--)
                  {
                      sb.Append(temp[i]);
                  }

                    return sb.ToString();//返回二进制序列
                }
               
            }

    展开全文
  • 进制转换算法(Convert) (一) (二、八、十六进制) → (十进制) (二) (十进制) → (二、八、十六进制) (三) (二进制) ↔ (八、十六进制) (四) (八进制) ↔ (十六进制) 四.扩展阅读  之前...

    目录

    三.进制转换算法(Convert)

    (一) (二、八、十六进制) → (十进制)

    (二) (十进制) → (二、八、十六进制)

    (三) (二进制) ↔ (八、十六进制)

    (四) (八进制) ↔ (十六进制)

    四.扩展阅读


     

     之前使用SQL把十进制的整数转换为三十六进制,SQL代码请参考:SQL Server 进制转换函数,其实它是基于二、八、十、十六进制转换的计算公式的,进制之间的转换是很基础的知识,但是我发现网络上没有一篇能把它说的清晰、简单、易懂的文章,所以我才写这篇文章的念头,希望能让你再也不用担心、害怕进制之间的转换了。

      下面是二、八、十、十六进制之间关系的结构图:

    wpsC01D.tmp

    (Figure1:进制关系结构图)

    下文会分4个部分对这个图进行分解,针对每个部分会以图文的形式进行讲解:

    1. (二、八、十六进制) → (十进制);
    2. (十进制) → (二、八、十六进制);
    3. (二进制) ↔ (八、十六进制);
    4. (八进制) ↔ (十六进制);

    三.进制转换算法(Convert)

      在数字后面加上不同的字母来表示不同的进位制。B(Binary)表示二进制,O(Octal)表示八进制,D(Decimal)或不加表示十进制,H(Hexadecimal)表示十六进制。例如:(101011)B=(53)O=(43)D=(2B)H

    (一) (二、八、十六进制) → (十进制)

    wpsC01E.tmp

    (Figure2:其他进制转换为十进制)

    • 二进制 → 十进制

      方法:二进制数从低位到高位(即从右往左)计算,第0位的权值是2的0次方,第1位的权值是2的1次方,第2位的权值是2的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      例:将二进制的(101011)B转换为十进制的步骤如下:

    1. 第0位 1 x 2^0 = 1;

    2. 第1位 1 x 2^1 = 2;

    3. 第2位 0 x 2^2 = 0;

    4. 第3位 1 x 2^3 = 8;

    5. 第4位 0 x 2^4 = 0;

    6. 第5位 1 x 2^5 = 32;

    7. 读数,把结果值相加,1+2+0+8+0+32=43,即(101011)B=(43)D。

    • 八进制 → 十进制

      方法:八进制数从低位到高位(即从右往左)计算,第0位的权值是8的0次方,第1位的权值是8的1次方,第2位的权值是8的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      八进制就是逢8进1,八进制数采用 0~7这八数来表达一个数。

      例:将八进制的(53)O转换为十进制的步骤如下:

    1. 第0位 3 x 8^0 = 3;

    2. 第1位 5 x 8^1 = 40;

    3. 读数,把结果值相加,3+40=43,即(53)O=(43)D。

    • 十六进制 → 十进制

      方法:十六进制数从低位到高位(即从右往左)计算,第0位的权值是16的0次方,第1位的权值是16的1次方,第2位的权值是16的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      十六进制就是逢16进1,十六进制的16个数为0123456789ABCDEF。

      例:将十六进制的(2B)H转换为十进制的步骤如下:

    1. 第0位 B x 16^0 = 11;

    2. 第1位 2 x 16^1 = 32;

    3. 读数,把结果值相加,11+32=43,即(2B)H=(43)D。

    (二) (十进制) → (二、八、十六进制)

    wpsC01F.tmp

    (Figure3:十进制转换为其它进制)

    • 十进制 → 二进制

      方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。 

      例:将十进制的(43)D转换为二进制的步骤如下:

    1. 将商43除以2,商21余数为1;

    2. 将商21除以2,商10余数为1;

    3. 将商10除以2,商5余数为0;

    4. 将商5除以2,商2余数为1;

    5. 将商2除以2,商1余数为0; 

    6. 将商1除以2,商0余数为1; 

