精华内容
下载资源
问答
  • 二项分布的表示方法
    2021-07-01 01:07:29

    实验三、二项分布与泊松分布实验

    实验序号:3 日期:2013 年 4 月 3 日

    班级数学学院2011级 C班学号114080185姓名邓伍丹实验名称二项分布与泊松分布实验问题的背景和目的:

    随着计算机技术的迅速发展,很多科学试验的全过程都可以在计算机上通过模拟实现。这可以让人们节省大量的时间、人力、物力和财力,具有重要的理论意义和实用价值。

    实验目的是让实验者在计算机上学会二项分布和泊松分布相关概率列、分布函数及分位数的计算方法,掌握在Excel 中动态演示二项分布和泊松分布近似关系的方法.具体要求为:掌握计算二项分布和泊松分布相关概率分布列、分布函数的命令,学会滚动条的制作并能用滚动条对不同的n 和p 进行滚动控制,从而实现对二项分布和泊松分布近似关系的动态演示并对演示结果进行总结分析.实验内容:

    二项分布和泊松分布都是重要的离散型分布,在实际中均有广泛的应用.一般说来,大量重复试验中随机事件出现的频数 X 均服从或近似服从泊松分布.当x服从二项分布,其中n很大,p很小时,np很小,就把np近似为λ, 此时近似服从泊松分布P(λ).本实验就是要通过实际计算、作图和比较等方法对上述结果在不同参数组合情形下给出直观、动态的展示.实验所用软件及版本: Excel2003实验过程:

    1.对于实验(1)在A1中输入函数命令“=BINOMDIST(10,100000,1/10000,0)”,回车后所得结果就是二项分布的概率;在B2中输入函数命令“=BINOMOIST(10,100000,1/1000,1)”,回车后所得结果就是泊松分布的概率。

    2. 仿照实验(1),先设置对实验次数n的滚动条(n的值显示在A3单元格中):在Excel界面中依次单击视图—工具栏—窗体,再出现的表单控件对话框中单击滚动条,然后再工作表空白区任意单击即出现的滚动条,调整其位置、大小,在右击此滚动条,然后再出现的对话框中设置控件格式,包括最大值、最小值分别为30、1、步长为1、页步长为1,确定后完成设置,把该滚动条移动到A4处,再单击滚动条的左右小黑三角就会发现A3中的值在1-30之间变化;下面的是p值的滚动:同上先设置对A9的滚动条,滚动范围是0-100,步长为1,然后再单元格A7内填入“=A8/100”,那么A7的值就随着A8中数值的变化以步长0.01在0-1之间变化。其次在单元格B2和B3中分别填入0和1,选取单元格B2、B3向下拖放填充至B32,就可在单元格B2:B32中得到随机变量X的取值k,k=1,2、、、、、30,再次利用函数BINOMDIST计算二项分布的概率值:现在单元格C2中填入命令“=IF(B2<=$A$3,BINOMDIST(B2,$A$3,$A$7,0),“”)”,算出C2中的概率值P=(X=0),再将C2中计算二项分布概率的公式向下拖放填充至C32,就可计算出全部满足“<=$A$3”的二项分布的概率值P(X=k),k=0,1,2、、、、、30,这里$A$3表示实验次数;最后在利用Excel中的图表向导绘制出二项分布柱形图:选取数据所在的单元格区域$C$2:$C$32,再依次单击插入—图表—柱形图,选取子图表类型中的簇状柱形图,确定后得到柱形图,在对柱形图做一定的修饰。至此只要单击只做好的两个滚动条的左右小黑三角,那么n和p的值就会发生变化,工作表中相应的概率值和柱形图也随之发生变化。

    3.首先在单元格A2、A6中设置滚动条,以滚动条控制二项分布的参数n和p,其中n的变化范围是1-30,步长为1;p的变化范围是0-1,步长为0.01;同时泊松分布的参数(=np)的值显示在单元格A8(公式为“=4($A$2*$A$5)”)中,其次利用拖放填充在单元格B2:B32中给出随机变量X的所有可能取值k,k=1,2、、、30。再利用BINOMDIST和POISSON分别计算对应于每个k的二项分布概率和泊松分布概率值,泊松分布概率的计算公式为””实验结果总结:

    1.对于问题(1),在任一空白单元格(这里为A1)中输入函数命令“=BINOMDIST(10,100000,1/10000,0)”,回车后返回的计算结果为0.125116,对于问题(2),将上述命令的最后一个选项改为1 即可,计算结果为0.583040.如图所示:

    2.两种结果较为接近.即该情况下二项分布不可近似为柏松分布.

    3.设置滚动条

    4.动态地演示二项分布概率是如何随着n 和p 的变化而变化

    5.制作滚动条演示二项分布概率和泊松概率的近似关系.

    实验体会:

    本实验可以得到一个结论就是,二项分布与柏松分布在一定条件下是可以相互近似的.这对在以后数学的学习尤

    更多相关内容
  • 离散型变量 如:二项分布、泊松分布 三者之间的关系 二项分布(Binomial distribution) 二项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布,记作。伯努利试验是只有两种可能结果的单次随机...

    变量类型:

    1. 连续型变量         如:指数分布、正态分布
    2. 离散型变量         如:二项分布、泊松分布

    三者之间的关系

    二项分布(Binomial distribution)

    二项分布(Binomial distribution)n重伯努利试验成功次数的离散概率分布,记作B(n,\pi )伯努利试验是只有两种可能结果的单次随机试验。

    伯努利试验都可以表达为“是或否”的问题。例如,抛一次硬币是正面向上吗?刚出生的小孩是个女孩吗?等等

    • 如果试验E是一个伯努利试验,将E独立重复地进行n次,则称这一串重复的独立试验为n重伯努利试验。
    • 进行一次伯努利试验,成功(X=1)概率为p(0<=p<=1),失败(X=0)概率为1-p,则称随机变量X服从伯努利分布。伯努利分布是离散型概率分布,伯努利分布(Bernoulli distribution)又名两点分布或0-1分布。

    二项分布的三个特点:

    • 每次实验结果,只能是两个互斥的结果之一。
    • 各次实验独立,各次的实验结果互不影响。。
    • 相同的实验条件下,每次实验中事件A的发生具有相同的概率\pi

    二项分布的概率函数P(X)可用公式

    P(X)=C_{n}^{X}\pi^{X}(1-\pi )^{n-X}

    其中,C_{n}^{X}=\frac{n!}{X!(n-X)!}

    对于任何二项分布,总有\sum_{X=0}^{n}P(X)=1

    例1.如果某地钩虫感染率为13%,随机观察当地150人,其中恰好有10人感染钩虫的概率有多大?

