精华内容
下载资源
问答
  • 二阶巴特沃斯带通滤波器仿真电路图二阶巴特沃斯带通滤波器仿真电路图
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
    1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:低通滤波器(Low-pass Filter,LPF)高通滤波器(High-pass Filter,HPF)带通滤波器(Band-pass Filter,BPF)带阻滤波器(Band-rejection Filter,BRF)全通滤波器(All-pass Filter,APF)仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。2.1、滤波器种类2.1.1、低通滤波器从f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。0491a63341830460956cd6f7c6b176f2.png图1低通滤波器2.1.2、高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。80873e18eec21f2b37827ff693958691.png图2高通滤波器2.1.3、带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。27bf0ece1d65516e032be2722c261bea.png图3带通滤波器实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fHd6bc419074ae8c2834011daa590aa35b.png图4低通滤波器与高通滤波器的串联2.1.4、带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。a4f2ff75abfb4a7b4ac9b1bb34accfed.png图 5带阻滤波器实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL,否则新构成的滤波器就会变成全通滤波器。0865ea23e5d22cc7470113ad585f9d20.png图 6低通滤波器与高通滤波器的并联2.2、滤波器的基本参数理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。d12f0152da90dca03b24a2f50ac73862.png图7实际滤波器2.2.1、纹波幅度d在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。2.2.2、截止频率fc截止频率(CutoffFrequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。2.2.3、中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。2.2.4、带宽B和品质因数Q值上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。2.2.5、倍频程选择性W在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。2.2.6、滤波器因数(或矩形系数)滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然,越接近于1,滤波器选择性越好。2.2.7、插入损耗(Insertion Loss):滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。3、计算过程3.1、1.65V偏置电路计算抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。e8fd55d85963b7ab73aaa5ddaab136e3.png图8偏置电路图ae0152e4ef1c5c6f968f43212d96d4d2.png图9偏置电路根据虚短、虚断列出下面两个方程:推导出下式:则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。3.2、滤波器计算3.2.1、一阶有源滤波器11c6555beea181d3fa506124d64e304c.png图10一阶LPF3.2.2、二阶低通滤波器为改善滤波效果,使f>>f0时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。1fe2e50c78ceb7821030c427334bb6cb.png图11二阶LPF3.2.3、二阶压控型低通滤波器二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。1e7b8d3797a9a34fce5c42b90913280f.png图12二阶压控型LPF二阶LPF传递函数:d2542cddcc7b61064bb1cee18b62342a.png通带增益:31b46ebb77ac7375053d2ba6a12c8686.png上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。3.2.4、二阶高通滤波器高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。6b0c307c698e08e8a3bec4f8f5bc03de.png图13二阶HPF二阶HPF传递函数:5ce3c90986a13f2656aacde667685bb8.png通带增益:31b46ebb77ac7375053d2ba6a12c8686.png3.2、二阶滤波器计算当时,幅频特性曲线最平坦 成为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)f=35Hz、。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。7ac4bbdc897fbc496b4ad7a724b0b695.png求得R=4.549kΩ,实际取值R=4.3 kΩ。根据Q值求解R1和R2,当f=f0时,95dbc105a1afcef431025d7fad1ffbee.png则:c1b81e8566acef994d28ac12af9a4451.png解得:R1=25.06kΩ,R2=14.29kΩ实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=15hz。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。ec19c2ac84e4d0c08bacbedd909f66b1.png求得R=10.615kΩ,实际取值R=10 kΩ。根据Q值求解R1和R2,当f=f0时,95dbc105a1afcef431025d7fad1ffbee.png则:b49b49e102c7bacd0eb7434d2804540e.png解得:R1=58.479kΩ,R2=33.333kΩ实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。