    7. 读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,101011,即(43)D=(101011)B。

    wpsC02F.tmp

    (Figure4:图解十进制 → 二进制)

    • 十进制 → 八进制

      方法1:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

      例:将十进制的(796)D转换为八进制的步骤如下:

    1. 将商796除以8,商99余数为4;

    2. 将商99除以8,商12余数为3;

    3. 将商12除以8,商1余数为4;

    4. 将商1除以8,商0余数为1;

    5. 读数,因为最后一位是经过多次除以8才得到的,因此它是最高位,读数字从最后的余数向前读,1434,即(796)D=(1434)O。

    wpsC030.tmp

    (Figure5:图解十进制 → 八进制)

      方法2:使用间接法,先将十进制转换成二进制,然后将二进制又转换成八进制;

    wpsC031.tmp

    (Figure6:图解十进制 → 八进制)

    • 十进制 → 十六进制

      方法1:除16取余法,即每次将整数部分除以16,余数为该位权上的数,而商继续除以16,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

      例:将十进制的(796)D转换为十六进制的步骤如下:

    1. 将商796除以16,商49余数为12,对应十六进制的C;

    2. 将商49除以16,商3余数为1;

    3. 将商3除以16,商0余数为3;

    4. 读数,因为最后一位是经过多次除以16才得到的,因此它是最高位,读数字从最后的余数向前读,31C,即(796)D=(31C)H。

    wpsC042.tmp

    (Figure7:图解十进制 → 十六进制)

      方法2:使用间接法,先将十进制转换成二进制,然后将二进制又转换成十六进制;

    wpsC043.tmp

    (Figure8:图解十进制 → 十六进制)

    (三) (二进制) ↔ (八、十六进制)

    wpsC044.tmp

    (Figure9:二进制转换为其它进制)

    • 二进制 → 八进制

      方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。

      例:将二进制的(11010111.0100111)B转换为八进制的步骤如下:

    1. 小数点前111 = 7;

    2. 010 = 2;

    3. 11补全为011,011 = 3;

    4. 小数点后010 = 2;

    5. 011 = 3;

    6. 1补全为100,100 = 4;

    7. 读数,读数从高位到低位,即(11010111.0100111)B=(327.234)O。

    wpsC054.tmp

    (Figure10:图解二进制 → 八进制)

    二进制与八进制编码对应表:

    二进制

    八进制

    000

    0

    001

    1

    010

    2

    011

    3

    100

    4

    101

    5

    110

    6

    111

    7

     

    • 八进制 → 二进制

      方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。

      例:将八进制的(327)O转换为二进制的步骤如下:

    1. 3 = 011;

    2. 2 = 010;

    3. 7 = 111;

    4. 读数,读数从高位到低位,011010111,即(327)O=(11010111)B。

    wpsC055.tmp

    (Figure11:图解八进制 → 二进制)

    • 二进制 → 十六进制

      方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。

      例:将二进制的(11010111)B转换为十六进制的步骤如下:

    1. 0111 = 7;

    2. 1101 = D;

    3. 读数,读数从高位到低位,即(11010111)B=(D7)H。

    wpsC056.tmp

    (Figure12:图解二进制 → 十六进制)

    • 十六进制 → 二进制

      方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。

      例:将十六进制的(D7)H转换为二进制的步骤如下:

    1. D = 1101;

    2. 7 = 0111;

    3. 读数,读数从高位到低位,即(D7)H=(11010111)B。

    wpsC057.tmp

    (Figure13:图解十六进制 → 二进制)

    (四) (八进制) ↔ (十六进制)

    wpsC058.tmp

    (Figure14:八进制与十六进制之间的转换)

    • 八进制 → 十六进制

      方法:将八进制转换为二进制,然后再将二进制转换为十六进制,小数点位置不变。

      例:将八进制的(327)O转换为十六进制的步骤如下:

    1. 3 = 011;

    2. 2 = 010;

    3. 7 = 111;

    4. 0111 = 7;

    5. 1101 = D;

    6. 读数,读数从高位到低位,D7,即(327)O=(D7)H。

    wpsC069.tmp

    (Figure15:图解八进制 → 十六进制)

    • 十六进制 → 八进制

      方法:将十六进制转换为二进制,然后再将二进制转换为八进制,小数点位置不变。

      例:将十六进制的(D7)H转换为八进制的步骤如下:

    1. 7 = 0111;

    2. D = 1101;

    3. 0111 = 7;

    4. 010 = 2;

    5. 011 = 3;

    6. 读数,读数从高位到低位,327,即(D7)H=(327)O。

    wpsC06A.tmp

    (Figure16:图解十六进制 → 八进制)

    四.扩展阅读

      1. 包含小数的进制换算:

    (ABC.8C)H=10x16^2+11x16^1+12x16^0+8x16^-1+12x16^-2

    =2560+176+12+0.5+0.046875

    =(2748.546875)D

      2. 负次幂的计算:

    2^-5=2^(0-5)=2^0/2^5=1/2^5

    同底数幂相除,底数不变,指数相减,反过来

    3. 我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。

     

    reference:

    https://www.cnblogs.com/gaizai/p/4233780.html

    展开全文
  • 进制转换算法(Convert) (二、八、十六进制) → (十进制) 二进制 → 十进制 八进制 → 十进制 十六进制 → 十进制 (十进制) → (二、八、十六进制) 十进制 → 二进制 十进制 → 八进制 十进制 →...

    此文章转载的,与大家共享一下。

    一.本文所涉及的内容(Contents)

    1. 本文所涉及的内容(Contents)
    2. 背景(Contexts)
    3. 进制转换算法(Convert)
      1. (二、八、十六进制) → (十进制)
        1. 二进制 → 十进制
        2. 八进制 → 十进制
        3. 十六进制 → 十进制
      2. (十进制) → (二、八、十六进制)
        1. 十进制 → 二进制
        2. 十进制 → 八进制
        3. 十进制 → 十六进制
      3. (二进制) ↔ (八、十六进制)
        1. 二进制 → 八进制
        2. 八进制 → 二进制
        3. 二进制 → 十六进制
        4. 十六进制 → 二进制
      4. (八进制) ↔ (十六进制)
        1. 八进制 → 十六进制
        2. 十六进制 → 八进制
    4. 扩展阅读
    5. 参考文献(References)

    二.背景(Contexts)

      之前使用SQL把十进制的整数转换为三十六进制,SQL代码请参考:SQL Server 进制转换函数,其实它是基于二、八、十、十六进制转换的计算公式的,进制之间的转换是很基础的知识,但是我发现网络上没有一篇能把它说的清晰、简单、易懂的文章,所以我才写这篇文章的念头,希望能让你再也不用担心、害怕进制之间的转换了。

      下面是二、八、十、十六进制之间关系的结构图:

    wpsC01D.tmp

    (Figure1:进制关系结构图)

    下文会分4个部分对这个图进行分解,针对每个部分会以图文的形式进行讲解:

    1. (二、八、十六进制) → (十进制);
    2. (十进制) → (二、八、十六进制);
    3. (二进制) ↔ (八、十六进制);
    4. (八进制) ↔ (十六进制);

    三.进制转换算法(Convert)

      在数字后面加上不同的字母来表示不同的进位制。B(Binary)表示二进制,O(Octal)表示八进制,D(Decimal)或不加表示十进制,H(Hexadecimal)表示十六进制。例如:(101011)B=(53)O=(43)D=(2B)H

    (一) (二、八、十六进制) → (十进制)

    wpsC01E.tmp

    (Figure2:其他进制转换为十进制)

    • 二进制 → 十进制

      方法:二进制数从低位到高位(即从右往左)计算,第0位的权值是2的0次方,第1位的权值是2的1次方,第2位的权值是2的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      例:将二进制的(101011)B转换为十进制的步骤如下:

    1. 第0位 1 x 2^0 = 1;

    2. 第1位 1 x 2^1 = 2;

    3. 第2位 0 x 2^2 = 0;

    4. 第3位 1 x 2^3 = 8;

    5. 第4位 0 x 2^4 = 0;

    6. 第5位 1 x 2^5 = 32;

    7. 读数,把结果值相加,1+2+0+8+0+32=43,即(101011)B=(43)D。

    • 八进制 → 十进制

      方法:八进制数从低位到高位(即从右往左)计算,第0位的权值是8的0次方,第1位的权值是8的1次方,第2位的权值是8的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      八进制就是逢8进1,八进制数采用 0~7这八数来表达一个数。