    分析: 
    (1)钩虫感染只有两个互斥的结果,即感染与非感染;
    (2)每个人被钩虫感染的概率相同;
    (3)人与人之间钩虫感染可假设为相互独立的,所以感染钩虫的人数 X 可认为服从 n = 150,π = 0.13的二项分布。

    P(X)=C_{n}^{X}\pi^{X}(1-\pi )^{n-X}

    P(X=10)=\frac{150!}{10!(150-10)!}\times (0.13^{10}\times 0.87^{(150-10)})=0.0055

    二项分布的特征

    • n,\pi是二项分布的两个参数,所以二项分布的形状取决于n,\pi(阳性率)。
    • \pi =0.5时分布对称,近似对称分布。
    • \pi ≠0.5时,分布呈偏态,特别是 n 较小时,\pi 偏离0.5越远,分布的对称性越差,但只要不接近1和0时,随着n的增大,分布逐渐逼近正态。
    • \pi1-\pi 不太小,而 n足够大,通常 n\pin(1-\pi )大于或等于5,我们常用正态近似的原理来处理二项分布的问题。

    二项分布的正态近似

    • 根据中心极限定理,在n较大,n\pin(1-\pi )均大于或等于5时,二项分布接近与正态分布。
    • n无穷大时,二项分布B(n,\pi)的极限分布是总体均数为\mu =n\pi,总体标准差为\sigma =\sqrt{n\pi (1-\pi )}的正态分布N(n\pi ,n\pi (1-\pi )),此时可用该正态分布进行估计。

    二项分布的均数和标准差

    对于任何一个二项分布B(n,\pi ),如果每次试验出现“阳性” 结果的概率均为\pi,则在 n 次独立重复实验中:

    1、出现  X 次阳性结果

    总体均数(出现阳性结果的次数X的均值):\mu_{X} =n\pi

    标准差(出现阳性结果的次数X的标准差):\sigma_{X} =\sqrt{n\pi (1-\pi )}

    2、阳性结果的频率记做为P=\frac{X}{n}

    P的总体均数(出现阳性结果频率P的均值):\mu_{P} =\pi

    标准差(出现阳性结果频率P的标准差):\sigma_{P} =\sqrt{\frac{\pi (1-\pi )}{n}}

    \sigma_{P}是频率P的标准误,反映阳性频率的抽样误差的大小。

    泊松分布(Poisson distribution)

    泊松分布是二项分布在阳性率特别小时的一种情形,用于描述单位时间、空间、面积等的罕见事件发生次数的概率分布,如:

    • 每毫升水中的大肠杆菌数
    • 单位时间(如1分钟)内放射性质点数
    • 每1000个新生儿中某出生缺陷、多胞胎、染色体异常等事件出现的例数

    泊松分布的三个特点:

    泊松分布是二项分布当中的一种特殊情况,则泊松分布也遵循二项分布的三个特点:

    • 观察结果相互独立
    • 每次试验只有两个结果
    • 发生的概率\pi不变

    如,人群中传染性疾病首例出现后便成为传染源,会增加后续病例出现的概率,因此病例数的分布不能看作是Poisson分布。

    又如,污染的牛奶中细菌成集落存在,单位容量牛奶中细菌数不能认为服从Poisson分布。 

    泊松分布分布一般记作P(\lambda ),其概率函数为: 

    P(X)=e^{-\lambda }\frac{\lambda ^{X}}{X!}

    式中,\lambda=n\pi为Poisson分布的总体均数(\pi表示概率);X 为观察单位内某稀有事件的发生次数;e 为自然对数的底,为常数,约等于2.71828,自然对数的底数e是由一个重要极限给出的:当n趋于无限时,\lim_{n \to +\propto }(1+\frac{1}{n})^n=e

    泊松定理(泊松分布是二项分布当中的一种特殊情况)

    设随机变量X(X=1,2,3,...)服从二项分布,即P(X)=C_{n}^{X}\pi^{X}(1-\pi )^{n-X}。其中,\pi(0<\pi <1)是与n有关的数,且设n\pi =\lambda >0是常数,则有\lim_{X \to \propto }P(X)=e^{-\lambda }\frac{\lambda ^{X}}{X!}X=1,2,3,...

    证明:依题设有\pi =\frac{\lambda }{n},代入P(X)=C_{n}^{X}\pi^{X}(1-\pi )^{n-X}中,有

    \begin{align}P(X) &=\frac{n(n-1)(n-2)...(n-X+1)}{X!}(\frac{\lambda }{n})^{X}(1-\frac{\lambda }{n})^{n-X} \\&=\frac{\lambda ^{X}}{X!}[\frac{n}{n}\cdot \frac{n-1}{n}\cdot \frac{n-2}{n}...\cdot \frac{n-X+1}{n}]\cdot(1-\frac{\lambda }{n}) ^{n}\cdot(1-\frac{\lambda }{n}) ^{-X} \\&=\frac{\lambda ^{X}}{X!}[1\cdot (1-\frac{1}{n})\cdot(1- \frac{2}{n})...\cdot (1-\frac{X-1}{n})]\cdot(1-\frac{\lambda }{n}) ^{n}\cdot(1-\frac{\lambda }{n}) ^{-X} \end{align}

    对于固定的X,有

    \lim_{n \to +\propto }1\cdot (1-\frac{1}{n})\cdot(1- \frac{2}{n})...\cdot (1-\frac{X-1}{n})=1

    \lim_{n \to +\propto }(1-\frac{\lambda }{n}) ^{n}=\lim_{n \to +\propto }(1-\frac{\lambda }{n}) ^{(-\frac{n}{\lambda })\cdot (-\lambda) }=e^{-\lambda }(根据\lim_{n \to +\propto }(1+\frac{1}{n})^n=e

    \lim_{n \to +\propto }(1-\frac{\lambda }{n}) ^{-X}=1

    所以\lim_{X \to \propto }P(X)=e^{-\lambda }\frac{\lambda ^{X}}{X!}X=1,2,3,...