同理可以计算出Q=1时LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩHPF:R1=R2=42.46 kΩ,R1=R2=43kΩ同理可以计算出Q=2.5时LPF:R1=14.784kΩ,R2=23.6548 kΩ,实际取值R1=15kΩ、R2=24kΩHPF:R1= 34.499 kΩ,R2=55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ3.3、Matlab频谱相应仿真取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。4f9d490404ba2e0b76748e4ea3475950.png图14带通滤波器不同Q值下的波特图4、Multisim仿真4.1、搭建仿真电路图68e6752c05c9dab0a61ace36d9ffb4be.png图15仿真电路图4.2、仿真结果4.2.1、Q=0.7时波特图:7a5cddb16140e9009b5a78d3aa5060d2.png图16 Q=0.7时幅频特性图7df181e013276da6dcfa61f738b694ba.png图17 Q=0.7时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)d8b8c02b609a17277dd9af2b6ca10200.png图18仿真波形图4.2.2、Q=1时仿真图:f468654042a5004b9c1de90660a6862a.png图19仿真电路图波特图:34bf7a496641392a627c0c48e34ad05b.png图20 Q=1时幅频特性图ef7ba43525b1e0b6270aeccdd4fa7d0f.png图21 Q=1时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)1604be09febec95e97617b9e619c25dc.png图22仿真波形图4.2.3、Q=2.5时仿真图:2aa3fd4896198ef10da90dbef686bd62.png图23仿真图波特图:(注意:此处F=50dB)da413c64663f1b6e1b80f580e007322f.png图24 Q=2.5幅频特性图c472f884ecc9f1620f83fd456f82efdd.png图25 Q=2.5时相频特性图各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)c1a3f35db9def9c0fccda7ddb1e0dfd5.png图26仿真波形图从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率(fr )附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。5、硬件设计此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。5.1、原理图设计:由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。b5a6e7968c07dc2da8f03f1bc110516b.png图27硬件原理图5.2、PCB设计:PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。5.2.1、3D效果807e6f506959ef885e1e37fd4b854ab4.png图28PCBA渲染图5.2.2、邮票孔拼版效果图:70b7e364aeb5cf5d53c4aa8421fc7d85.png图29邮票孔拼版图5.2.3、V-cut拼版效果图471fee950f0fe3d8e7e4e7ba40d27460.png图30V-Cut拼版图5.3、实际测试前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。375712192772bff3d41f7a085917e8d6.png图31实物图5.3.1、测试结果示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。f=12Hz时:41c92fad0ae248ed2fc24eaca48a4d43.png图32 f=12Hz时的波形对比f=20Hz时1cb77db30bacfa301b74dc98d526e175.png图33 f=20Hz时的波形对比f=60Hz时:4cca6f28b805c2d1b9421d8ccff4fbfa.png图34 f=60Hz时波形对比图注:此部分测试结果可以参见附件视频。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器%LPF 传递函数计算f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2) c1  =1e-6;r1  =4549;%HPF 传递函数计算f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5) c2  =1e-6;r2  =10615;for q=0.1:0.2:3    %LPF   Avp1 = 3-(1/q);    %R1 = 2*r1*Avp1/(Avp1-1);    %R2 = 2*r1*Avp1;   k1  = (3-Avp1)/(c1*r1);   k2  = 1/(c1*c1*r1*r1);   k3  = Avp1/(c1*c1*r1*r1);   num1=[k3]; %传递函数分子   den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2   G1=tf(num1,den1);    %HPF   Avp2 = 3-(1/q);    %R1 = 2*r2*Avp2/(Avp2-1);    %R2 = 2*r2*Avp2;   k4  = (3-Avp2)/(c2*r2);   k5  = 1/(c2*c2*r2*r2);   k6  = Avp2;    num2=[k60 0];                                %传递函数分子,此处为s2需要特别注意   den2=[1 k4 k5];                               %传递函数分母格,式为:s2+k4s+k5   G2=tf(num2,den2);   p=bodeoptions;   p.FreqUnits='Hz';   p.Grid= 'on';   [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘   printsys(num,den)                             %显示串联后的总传递函数   hold on;      bode(num,den,p);                               %绘制波特图%    hold on;%    bode(G1,p);%    hold on;%    bode(G2,p);   Endlegend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');title('有源二阶模拟带通滤波器相频特性'); %标题