      例:将八进制的(53)O转换为十进制的步骤如下:

    1. 第0位 3 x 8^0 = 3;

    2. 第1位 5 x 8^1 = 40;

    3. 读数,把结果值相加,3+40=43,即(53)O=(43)D。

    • 十六进制 → 十进制

      方法:十六进制数从低位到高位(即从右往左)计算,第0位的权值是16的0次方,第1位的权值是16的1次方,第2位的权值是16的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

      十六进制就是逢16进1,十六进制的16个数为0123456789ABCDEF。

      例:将十六进制的(2B)H转换为十进制的步骤如下:

    1. 第0位 B x 16^0 = 11;

    2. 第1位 2 x 16^1 = 32;

    3. 读数,把结果值相加,11+32=43,即(2B)H=(43)D。

    (二) (十进制) → (二、八、十六进制)

    wpsC01F.tmp

    (Figure3:十进制转换为其它进制)

    • 十进制 → 二进制

      方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。 

      例:将十进制的(43)D转换为二进制的步骤如下:

    1. 将商43除以2,商21余数为1;

    2. 将商21除以2,商10余数为1;

    3. 将商10除以2,商5余数为0;

    4. 将商5除以2,商2余数为1;

    5. 将商2除以2,商1余数为0; 

    6. 将商1除以2,商0余数为1; 

    7. 读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,101011,即(43)D=(101011)B。

    wpsC02F.tmp

    (Figure4:图解十进制 → 二进制)

    • 十进制 → 八进制

      方法1:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

      例:将十进制的(796)D转换为八进制的步骤如下:

    1. 将商796除以8,商99余数为4;

    2. 将商99除以8,商12余数为3;

    3. 将商12除以8,商1余数为4;

    4. 将商1除以8,商0余数为1;

    5. 读数,因为最后一位是经过多次除以8才得到的,因此它是最高位,读数字从最后的余数向前读,1434,即(796)D=(1434)O。

    wpsC030.tmp

    (Figure5:图解十进制 → 八进制)

      方法2:使用间接法,先将十进制转换成二进制,然后将二进制又转换成八进制;

    wpsC031.tmp

    (Figure6:图解十进制 → 八进制)

    • 十进制 → 十六进制

      方法1:除16取余法,即每次将整数部分除以16,余数为该位权上的数,而商继续除以16,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

      例:将十进制的(796)D转换为十六进制的步骤如下:

    1. 将商796除以16,商49余数为12,对应十六进制的C;

    2. 将商49除以16,商3余数为1;

    3. 将商3除以16,商0余数为3;

    4. 读数,因为最后一位是经过多次除以16才得到的,因此它是最高位,读数字从最后的余数向前读,31C,即(796)D=(31C)H。

    wpsC042.tmp

    (Figure7:图解十进制 → 十六进制)

      方法2:使用间接法,先将十进制转换成二进制,然后将二进制又转换成十六进制;

    wpsC043.tmp

    (Figure8:图解十进制 → 十六进制)

    (三) (二进制) ↔ (八、十六进制)

    wpsC044.tmp

    (Figure9:二进制转换为其它进制)

    • 二进制 → 八进制

      方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。

      例:将二进制的(11010111.0100111)B转换为八进制的步骤如下:

    1. 小数点前111 = 7;

    2. 010 = 2;

    3. 11补全为011,011 = 3;

    4. 小数点后010 = 2;

    5. 011 = 3;

    6. 1补全为100,100 = 4;

    7. 读数,读数从高位到低位,即(11010111.0100111)B=(327.234)O。

    wpsC054.tmp

    (Figure10:图解二进制 → 八进制)

    二进制与八进制编码对应表:

    二进制

    八进制

    000

    0

    001

    1

    010

    2

    011

    3

    100

    4

    101

    5

    110

    6

    111

    7

     

    • 八进制 → 二进制

      方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。

      例:将八进制的(327)O转换为二进制的步骤如下:

    1. 3 = 011;

    2. 2 = 010;

    3. 7 = 111;

    4. 读数,读数从高位到低位,011010111,即(327)O=(11010111)B。

    wpsC055.tmp

    (Figure11:图解八进制 → 二进制)

    • 二进制 → 十六进制

      方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。

      例:将二进制的(11010111)B转换为十六进制的步骤如下:

    1. 0111 = 7;

    2. 1101 = D;

    3. 读数,读数从高位到低位,即(11010111)B=(D7)H。

    wpsC056.tmp

    (Figure12:图解二进制 → 十六进制)

    • 十六进制 → 二进制

      方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。

      例:将十六进制的(D7)H转换为二进制的步骤如下:

    1. D = 1101;

    2. 7 = 0111;

    3. 读数,读数从高位到低位,即(D7)H=(11010111)B。

    wpsC057.tmp

    (Figure13:图解十六进制 → 二进制)

    (四) (八进制) ↔ (十六进制)

    wpsC058.tmp

    (Figure14:八进制与十六进制之间的转换)

    • 八进制 → 十六进制

      方法:将八进制转换为二进制,然后再将二进制转换为十六进制,小数点位置不变。

      例:将八进制的(327)O转换为十六进制的步骤如下:

    1. 3 = 011;

    2. 2 = 010;

    3. 7 = 111;

    4. 0111 = 7;

    5. 1101 = D;

    6. 读数,读数从高位到低位,D7,即(327)O=(D7)H。

    wpsC069.tmp

    (Figure15:图解八进制 → 十六进制)

    • 十六进制 → 八进制

      方法:将十六进制转换为二进制,然后再将二进制转换为八进制,小数点位置不变。

      例:将十六进制的(D7)H转换为八进制的步骤如下:

    1. 7 = 0111;

    2. D = 1101;

    3. 0111 = 7;

    4. 010 = 2;

    5. 011 = 3;

    6. 读数,读数从高位到低位,327,即(D7)H=(327)O。

    wpsC06A.tmp

    (Figure16:图解十六进制 → 八进制)

    四.扩展阅读

      1. 包含小数的进制换算:

    (ABC.8C)H=10x16^2+11x16^1+12x16^0+8x16^-1+12x16^-2

    =2560+176+12+0.5+0.046875

    =(2748.546875)D

      2. 负次幂的计算:

    2^-5=2^(0-5)=2^0/2^5=1/2^5

    同底数幂相除,底数不变,指数相减,反过来

    3. 我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。

    五.参考文献(References)

    二进制、八进制、十进制、十六进制之间转换

    二进制如何转换成八进制

    转载于:https://www.cnblogs.com/Study088/p/7448047.html

    展开全文
  • 因为自带的方法在进行十六进制转为二进制的时候,精度在13位字符后就会出现丢失,为了让精度不丢失就自己根据16进制转换2进制的原理写了两个两个方法 如果长度没有超过13位,可以用parseInt("125adf8",...

           为什么要单独写个方法去做不同进制之间的转换呢?因为自带的方法在进行十六进制转为二进制的时候,精度在13位字符后就会出现丢失,为了让精度不丢失就自己根据16进制转换2进制的原理写了两个方法

        如果长度没有超过13位,可以用parseInt("125adf8",16).toString(2)='1001001011010110111111000',

       十六进制转换二进制  (本次转换的方法没有考虑带小数点的情况)

    function hex_to_bin(str) {
                let hex_array = [{key:0,val:"0000"},{key:1,val:"0001"},{key:2,val:"0010"},{key:3,val:"0011"},{key:4,val:"0100"},{key:5,val:"0101"},{key:6,val:"0110"},{key:7,val:"0111"},
                    {key:8,val:"1000"},{key:9,val:"1001"},{key:'a',val:"1010"},{key:'b',val:"1011"},{key:'c',val:"1100"},{key:'d',val:"1101"},{key:'e',val:"1110"},{key:'f',val:"1111"}]
    
                let value=""
                for(let i=0;i<str.length;i++){
                    for(let j=0;j<hex_array.length;j++){
                        if(str.charAt(i).toLowerCase()== hex_array[j].key){
                            value = value.concat(hex_array[j].val)
                            break
                        }
                    }
                }
                console.log(value)
                return value
            }