    可见,二项分布的极限分布是泊松分布,当n很大,\pi很小时,可用e^{-\lambda }\frac{\lambda ^{X}}{X!}近似代替C_{n}^{X}\pi^{X}(1-\pi )^{n-X}(n\pi =\lambda ),一般n\geq 20,\pi \leq 0.05时,可采用上次近似公式代替。

    泊松分布的特征

    • 随着\lambda的增大,Poisson分布逐渐趋于对称分布。
    • \lambda>20时,Poisson分布可视为近似正态分布。

    下图表示出了\lambda对泊松分布的影响,\lambda表示泊松分布的均值。当\lambda变大时,不仅整个分布模式向右移动,数据也更加分散,方差随之变大。

    泊松分布的特性

    • 总体均数与总体方差相等:均为\lambda
    • 可加性:从总体均数分别为\lambda1 和\lambda2 的两个Poisson分布总体中各自随机抽出一份样本,其中稀有事件的发生次数分别为X_{1}X_{2} ,则合计发生数T=X_{1}+X_{2 }也服从Poisson分布,总体均数为\lambda1 +\lambda2 。

    可加性的运用:分5次,每次都是监测5毫升的水样,得到的\lambda都比20小,但是5次\lambda相加的之后形成的\lambda比20大的话,我们就可以10毫升水样当中的细菌数的分布用正态近似法了

    例:某放射性物质半小时内发出的脉冲数服从Poisson分布,平均为  360个,试估计该放射性物质半小时内发出的脉冲数大于400个的概率。

    \begin{align} P(X>400) & = 1-P(X\leq 400)\approx 1-\Phi (\frac{400+0.5-360}{\sqrt{360}}) \\ & = 1-\Phi(2.135)=0.0164 \end{align}

    其中,0.5表示连续型校正,表示处理离散型变量,应用到连续型的正态分布的时候,效果更佳的一种修正。

    注意:泊松分布不具备可乘性。

    指数分布

    设随机变量X的分布密度函数为

    f(x)=\left\{\begin{matrix} \lambda e^{-\lambda x},x>0\\ 0,x\leq 0 \end{matrix}\right.

    其中\lambda >0为常数,我们称X服从参数为\lambda的指数分布,记作X\sim E(\lambda ),其相应的分布函数为

    F(x)=\left\{\begin{matrix} 1-e^{-\lambda x},x>0 \\ 0,x\leq 0 \end{matrix}\right.

    f(x)F(x)的图形见下图。

    指数分布的特性

    • 总体均数E(X)=\frac{1}{\lambda},总体方差D(X)=\frac{1}{\lambda ^{2}}

    指数分布通常用作各种“寿命”的分布。例如,无线电元件的寿命,动物的寿命等,另外电话问题的通话时间、随机服务系统中的服务时间等都可以认为服从指数分布,因此,它在排队论和可靠性理论等领域中有广泛的应用。

    例、某电子元件的使用寿命X是一个连续型随机变量,其概率密度为

    f(x)=\left\{\begin{matrix} k e^{-\frac{x}{100}},x>0\\ 0,x\leq 0 \end{matrix}\right.

    (1)确定常数k

    (2)求寿命超过100小时的概率

    (3)已知该元件已经正常使用200小时,求它至少还能正常使用100小时的概率。

    解:

    (1)由概率密度函数性质2知

    \int_{0}^{+\propto }ke^{-\frac{x}{100}}dx=[-100ke^{-\frac{x}{100}}]|_{0}^{+\propto}=100k=1,得k=0.01

    (2)寿命超过100小时的概率为

    P(X>100)=1-F(100)=1-(1-e^{-0.01\times 100})=e^{-1}\approx 0.3679

    (3)条件概率

    \begin{align} P(X>300|X>200) &=\frac{P(X>300,X>200)}{P(X>200)}\\&=\frac{P(X>300)}{P(X>200)}\\&=\frac{e^{-3}}{e^{-2}}=e^{-1}\approx 0.3679 \end{align}

    由(2),(3)可知,该元件寿命超过100小时的概率等于已使用200小时的条件下至少还能使用100小时的概率,这个性质称为指数分布的“无记忆性”。

    若随机变量X对任意的s>0,t>0都有P(X>s+t|X>s)=P(X>t),则称X的分布具有无记忆性。

    因此,指数分布具有无记忆性,若某元件或动物的寿命服从指数分布,则上式表明,如果已知寿命长于s年,则再“活”t年的概率与s无关,即对过去的s时间没有记忆,也就是说只要在某时刻s仍“活”着,它的剩余寿命的分布和原来的寿命分布相同,所以人们也戏称指数分布是“永远年轻的”。

    正态分布(Normal distribution)

    正态分布的概率密度函数(即纵向的曲线高度)

    f(X)=\frac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}(\frac{X-\mu }{\sigma })^{2}}-\infty < X< +\infty

    \sigma规定了曲线的形状,\mu反应了其在横轴上的位置不同。

    正态分布的特征

    • 关于x=\mu对称,即正态分布以均数为中心,左右对称。
    • x=\mu处取得概率密度函数的最大值,在x=\mu\pm \sigma处有拐点,表现为 钟形曲线。即正态曲线在横轴上方均数处最高。
    • 正态分布有两个参数,即均数\mu和标准差\sigma\mu是位置参数,\sigma是变异度参数(形状参数)。常用N(\mu ,\sigma ^{2})表示均数为\mu,标准差为\sigma的正态分布;用N(0 ,1)表示标准正态分布。
    • 正态曲线下面积分布有一定规律。横轴上正态曲线下的面积等于1(也常写作100%)。

    正态方程的积分式(概率分布函数):

    概率分布函数即为正态概率密度曲线下的面积 。

    F(X)=\frac{1}{\sigma \sqrt{2\pi }}\int_{-\infty }^{X}e^{-\frac{1}{2}(\frac{X-\mu }{\sigma })^{2}}dX

    F(X)为正态变量X的累计分布函数,反映正态曲线下,横轴尺度自-\inftyX的面积,即下侧累计面积。

    标准正态分布

    均数为0,标准差为1的正态分布,这种正态分布称为标准正态分布

    对于任意一个服从正态分布N(\mu ,\sigma ^{2})的随机变量,可作如下的标准化变换,也称Z(z-score)变换

    其中,Z=\frac{X-\mu }{\sigma },标准正态分布的概率密度函数:f(Z)=\frac{1}{\sqrt{2\pi }}e^{-\frac{Z^{2}}{2}}

    标准正态分布方程积分式(概率分布函数):

    \Phi (Z)=\frac{1}{2\pi }\int_{-\infty }^{Z}e^{-\frac{Z^{2}}{2}}dZ

    \Phi (Z)为标准正态变量Z的累计分布函数,反映标准正态曲线下,横轴尺度自-\inftyZ的面积,即下侧累计面积,如下图所示。 

    标准正态分布表

    用查表代替计算必须注意:

    • 表中曲线下面积为-\inftyZ的面积。
    • \mu,\sigmaX已知时,先求出Z值, Z=\frac{X-\mu }{\sigma },再用Z值查表,得所求区间占总面积的比例。
    • \mu\sigma未知时,要用样本均数\overline{X}和样本标准差S来估计Z值,Z=\frac{X-\overline{X} }{S}
    • 曲线下对称于0的区间,面积相等。 
    • 曲线下横轴上的面积为1 (即100% )。

    正态分布是一种对称分布,其对称轴为直线X=\mu,即均数位置。

    理论上:

    • \mu \pm 1\sigma范围内曲线下的面积占总面积的68.27%
    • \mu \pm 1.96\sigma范围内曲线下的面积占总面积的95%
    • \mu \pm 2.58\sigma范围内曲线下的面积占总面积的99% 

    实际上:

    • \overline{X} \pm 1S范围内曲线下的面积占总面积的68.27%
    • \overline{X} \pm 1.96S范围内曲线下的面积占总面积的95%
    • \overline{X} \pm 2.58 S范围内曲线下的面积占总面积的99% 

    实际应用中,我们一般将1.96看似成2,2.58看似成3。

    标准正态分布的\mu=0,\sigma=1,则 

    • \mu \pm 1\sigma相当于区间(­1,1)
    • \mu \pm 1.96\sigma相当于区间(­1.96,1.96)
    • \mu \pm 2.58\sigma相当于区间(­2.58,2.58)
    • 区间(­1,1)的面积:1-2\Phi (-1)=1­-2×0.1587=0.6826=68.26% 
    • 区间(­1.96,1.96)的面积:1-2\Phi (-1.96 )=1­-2×0.0250=0.9500=95.00%
    • 区间(­2.58,2.58)的面积:1-2\Phi (-2.58)=1­-2×0.0049=0.9902=99.02% 

    例: 已知某地1986年120名8岁男童身高均数 \overline{X}=123.02cmS=4.79cm,估计(1)该地8岁男孩身高在130cm以上者占该地8岁男孩总数的百分比;(2)身高界于120cm~128cm者占该地8岁男孩总数的比例;(3)该地80%男孩身高集中在哪个范围?

    (1)先做标准化转换:

    Z=\frac{X-\overline{X} }{S}=\frac{130-123.02}{4.79}=1.46

    \Phi (-Z)=\Phi (-1.46)=0.0721         根据标准正态分布的对称性

    理论上该地8岁男孩身高在130 cm以上者占该地8岁男孩总数的7.21%。

    (2)

    Z_{1}=\frac{X_{1}-\overline{X} }{S}=\frac{120-123.02}{4.79}=-0.63      \Phi (Z_{1})=\Phi (-0.63)=0.2643

    Z_{2}=\frac{X_{2}-\overline{X} }{S}=\frac{128-123.02}{4.79}=1.04         \Phi (Z_{2})=1-\Phi (-1.04)=0.8508

    \Phi (Z_{2})-\Phi (Z_{1})=0.8508-0.2643=0.5865

    (3)

    查标准正态分布界值表,标准正态分布曲线下左侧面积为0.10所对应的Z值为­1.28,所以80%的8岁男孩身高值集中在\overline{X} \pm 1.28S区间内,即116.9cm~129.2cm

    正态分布的应用

    制定参考值范围的步骤:

    • 选择足够数量的正常人作为调查对象。
    • 样本含量足够大。
    • 确定取单侧还是取双侧正常值范围。

    有些指标过高过低都是异常的,我们需要制定双侧的正常值范围

    有些指标过低才是异常的,比如肺活量,我们只要制定单侧的正常值范围

    • 选择适当的百分界限。

    在实际操作当中,我们一般将正常人中的5%排除在外,计算95%参考值范围。

    • 选择适当的计算方法。

    正态近似法:适用于正态分布或近似正态分布的资料。

    例1  某地调查120名健康女性血红蛋白,直方图显示,其分布近似于正态分布,得均数为117.4g/L,标准差为10.2g/L  ,试估计该地正常女性血红蛋白的95%医学参考值范围。

    分析:正常人的血红蛋白过高过低均为异常,要制定双侧正常值范围。

     \overline{X} \pm 1.96S=117.4\pm 1.96\times 10.2 = 97.41\sim 137.39

    该指标的95%医学参考值范围为97.41~137.39(g/L) 

    百分位数法:适用于偏态分布资料。 

    例2 某年某市调查了200例正常成人血铅含量(μg/100g)  如下,试估计该市成人血铅含量的95%医学参考值范围。

    分析:血铅的分布为偏峰分布,且血铅含量只以过高为异常,要用百分位数法制定单侧上限。

    P_{95}=L+\frac{i}{f_{x}}(n\cdot x \%-\sum f_{L})=38+\frac{5}{7}(200\times 95\%-189)=38.7\mu g /100g

     

     

     

    展开全文
  • 只和第2,3次有关和其他无关,则概率为0.4*0.4 (5) 有两种方法,正面求解相加,也可以从反面来推,推荐从反面求解,【1 - 没有击中一次的概率】: 1−C50p0(1−p)51 - C_5^0p^0(1-p)^51−C50​p0(1−p)5 二项式定理 ...

    概率试验

    • 1.投掷一个骰子投掷5次
    • 2.某人射击1次,击中目标的概率是0.8, 他射击10次;
    • 3.一个盒子中装有5个球(3红2白),有放回依次从中抽取5个球
    • 4.生产一种零件,出现次品的概率是0.04,生产这种零件4件

    以上这些的特点都是:

    • 条件相同
    • 独立重复性试验
    • 发生或者不发生
    • 发生的概率相同

    例子

    投掷一枚图钉,设针尖向上的概率为p, 则针尖向下的概率为q = 1 - p. 连续投掷一枚图钉3次,仅出现1次针尖向上的概率是多少?

    分析:这是一个条件相同,独立重复性试验: P = C 3 1 p q 2 = 3 p q 2 P = C_3^1 p q^2 = 3 p q^2 P=C31pq2=3pq2

    扩展:如果连续投3次图钉,出现k(0 <= k <= 3)次针尖向上的概率是多少?