    2415dacb5f2db88da752eca653648087.png

    展开全文
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。 2、滤波器定义 滤波电路又称为滤波器,是一种选频电路,能够使特定频...

    1、背景

    对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。

     

    假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。

     

    2、滤波器定义

    滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:

     

    低通滤波器(Low-pass Filter,LPF)

    高通滤波器(High-pass Filter,HPF)

    带通滤波器(Band-pass Filter,BPF)

    带阻滤波器(Band-rejection Filter,BRF)

    全通滤波器(All-pass Filter,APF)仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。

     

    2.1、滤波器种类

     

    2.1.1、低通滤波器

    从f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

     

    图1低通滤波器

    2.1.2、高通滤波器

    与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

     

    图2高通滤波器

    2.1.3、带通滤波器

    它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

     

    图3带通滤波器

    实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH

     

    图4低通滤波器与高通滤波器的串联

    2.1.4、带阻滤波器

    与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

     

    图 5带阻滤波器

    实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL,否则新构成的滤波器就会变成全通滤波器。

     

    图 6低通滤波器与高通滤波器的并联

     

    2.2、滤波器的基本参数

    理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

     

    如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

     

    图7实际滤波器

    2.2.1、纹波幅度d

    在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

     

    2.2.2、截止频率fc

    截止频率(CutoffFrequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。

     

    2.2.3、中心频率(Center Frequency):

    滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。

     

    2.2.4、带宽B和品质因数Q值

    上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

    2.2.5、倍频程选择性W

     

    在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

     

    2.2.6、滤波器因数(或矩形系数)

    滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然,越接近于1,滤波器选择性越好。

     

    2.2.7、插入损耗(Insertion Loss):

    滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。

     

    3、计算过程

     

    3.1、1.65V偏置电路计算

    抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。

     

    图8偏置电路图

     

    图9偏置电路

     

    根据虚短、虚断列出下面两个方程:

     

    推导出下式:

    则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:。即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。

     

    此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。

    3.2、滤波器计算

    3.2.1、一阶有源滤波器

     

    图10一阶LPF

    3.2.2、二阶低通滤波器

    为改善滤波效果,使f>>f0时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。

     

    图11二阶LPF

    3.2.3、二阶压控型低通滤波器

    二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。

     

    图12二阶压控型LPF

    二阶LPF传递函数:

     

     

    通带增益:

     

    上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。

    3.2.4、二阶高通滤波器

    高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。

     

    图13二阶HPF

    二阶HPF传递函数:

     

     

    通带增益:

     

     

    3.2、二阶滤波器计算

    当时,幅频特性曲线最平坦 成为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高

    LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)f=35Hz、。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

     

     

    求得R=4.549kΩ,实际取值R=4.3 kΩ。

    根据Q值求解R1和R2,当f=f0时,

     

     

    则:

     

     

    解得:R1=25.06kΩ,R2=14.29kΩ

     

    实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。

     

    假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=15hz。

     

    根据RC滤波器求解RC值:

     

    电容值一般取1uF以下,此处以1uF为例计算。

     

     

    求得R=10.615kΩ,实际取值R=10 kΩ。

     

    根据Q值求解R1和R2,当f=f0时,

     

     

    则:

     

     

    解得:R1=58.479kΩ,R2=33.333kΩ

     

    实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    同理可以计算出Q=1时

     

    LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩ

    HPF:R1=R2=42.46 kΩ,R1=R2=43kΩ

     

    同理可以计算出Q=2.5时

     

    LPF:R1=14.784kΩ,R2=23.6548 kΩ,实际取值R1=15kΩ、R2=24kΩ

    HPF:R1= 34.499 kΩ,R2=55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ

    3.3、Matlab频谱相应仿真

     

    取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。

     

    图14带通滤波器不同Q值下的波特图

    4、Multisim仿真

     

    4.1、搭建仿真电路图

     

    图15仿真电路图

    4.2、仿真结果

     

    4.2.1、Q=0.7时

    波特图:

     

    图16 Q=0.7时幅频特性图

     

    图17 Q=0.7时相频特性图

     