    二进制转十六进制    (本次转换的方法没有考虑带小数点的情况)

    function bin_to_hex(str) {
                let hex_array = [{key:0,val:"0000"},{key:1,val:"0001"},{key:2,val:"0010"},{key:3,val:"0011"},{key:4,val:"0100"},{key:5,val:"0101"},{key:6,val:"0110"},{key:7,val:"0111"},
                    {key:8,val:"1000"},{key:9,val:"1001"},{key:'a',val:"1010"},{key:'b',val:"1011"},{key:'c',val:"1100"},{key:'d',val:"1101"},{key:'e',val:"1110"},{key:'f',val:"1111"}]
                let value = ''
                let list=[]
                console.log(str)
                if(str.length%4!==0){
                    let a = "0000"
                    let b=a.substring(0,4-str.length%4)
                    str = b.concat(str)
                }
                console.log(str)
                while (str.length > 4) {
                    list.push(str.substring(0, 4))
                    str = str.substring(4);
                }
                list.push(str)
                console.log(list)
                for(let i=0;i<list.length;i++){
                    for(let j=0;j<hex_array.length;j++){
                        if(list[i]==hex_array[j].val){
                            value = value.concat(hex_array[j].key)
                            break
                        }
                    }
                }
                console.log(value)
                return value
            }

    异或运算 (需要上面两个方法做基础)

    function xor(a ,b){
                let A = hex_to_bin(a)
                let B = hex_to_bin(b)
                console.log(a+"   a的二进制:"+A)
                console.log(b+"   b的二进制:"+B)
                let o = "00000000000000000000000000000000000"
                if(A.toString().length > B.toString().length){
                    let c = A.toString().length - B.toString().length
                    B = o.substr(0,c).concat(B)
                }else if(A.toString().length < B.toString().length){
                    let c = B.toString().length - A.toString().length
                    A = o.substr(0,c).concat(A)
                }
                console.log('B:'+B)
                console.log('A:'+A)
                let d = ""
                for(let i=0;i<A.toString().length;i++){
                    if(A.toString()[i]==B.toString()[i]){
                        let q="0"
                        d = d.concat(q)
                    }else{
                        let p="1"
                        d = d.concat(p)
                    }
                }
                console.log(bin_to_hex(d))
                return bin_to_hex(d)
            }

    版权声明:本文为博主原创文章,未经博主允许不得转载。https://blog.csdn.net/lixiwoaini/article/details/82179094

    展开全文
  • java里面是有进制间互换现成的方法的:public class十进制与各进制的相互转换 {public static voidmain(String[] args){//java已经实现的机制:十进制转换二进制int decimal = 10;System.out.println("十进制数:"+...
  • 2进制转10进制,10进制转2进制 //2进制转10进制: 按权相加 public static double binary2decimal(String binaryStr) { String[] binaryArr = binaryStr.split("\\."); String integer = binaryArr[0];...
  • 进制转换算法

    2014-05-26 05:16:23
    *一个进位制转换的的小程序,完全是通过数学方法实现,而不是直接调用 ... *如果要将一个二进制直接转换为 8或16进制可以先将2进制转换为10进制,再由10 *进制转换为 8或16进制,其他进制的相互转换同理
  • 进制转换算法概念 其核心是利用栈的存储结构性质,进行数据的入栈出栈时的计算,让后将计算好的数据存入另一个栈内,最后再出栈输出。由于栈的先进后出特性,最后输出的顺序和输入的顺序是一样的。具体如上图。 ...
  • 这种题也是一道经典的面试题,主要考察进制转换细想,Coding质量等。  当我们把十进制转成二进制的时候,我们通过辗转相除,取余,逆置余数序列的过程得到新的进制的数。因此我们可以借助这种思想把M进制转成N...
  • 包括特殊情况直接转换, 位权相加法, 短除法, double-dabble算法. 考虑一个 N 位的 w 进制正整数 x , 令 为其第 i 位数码 ( i 是从 0 开始的, 即最低位为第 0 位), 可以得到: 用递归表示就是: 再考虑 x 在 k 进制表示...
  • 二进制转换成十进制的代码。C++的。想要的童鞋速度下啊。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...
  • 任意进制转换算法

    2017-11-26 20:51:00
    任意进制转换算法 N年没有写博客,发个进制转换的玩下,支持负数;功能属于简化版的 Convert.ToInt32 ,特点是: 1、任意位,如:0,1(二进制),0...7(八进制),0...9,A...F(16进制),0...N(N进制),或者是...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 2,969
精华内容 1,187
关键字:

二进制转换算法