    • 出现0次: P ( B 0 ) = P ( A 1 ˉ A 2 ˉ A 3 ˉ ) = q 3 P(B_0) = P(\bar{A_1} \bar{A_2} \bar{A_3}) = q^3 P(B0)=P(A1ˉA2ˉA3ˉ)=q3
    • 出现1次: P ( B 1 ) = P ( A 1 A 2 ˉ A 3 ˉ ) + P ( A 1 ˉ A 2 A 3 ˉ ) + P ( A 1 ˉ A 2 ˉ A 3 ) = 3 q 2 p P(B_1) = P(A_1\bar{A_2}\bar{A_3}) + P(\bar{A_1}A_2\bar{A_3}) + P(\bar{A_1}\bar{A_2}A_3) = 3q^2p P(B1)=P(A1A2ˉA3ˉ)+P(A1ˉA2A3ˉ)+P(A1ˉA2ˉA3)=3q2p
    • 出现2次: P ( B 2 ) = P ( A 1 A 2 A 3 ˉ ) + P ( A 1 ˉ A 2 A 3 ) + P ( A 1 A 2 ˉ A 3 ) = 3 q p 2 P(B_2) = P(A_1A_2\bar{A_3}) + P(\bar{A_1}A_2A_3) + P(A_1\bar{A_2}A_3) = 3qp^2 P(B2)=P(A1A2A3ˉ)+P(A1ˉA2A3)+P(A1A2ˉA3)=3qp2
    • 出现3次: P ( A 1 A 2 A 3 ) = p 3 P(A_1A_2A_3) = p^3 P(A1A2A3)=p3
    • 总结: P ( B k ) = C 3 k p k q 3 − k , k = 0 , 1 , 2 , 3 P(B_k) = C_3^kp^kq^{3-k}, k=0,1,2,3 P(Bk)=C3kpkq3k,k=0,1,2,3

    伯努利分布

    • 伯努利分布(Bernoulli distribution) 又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial)
    • 伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X而言:伯努利试验都可以表达为"是或否"的问题
    • 例如:抛一次硬币是正面朝上吗?刚出生的孩子是男孩吗?等
    • 如果试验E是一个伯努利试验,将E独立重复进行n次,则称这一串重复的独立试验为n重伯努利试验
    • 进行一次伯努利试验,成功(X=1)概率为p(0 <= p <= 1), 失败(X=0)概率为1-p,则称随机变量X服从伯努利分布,伯努利分布是离散型概率分布

    二项分布

    • 在n次独立重复试验中,设事件A发生的次数是X, 且在每次试验中事件A发生的概率是p, 那么事件A恰好发生k次的概率是 P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . , n P(X=k) = C_n^kp^k(1-p)^{n-k}, k = 0, 1, 2, ..., n P(X=k)=Cnkpk(1p)nk,k=0,1,2,...,n
    • 于是得到随机变量X的概率分布如下:q = 1 - p
      • X: 0, 1, …, k, …, n
      • p: C n 0 p 0 q n , C n 1 p 1 q n − 1 , . . . , C n k p k q n − k , . . . , C n n p n q 0 C_n^0p^0q^n, C_n^1p^1q^{n-1}, ..., C_n^kp^kq^{n-k}, ..., C_n^np^nq^0 Cn0p0qn,Cn1p1qn1,...,Cnkpkqnk,...,Cnnpnq0
      • 此时我们称随机变量X服从二项分布,记为: X ∼ B ( n , p ) X \sim B(n,p) XB(n,p) 其中p为成功概率
      • ∑ k = 0 n C n k p k ( 1 − p ) n − k = 1 \sum_{k=0}^n C_n^kp^k(1-p)^{n-k} = 1 k=0nCnkpk(1p)nk=1 全概率 求和是必然事件,概率为1

    案例1

    • 某射手每次射击击中目标的概率是0.8, 求这名射手在10次射击中
    • (1) 恰好有8次击中目标的概率
    • (2) 至少有8次击中目标的概率

    分析:

    • (0) p = 0.8 , 1 − p = 0.2 , n = 10 p=0.8, 1 - p = 0.2, n = 10 p=0.8,1p=0.2,n=10
    • (1) C 1 0 8 p 8 ( 1 − p ) 2 C_10^8p^8(1-p)^2 C108p8(1p)2
    • (2) p ( 8 ) + p ( 9 ) + p ( 10 ) = C 10 8 p 8 ( 1 − p ) 2 + C 10 9 p 9 ( 1 − p ) + C 10 10 p 10 p(8)+p(9)+p(10) = C_{10}^8p^8(1-p)^2 + C_{10}^9p^9(1-p) + C_{10}^{10}p^{10} p(8)+p(9)+p(10)=C108p8(1p)2+C109p9(1p)+C1010p10
    • 将(0)带入(1)、(2) 得到最终的解

    案例2

    • 设一个射手平均每设计10次中靶4次,求在5次射击中
    • (1)击中1次
    • (2)第二次击中
    • (3)击中两次
    • (4)第二、三两次击中
    • (5)至少击中一次
    • 求以上的概率

    分析:

    • 由题意:射手射击1次,中靶的概率是0.4
    • (1) n=5, k=1, 则 P ( X = 1 ) = C 5 1 p ( 1 − p ) 4 P(X = 1) = C_5^1p(1-p)^4 P(X=1)=C51p(1p)4
    • (2) 第二次击中和其他几次击中没有任何关系,也就是他一次击中的概率即为0.4
    • (3) n=5, k=2, 则 P ( X = 2 ) = C 5 2 p ( 1 − p ) 3 P(X = 2) = C_5^2p(1-p)^3 P(X=2)=C52p(1p)3
    • (4) 只和第2,3次有关和其他无关,则概率为0.4*0.4
    • (5) 有两种方法,正面求解相加,也可以从反面来推,推荐从反面求解,【1 - 没有击中一次的概率】: 1 − C 5 0 p 0 ( 1 − p ) 5 1 - C_5^0p^0(1-p)^5 1C50p0(1p)5

    二项式定理

    • 二项展开公式 ( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . + C n r a n − r b r + . . . + C n n b n    ( n ∈ N + ) (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + ... + C_n^ra^{n-r}b^r + ... + C_n^nb^n \ \ (n \in N_+) (a+b)n=Cn0an+Cn1an1b+Cn2an2b2+...+Cnranrbr+...+Cnnbn  (nN+)

    • 二项展开式的通项公式: T r + 1 = C n r a n − r b r      ( 0 ≤ r ≤ n , r ∈ N , n ∈ N + ) T_{r+1} = C_n^ra^{n-r}b^r \ \ \ \ (0 \leq r \leq n , r \in N, n \in N_+) Tr+1=Cnranrbr    (0rn,rN,nN+), 主要用来求指定的项