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图18仿真波形图

    4.2.2、Q=1时

     

    仿真图:

     

    图19仿真电路图

    波特图:

     

    图20 Q=1时幅频特性图

     

    图21 Q=1时相频特性图

     

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图22仿真波形图

    4.2.3、Q=2.5时

     

    仿真图:

     

    图23仿真图

    波特图:(注意:此处F=50dB)

     

    图24 Q=2.5幅频特性图

     

    图25 Q=2.5时相频特性图

     

    各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图26仿真波形图

    从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率(fr )附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。

     

    5、硬件设计

     

    此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。

     

    5.1、原理图设计:

    由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。

     

    图27硬件原理图

     

    5.2、PCB设计:

    PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。

    5.2.1、3D效果

     

    图28PCBA渲染图

    5.2.2、邮票孔拼版效果图:

     

    图29邮票孔拼版图

    5.2.3、V-cut拼版效果图

     

    图30V-Cut拼版图

    5.3、实际测试

    前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。

     

    图31实物图

    5.3.1、测试结果

    示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。

    f=12Hz时:

     

    图32 f=12Hz时的波形对比

    f=20Hz时

     

    图33 f=20Hz时的波形对比

    f=60Hz时:

     

    图34 f=60Hz时波形对比图

     

    注:此部分测试结果可以参见附件视频。

     

     

     

     

     

    附录

    Matlab 绘制bode图代码

     