    • 项的系数与二项式系数

      • 项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数,如
      • ( a x + b ) n (ax+b)^n (ax+b)n的展开式中,第r+1项的二项式系数为 C n r C_n^r Cnr
      • 第r+1项的系数为 C n r a n − r b r C_n^ra^{n-r}b^r Cnranrbr
      • ( x + 1 x ) n (x+\frac{1}{x})^n (x+x1)n的展开式中的系数等于二项式系数
      • 二项式系数是组合数,一定为正的;而项的系数不一定为正的
    • ( 1 + x ) n (1+x)^n (1+x)n的展开式: ( 1 + x ) n = C n 0 x n + C n 1 x n − 1 + C n 2 x n − 2 + . . . + C n n x 0 (1+x)^n = C_n^0x^n + C_n^1x^{n-1} + C_n^2x^{n-2} + ... + C_n^nx^0 (1+x)n=Cn0xn+Cn1xn1+Cn2xn2+...+Cnnx0

      • 若令x=1, 则有: ( 1 + 1 ) n = 2 n = C n 0 + C n 1 + C n 2 + . . . + C n n (1+1)^n = 2^n = C_n^0 + C_n^1 + C_n^2+ ... + C_n^n (1+1)n=2n=Cn0+Cn1+Cn2+...+Cnn
      • 二项式奇数项系数的和等于二项式偶数项系数的和.
      • 即: C n 0 + C n 2 + . . . = C n 1 + C n 3 + . . . = 2 n − 1 C_n^0 + C_n^2 + ... = C_n^1 + C_n^3 + ... = 2^{n-1} Cn0+Cn2+...=Cn1+Cn3+...=2n1
    • 二项式系数的性质

      • 对称性: 与首末两端"等距离"的两个二项式系数相等,即 C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
      • 增减性与最大值
        • r ≤ n + 1 2 r \leq \frac{n+1}{2} r2n+1时,二项式系数 C n r C_n^r Cnr的值逐渐增大,当 r ≥ n + 1 2 r \geq \frac{n+1}{2} r2n+1时, C n r C_n^r Cnr的值逐渐减少,且在中间取得最大值
        • 当n为偶数时,中间一项(第 n 2 + 1 \frac{n}{2} + 1 2n+1项)的二项式系数 C n n 2 C_n^{\frac{n}{2}} Cn2n取得最大值
        • 当n为奇数时,中间两项(第 n + 1 2 \frac{n+1}{2} 2n+1和第 n + 1 2 + 1 \frac{n+1}{2} + 1 2n+1+1项)的二项式系数 C n n − 1 2 = C n n + 1 2 C_n^{\frac{n-1}{2}} = C_n^{\frac{n+1}{2}} Cn2n1=Cn2n+1相等并同时取最大值
    • 系数最大项的求法

      • 设第r项的系数 A r A_r Ar最大,由不等式组 { A r ≥ A r − 1 A r ≥ A r + 1 \left\{\begin{aligned}A_r \geq A_{r-1} \\A_r \geq A_{r+1}\end{aligned}\right. {ArAr1ArAr+1可确定r
    • 赋值法

      • ( a x + b ) n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n (ax+b)^n = a_0 + a_1x + a_2x^2 + ... + a_nx^n (ax+b)n=a0+a1x+a2x2+...+anxn, 则设 f ( x ) = ( a x + b ) n f(x) = (ax+b)^n f(x)=(ax+b)n, 有
      • a 0 = f ( 0 ) a_0 = f(0) a0=f(0)
      • a 0 + a 1 + a 2 + . . . + a n = f ( 1 ) a_0 + a_1 + a_2 + ... + a_n = f(1) a0+a1+a2+...+an=f(1)
      • a 0 − a 1 + a 2 − a 3 + . . . + ( − 1 ) n a n = f ( − 1 ) a_0 - a_1 + a_2 - a_3 + ... + (-1)^na_n = f(-1) a0a1+a2a3+...+(1)nan=f(1)
      • a 0 + a 2 + a 4 + a 6 + . . . = f ( 1 ) + f ( − 1 ) 2 a_0 + a_2 + a_4 + a_6 + ... = \frac{f(1) + f(-1)}{2} a0+a2+a4+a6+...=2f(1)+f(1)
      • a 1 + a 3 + a 5 + a 7 + . . . = f ( 1 ) − f ( − 1 ) 2 a_1 + a_3 + a_5 + a_7 + ... = \frac{f(1) - f(-1)}{2} a1+a3+a5+a7+...=2f(1)f(1)

    从二项分布到二项式定理

    1) 二项式定理公式

    • ( a + b ) n = C n 0 a n b 0 + C n 1 a n − 1 b 1 + . . . + C n r a n − r b r + . . . + C n n b n a 0 = ∑ r = 0 n C n r a n − r b r (a+b)^n = C_n^0a^nb^0 + C_n^1a^{n-1}b^1 + ... + C_n^ra^{n-r}b^r + ... + C_n^nb^na^0 = \sum_{r=0}^n C_n^ra^{n-r}b^r (a+b)n=Cn0anb0+Cn1an1b1+...+Cnranrbr+...+Cnnbna0=r=0nCnranrbr
    • 写成p,q的形式为: ( p + q ) n = C n 0 p n q 0 + C n 1 p n − 1 q 1 + . . . + C n r p n − r q r + . . . + C n n p n q 0 (p+q)^n = C_n^0p^nq^0 + C_n^1p^{n-1}q^1 + ... + C_n^rp^{n-r}q^r + ... + C_n^np^nq^0 (p+q)n=Cn0pnq0+Cn1pn1q1+...+Cnrpnrqr+...+Cnnpnq0

    2 ) 二项分布与二项式定理之间的联系

    • 二项分布对应二项式定理的每一项
    • 二项分布的概率求和是二项式定理的一个特殊情况,也就是 p + q = 1 p + q = 1 p+q=1的情况

    二项分布与两点分布之间的关系

    案例分析

    • 篮球比赛,每次罚球命中得1分,不中得0分,某篮球运动员罚球命中率为0.7,在某次比赛中他一共罚球20次,则
    • (1) 他一次罚球的得分服从两点分布
    • (2) 在这次比赛中,命中次数X服从二项分布即 X ∼ B ( 20 , 0.7 ) X \sim B(20, 0.7) XB(20,0.7)

    总结

    • 两点分布:在一次试验中,事件A出现的概率为p,事件A不出现的概率为q=1-p,若以X记一次试验中A出现的次数,则X仅取0、1两个值。两点分布就是0-1分布, 是特殊的二项分布, 只是不同的叫法,也是试验次数为1的伯努利试验。 X ∼ B ( 1 , p ) X \sim B(1,p) XB(1,p)
    • 二项分布:是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变, 是试验次数为n次的伯努利试验。
    • 两点分布是一种特殊的二项分布,n=1, p=p

    二项分布与超几何分布之间的关系

    案例分析

    • 一个袋中放有M个红球,(N - M)个白球,依次从袋中取n个球,记下红球的个数X
    • (1) 如果是有放回地取,则 X ∼ B ( n , M N ) X \sim B(n, \frac{M}{N}) XB(n,NM)
    • (2) 如果是不放回地取,则X服从超几何分布 P ( X = k ) = C M k C N − M n − k C N n    ( k = 0 , 1 , 2 , . . . , m ) P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \ \ (k=0,1,2,...,m) P(X=k)=CNnCMkCNMnk  (k=0,1,2,...,m) 其中 m = m i n ( M , n ) m=min(M,n) m=min(M,n)

    超几何分布的推导

    • 设有7个球,4红,3白,连续取3个球(n=3), 则红球的变量X为:(k ~ 0,1,2,3)

    • 分类讨论:

      • X为0:白白白 =》 P ( X = 0 ) = 3 7 ∗ 2 6 ∗ 1 5 P(X=0) = \frac{3}{7} * \frac{2}{6} * \frac{1}{5} P(X=0)=736251
      • X为1:红白白、白红白、白白红 =》 P ( X = 1 ) = 4 7 ∗ 3 6 ∗ 2 5 + 3 7 ∗ 4 6 ∗ 2 5 + 3 7 ∗ 2 6 ∗ 4 5 P(X=1) = \frac{4}{7} * \frac{3}{6} * \frac{2}{5} + \frac{3}{7} * \frac{4}{6} * \frac{2}{5} + \frac{3}{7} * \frac{2}{6} * \frac{4}{5} P(X=1)=746352+736452+736254
      • X为2:类似上面,此处省略
      • X为3:类似上面,此处省略
    • 关于超几何分布 百度百科

    展开全文
  • 二项分布(np.random.binomial),搞它就完了! 首先我们的搞清楚伯努利分布二项分布,我们先找个例子,选西瓜,待我细细道来。 伯努利分布 选一个西瓜,选到好瓜的概率为,选到坏瓜的概率为1-p。这个就是伯努利...

    二项分布(np.random.binomial),搞它就完了!

    首先我们的搞清楚伯努利分布和二项分布,我们先找个例子,选西瓜,待我细细道来。

    伯努利分布

    选一个西瓜,选到好瓜的概率为,选到坏瓜的概率为1-p。这个就是伯努利分布,而选一次西瓜就是伯努利试验。

    n重伯努利试验

    简单地说,就是把伯努利试验重复n次,也就是你选了几次西瓜。

    二项分布

    n重伯努利试验「成功」次数的离散概率分布,这里的「成功」假设是选到好瓜。举个例子:选西瓜n次(n重伯努利试验),成功次数(选到好瓜的个数)为k次的概率就是「一个」二项分布概率。二项分布就是选西瓜n次,成功0次,1次,2次…n次(选到好瓜0个,1个,2个…n个),这个情况下的一堆概率。

    可以看到,如果你做一次实验(1重伯努利试验),这个时候就变成了伯努利分布。当n趋于无穷时,二项分布趋近于正态分布。 独立的伯努利试验,如果事件X服从二项式分布,则可以表示为X~B(n,p),则期望E(X)=np,方差D(X)=np(1-p)。

    接着我们的选西瓜,每次选西瓜中只有两种可能的结果,事件发生与否的概率在每一次独立实验中都保持不变。二项式分布公式如下:

    P(X=k)=C_n^kp^k(1-p)^{n-k}
    

    n表示选西瓜的次数,k是选到好西瓜的次数,p的选到好瓜的概率。

    numpy.random.RandomState.binomial(n, p, size=2000)
    

    表示对一个二项分布进行采样,size表示采样的次数,这里为2000,函数的返回值表示n中成功的次数

    假设我们选一次选9(n=9)个西瓜,选到好瓜的概率为0.1(p=0.1),那么都选到坏瓜的概率?手动计算的化,可以知道成功的概率为0.1,那么失败的概率为0.9,所以可以根据二项式公式计算

    P(X=0)=C_9^0p^0(1-p)^{n-0}=0.3874
    

    计算可知都选到坏瓜的概率为0.3874,因为np.random.binomial()进行的是采样工作,为了逼近这一概率,我们需要进行的是采用统计的方法进行对概率值的逼近:

    import numpy as np
    sum(np.random.binomial(9,.1,size=20000)==0)/20000   
    输出:
    0.38905
    
    

    这里进行了20000次采样,计算的概率与真实值很近。
    np.random.binomial函数返回的其实是一个ndarray,ndarray每个元素代表相应的一次采样实验
    (一次实验进行n次)中成功的次数,明白了这一点,就很好理解了:

    比如,我们进行10次抽样,输出取到坏瓜的次数
    
    a=np.random.binomial(9,.1,size=10)
    print(a)  
    输出:
    [0 2 0 2 3 0 4 1 2 2]
    
    print(a==0) 
    输出布尔值:
    [False  True  True  True False False  True False False False]
    
    sum求和对十次抽样中失败的次数和除以总次数
    sum(a==0)/10  
    输出:
    0.6
    说明采样较少,准确度不高,因此需要较高的采样样本。
    

    为了理解深刻,我们再看一个例子吧!

    #投掷两枚硬币,作为一次伯努利事件,n=2,正面的概率为0.5,进行采样,求其概率。
    
    两枚都是正面
    sum(np.random.binomial(2,.5, size=20000)==2)/20000  
    输出:
    0.25055
    
    其中一个为反面
    sum(np.random.binomial(2,.5,  size=20000)==1)/20000 
    输出:
    0.4979
    
    两个都是反面 
    sum(np.random.binomial(2,.5, size=20000)==0)/20000  
    输出:
    0.25315
    

    今天就讲到这里,有疑问欢迎质疑!