    %有源二阶模拟带通滤波器%LPF 传递函数计算f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2) c1  =1e-6;r1  =4549;%HPF 传递函数计算f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5) c2  =1e-6;r2  =10615;for q=0.1:0.2:3    %LPF   Avp1 = 3-(1/q);    %R1 = 2*r1*Avp1/(Avp1-1);    %R2 = 2*r1*Avp1;   k1  = (3-Avp1)/(c1*r1);   k2  = 1/(c1*c1*r1*r1);   k3  = Avp1/(c1*c1*r1*r1);   num1=[k3]; %传递函数分子   den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2   G1=tf(num1,den1);    %HPF   Avp2 = 3-(1/q);    %R1 = 2*r2*Avp2/(Avp2-1);    %R2 = 2*r2*Avp2;   k4  = (3-Avp2)/(c2*r2);   k5  = 1/(c2*c2*r2*r2);   k6  = Avp2;    num2=[k60 0];                                %传递函数分子,此处为s2需要特别注意   den2=[1 k4 k5];                               %传递函数分母格,式为:s2+k4s+k5   G2=tf(num2,den2);   p=bodeoptions;   p.FreqUnits='Hz';   p.Grid= 'on';   [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘   printsys(num,den)                             %显示串联后的总传递函数   hold on;      bode(num,den,p);                               %绘制波特图%    hold on;%    bode(G1,p);%    hold on;%    bode(G2,p);   Endlegend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');title('有源二阶模拟带通滤波器相频特性'); %标题
    展开全文
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
    1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:低通滤波器(Low-pass Filter,LPF)高通滤波器(High-pass Filter,HPF)带通滤波器(Band-pass Filter,BPF)带阻滤波器(Band-rejection Filter,BRF)全通滤波器(All-pass Filter,APF)仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。2.1、滤波器种类2.1.1、低通滤波器从f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。664ab69e8237cc4070d671783cc07c73.png图1低通滤波器2.1.2、高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。c2097bdd92d04971db1ea896aa074b4a.png图2高通滤波器2.1.3、带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。77d984aeb1e0e50b96c9497a4cd19d6a.png图3带通滤波器实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH447699d6c71503bdea244f30c6e5e7a8.png图4低通滤波器与高通滤波器的串联2.1.4、带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。ebfc8b30c845e42282ec08481cb919e8.png图 5带阻滤波器实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL,否则新构成的滤波器就会变成全通滤波器。411dc4edee5966ff36d0dcdec1acdab1.png图 6低通滤波器与高通滤波器的并联2.2、滤波器的基本参数理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。7a8ce284f843c156645cea6abaf987ba.png图7实际滤波器2.2.1、纹波幅度d在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。2.2.2、截止频率fc截止频率(CutoffFrequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。2.2.3、中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。2.2.4、带宽B和品质因数Q值上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。2.2.5、倍频程选择性W在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。2.2.6、滤波器因数(或矩形系数)滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然,越接近于1,滤波器选择性越好。2.2.7、插入损耗(Insertion Loss):滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。3、计算过程3.1、1.65V偏置电路计算抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。eb95551931fa454a98233bdc3a02dd56.png图8偏置电路图293f0373257ad90c55512632c25a7db5.png图9偏置电路根据虚短、虚断列出下面两个方程:推导出下式:则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。3.2、滤波器计算3.2.1、一阶有源滤波器6626e5012d96d93b1201dc15d76659af.png图10一阶LPF3.2.2、二阶低通滤波器为改善滤波效果,使f>>f0时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。34e649db17f3e24ae0b0e45528eb0d0e.png图11二阶LPF3.2.3、二阶压控型低通滤波器二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。f90d567e57b06a84a3d9e022e58fa23b.png图12二阶压控型LPF二阶LPF传递函数:0526695756c0d4aed1cd282e2aadda7d.png通带增益:310fb686767fb0ab1c0511b0503a1a00.png上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。3.2.4、二阶高通滤波器高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。f9b51054a086741b21d6203e95581e2a.png图13二阶HPF二阶HPF传递函数:dae21ec292b386b362f0365c2a0ddbea.png通带增益:310fb686767fb0ab1c0511b0503a1a00.png3.2、二阶滤波器计算当时,幅频特性曲线最平坦 成为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)f=35Hz、。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。eb5249b54f05d8772a27eba8e5f675cf.png求得R=4.549kΩ,实际取值R=4.3 kΩ。根据Q值求解R1和R2,当f=f0时,8933ec993396c6a8fd310cb8b0bc921f.png则:7bf225dbebe7996fed8a6cc2a32aab13.png解得:R1=25.06kΩ,R2=14.29kΩ实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=15hz。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。58e90b0ace9069a5b93cb099f5edf8d1.png求得R=10.615kΩ,实际取值R=10 kΩ。根据Q值求解R1和R2,当f=f0时,8933ec993396c6a8fd310cb8b0bc921f.png则:b7d54666a2faac3b942f555e8ecc6f90.png解得:R1=58.479kΩ,R2=33.333kΩ实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。同理可以计算出Q=1时LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩHPF:R1=R2=42.46 kΩ,R1=R2=43kΩ同理可以计算出Q=2.5时LPF:R1=14.784kΩ,R2=23.6548 kΩ,实际取值R1=15kΩ、R2=24kΩHPF:R1= 34.499 kΩ,R2=55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ3.3、Matlab频谱相应仿真取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。64e36e095a1a9d121486f01d173e6316.png图14带通滤波器不同Q值下的波特图4、Multisim仿真4.1、搭建仿真电路图8483ac7b84c37462fc9ae7c038743fc3.png图15仿真电路图4.2、仿真结果4.2.1、Q=0.7时波特图:1942d67c45bd2f012308a16795077f2a.png图16 Q=0.7时幅频特性图fae6c5d92f11b8ffd0127464961385e1.png图17 Q=0.7时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)7e7dd5ab6df58e50baae52acd09fee45.png图18仿真波形图4.2.2、Q=1时仿真图:4e6bae6843974ce6b4b4f139c839089c.png图19仿真电路图波特图:a546878eefa785ec31dcc33adf9ca38b.png图20 Q=1时幅频特性图4ec662c5460c47c7adeefb3681fe21cd.png图21 Q=1时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)a69e31db1b5a52c5f75629f01e373882.png图22仿真波形图4.2.3、Q=2.5时仿真图:6a28bc93afbf06308c5cb30bcbd03cd0.png图23仿真图波特图:(注意:此处F=50dB)94a4ab0f954f0f217cfb929c2fcf2302.png图24 Q=2.5幅频特性图3a693bad5a0e0e44f754c955e2a1c406.png图25 Q=2.5时相频特性图各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)e7eb23c0552bf26d4750a16d75b6be1a.png图26仿真波形图从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率(fr )附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。5、硬件设计此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。5.1、原理图设计:由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。d7362f7ad0bd61c2af817a28f9c25fbc.png图27硬件原理图5.2、PCB设计:PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。5.2.1、3D效果830ffccd77929c4b25de9063beb1cd8c.png图28PCBA渲染图5.2.2、邮票孔拼版效果图:c2a51ddae3b80c13f8c7c4da4b94d633.png图29邮票孔拼版图5.2.3、V-cut拼版效果图32f53a91eb16c1f62d332a950d81aa9f.png图30V-Cut拼版图5.3、实际测试前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。f50df6aee7e557afa5a0d9116386689a.png图31实物图5.3.1、测试结果示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。f=12Hz时:41a7379ba064b8fc26d3661fb1caa6c7.png图32 f=12Hz时的波形对比f=20Hz时d57474f68b335c8bd26bbcf50ed3228d.png图33 f=20Hz时的波形对比f=60Hz时:77d59b2402217fc03198071267af056f.png图34 f=60Hz时波形对比图注:此部分测试结果可以参见附件视频。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器%LPF 传递函数计算f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2) c1  =1e-6;r1  =4549;%HPF 传递函数计算f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5) c2  =1e-6;r2  =10615;for q=0.1:0.2:3    %LPF   Avp1 = 3-(1/q);    %R1 = 2*r1*Avp1/(Avp1-1);    %R2 = 2*r1*Avp1;   k1  = (3-Avp1)/(c1*r1);   k2  = 1/(c1*c1*r1*r1);   k3  = Avp1/(c1*c1*r1*r1);   num1=[k3]; %传递函数分子   den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2   G1=tf(num1,den1);    %HPF   Avp2 = 3-(1/q);    %R1 = 2*r2*Avp2/(Avp2-1);    %R2 = 2*r2*Avp2;   k4  = (3-Avp2)/(c2*r2);   k5  = 1/(c2*c2*r2*r2);   k6  = Avp2;    num2=[k60 0];                                %传递函数分子,此处为s2需要特别注意   den2=[1 k4 k5];                               %传递函数分母格,式为:s2+k4s+k5   G2=tf(num2,den2);   p=bodeoptions;   p.FreqUnits='Hz';   p.Grid= 'on';   [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘   printsys(num,den)                             %显示串联后的总传递函数   hold on;      bode(num,den,p);                               %绘制波特图%    hold on;%    bode(G1,p);%    hold on;%    bode(G2,p);   Endlegend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');title('有源二阶模拟带通滤波器相频特性'); %标题