    展开全文
  • https://blog.csdn.net/michael_r_chang/article/details/39188321https://www.cnblogs.com/wybang/p/3206719.htmlhttps://blog.csdn.net/jteng/article/details/603346281. 伯努利分布伯努利分布(Bernoulli ...
  • 二项分布

    万次阅读 多人点赞 2016-09-16 21:13:13
    说起二项分布(binomial distribution),不得不提的前提是伯努利试验(Bernoulli experiment),也即n次独立重复试验。伯努利试验是在同样的条件下重复、相互独立进行的一种随机试验。   伯努利试验的特点是: (1)...
  • 系列文章目录 文章目录 系列文章目录 前言 一、操作步骤 、主要结果 三、所有统计量和图形 四、选择特殊原因检验 五、minitab说明书解释参考 六、数据注意事项 总结 前言 使用二项分布过程能力分析确定缺陷品...
  • 伯努利分布 瑞士数学家雅克·伯努利``(Jacques Bernoulli,1654~1705)首次研究独立重复试验(每次成功率为p)。在他去世后的第8年(1713年),他侄子...二项分布(Binomial Distribution, 维基百科)是n个独立的是...
  • 二项分布定义

    2022-04-02 15:58:09
    二项分布
  • 瑞士数学家雅克·伯努利(Jacques Bernoulli,1654~1705)首次研究独立重复试验(每次成功率为p)。在他去世后的第8年(1713年),他侄子尼克拉斯出版了伯努利的著作...伯努利分布(Bernoulli distribution)又名两点分布或0
  • 二项分布的基本概念

    万次阅读 2016-11-14 10:48:31
    说起二项分布(binomial distribution),不得不提的前提是伯努利试验(Bernoulli experiment),也即n次独立重复试验。伯努利试验是在同样的条件下重复、相互独立进行的一种随机试验。  伯努利试验的特点是: (1)...
  • 二项分布二项分布的特点: 1、做某事的次数是固定的,用n表示 2、每一次事件都有两个可能的结果(成功或者失败) 3、每一次成功的概率都是相等的,成功的概率用p表示 4、你感兴趣的是成功x次的概率是多少 ...
  • Python模拟二项分布

    千次阅读 2019-08-05 17:17:04
    Python的numpy库中有二项分布采样的函数: numpy.random.binomial(n,p,size=None) 3个参数:n表示伯努利试验次数,p表示伯努利试验得到正例的概率,size表示采样次数;返回结果为出现正例的次数k。 可以使用该...
  • 二项分布最大值,泊松分布的推导,几何分布的推导 (概统2.应用) 1.二项分布 二项分布就是独立事件n重伯努利试验,每次试验只有A发生与不发生两种结果,求n次试验中恰好发生k次的概率。 P{X=k} = $C_{n}^{k}p^{k}q...
  • 1.伯努利分布二项分布  对于伯努利分布,我们是十分熟悉的,从小学开始,老师就教会我们如何对掷硬币这件事进行数据建模:对于一个二元随机变量,表示掷硬币结果为正面朝上,表示反面朝上。根据常识,我们都认为...
  • 更多内容尽在个人专栏:matlab学习上一节我们说了说怎么用matlab求微分方程,这一节我们再来聊聊微分方程在统计概率方面的一些应用二项分布二项分布这个大家在高中都学过,我们再来复习一下定义(还是找的百度百科...
  • 概率分布描述了一个给定变量...当然这难不倒我们历史上伟大的数学家们,他们经过大量实验发现了一些很特殊的概率分布,比如几何,二项,泊松,正太分布等,而这些期望和方差都有特定的方法,可是给我们节约了不少时...
  • 使用R语言计算二项分布的概率和累计概率的过程详解
  • 文章目录基础知识概念释义数据描述概率分布两个概念二项分布泊松分布大数定律正态分布 统计学系列主要是对统计学知识进行梳理以及对学习过程的分享,以期提升对统计学相关知识体系化认知水平。本文是该系列的第一篇...
  • 概率论3——古典概型与二项分布

    千次阅读 2020-09-23 16:44:19
    1}p=(\frac{N-K}{N})^{r-1}(\frac{K}{N})P(r)=(1−p)r−1p=(NN−K​)r−1(NK​) 二项分布 上面的抽样方式中,利用第四种放回无序的抽样,在对立事件的集合中,可以得到二项分布: 1、集合必须右对立事件构成,比如一...
  • 二项分布期望与方差的证明

    千次阅读 2017-08-31 09:39:39
    种子萌发试验,有n颗种子,每颗种子萌发的概率是p,发芽了x颗的概率就服从二项分布。 如果还是迷茫,就听我说说故事,在古代,大概明末清初的时候,瑞士有个家族,叫伯努利家族,出了很多数学家,有
  • 二项分布 1.贝努里概型 定义:n次独立重复试验称作n重贝努里试验,每次试验成功的概率都是p,失败的概率都是q=1-p 内容: 用X表示n重贝努里试验中事件A(成功)出现的次数,则 P(X=k)=Cnkpk(1−p)n−k,k=0,1,......
  • 文章目录伯努利分布二项分布项分布贝塔分布狄利克雷分布高斯分布 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial)。 伯努利...
  • 最近在撰写笔记 【Sklearn源码学习笔记】(含官网样例解读)无监督学习之高斯混合模型 的过程中,官方Sklearn源码中...本文分三个部分“【二项分布】”、“【多项分布】”、“【Beta分布】”、“【狄利克雷分布...
  • p=0.5, r=5 负二项分布的均值和方差分别为: 将p用μ表示,得到: 将上一步推出的p和1-p带入到方差的表达式中,得到: 记1/r=α,则 从上面的式子可以看出,均值是方差的次函数,方差随着均值的增加而进行次...
  • 伯努利分布二项分布、几何分布、超几何分布、泊松分布都是离散型随机变量。 1 伯努利分布:就是常见的0-1 分布,各自的频率为1-p和p ,当x=0 或者x=1 的时候,: p(x) = 期望: 方差: 对于伯努利分布来说 ,...
  • 伯努利随机变量、二项分布、几何分布、超几何分布、泊松分布导语 对于任何一个学习概率论的童鞋来说,各种分布都是很头痛的一件事情,本篇主要讨论的是离散型随机变量.伯努利分布 伯努利分布就是我们常见的0-1分布...
  • 离散型随机变量,二项分布,泊松分布,指数分布,几何分布(概统2.知识) 1.0-1分布 。例如抛硬币,正面朝上设为1,反面朝上设为0 分布律为 结果随机变量X 1 0 概率 P p 1-p ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 383,931
精华内容 153,572
关键字:

二项分布的表示方法