    9def36f4cb66b39758f20fc857b124f2.png

    展开全文
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...

    4b69749b72578c5d9dabdf1076a0decf.png



    1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:低通滤波器(Low-pass Filter,LPF)高通滤波器(High-pass Filter,HPF)带通滤波器(Band-pass Filter,BPF)带阻滤波器(Band-rejection Filter,BRF)全通滤波器(All-pass Filter,APF)仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。2.1、滤波器种类2.1.1、低通滤波器从f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。0f2ead573a4ca03952afecf27c7dae28.png图1低通滤波器2.1.2、高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。7ef539ab166ae6ed015048653bedf7fd.png图2高通滤波器2.1.3、带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。f5016f84fecc903c2a200674d6043189.png图3带通滤波器实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH9e0d9b806dabba7d8d46193033e800e8.png图4低通滤波器与高通滤波器的串联2.1.4、带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。9da05b145791aa73fbd7c53607179211.png图 5带阻滤波器实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL,否则新构成的滤波器就会变成全通滤波器。bab571753455afcf919b3cd0670465f7.png图 6低通滤波器与高通滤波器的并联2.2、滤波器的基本参数理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。9b92dd5fd444ec4f5f89a07bbd42111c.png图7实际滤波器2.2.1、纹波幅度d在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。2.2.2、截止频率fc截止频率(CutoffFrequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。2.2.3、中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。2.2.4、带宽B和品质因数Q值上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。2.2.5、倍频程选择性W在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。2.2.6、滤波器因数(或矩形系数)滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然,越接近于1,滤波器选择性越好。2.2.7、插入损耗(Insertion Loss):滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。3、计算过程3.1、1.65V偏置电路计算抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。68dd27cdd0bfbbf3e4058d1596ccdd3e.png图8偏置电路图00b5a4ad480d3b2196bf35d2d933cc7e.png图9偏置电路根据虚短、虚断列出下面两个方程:推导出下式:则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。3.2、滤波器计算3.2.1、一阶有源滤波器66835da70d0df3df2026dbae8092ccd2.png图10一阶LPF3.2.2、二阶低通滤波器为改善滤波效果,使f>>f0时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。1c883df229632f5c0a7c1a2006a14635.png图11二阶LPF3.2.3、二阶压控型低通滤波器二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。7e33702cb6f5f20260e513474cb91550.png图12二阶压控型LPF二阶LPF传递函数:3ef35322bc414fbe5b80a0d24347e578.png通带增益:1c7cb04a3759f1055701581ce97a418a.png上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。3.2.4、二阶高通滤波器高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。2ad3391ee95d3fade191c65a4dcdae5a.png图13二阶HPF二阶HPF传递函数:7723dd4dbbdf199bf2536deefc66b659.png通带增益:1c7cb04a3759f1055701581ce97a418a.png3.2、二阶滤波器计算当时,幅频特性曲线最平坦 成为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)f=35Hz、。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。5f448900e676e9efaf350a9a087effbe.png求得R=4.549kΩ,实际取值R=4.3 kΩ。根据Q值求解R1和R2,当f=f0时,405c2e38d1b2dc62c682c6ebc9d3dcf9.png则:b8d04cc2be02c6fd1ee45555aa15ada5.png解得:R1=25.06kΩ,R2=14.29kΩ实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=15hz。根据RC滤波器求解RC值:电容值一般取1uF以下,此处以1uF为例计算。6909d186213ef74f588a5a5c8dde97dd.png求得R=10.615kΩ,实际取值R=10 kΩ。根据Q值求解R1和R2,当f=f0时,405c2e38d1b2dc62c682c6ebc9d3dcf9.png则:68041610a158e909ffee2c34586ae4a7.png解得:R1=58.479kΩ,R2=33.333kΩ实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。同理可以计算出Q=1时LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩHPF:R1=R2=42.46 kΩ,R1=R2=43kΩ同理可以计算出Q=2.5时LPF:R1=14.784kΩ,R2=23.6548 kΩ,实际取值R1=15kΩ、R2=24kΩHPF:R1= 34.499 kΩ,R2=55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ3.3、Matlab频谱相应仿真取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。f3a7a3eb78b8e8148d430d7fddc4956a.png图14带通滤波器不同Q值下的波特图4、Multisim仿真4.1、搭建仿真电路图1ed1ea356149c6eaff7203966fdbfbb2.png图15仿真电路图4.2、仿真结果4.2.1、Q=0.7时波特图:e506ecf98cb6775120892f911d46434c.png图16 Q=0.7时幅频特性图8e78e8d7b82e936dff21b22c24d14bb6.png图17 Q=0.7时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)b531ff0dabbd2e660b818eb0e124383f.png图18仿真波形图4.2.2、Q=1时仿真图:aa58f401e1bd88cff6ba9fbb87169580.png图19仿真电路图波特图:acb9e0301ddf45e4bd0166253b60f027.png图20 Q=1时幅频特性图c6d21a6ccccfcb908717288aa59dcf1b.png图21 Q=1时相频特性图各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)5e0a295d69ffa37b2c6ce03be30f3dc1.png图22仿真波形图4.2.3、Q=2.5时仿真图:d2fd2d975095673559148925fd1e94cb.png图23仿真图波特图:(注意:此处F=50dB)87dd82b7b8395793ddd967af98d64db1.png图24 Q=2.5幅频特性图e361ffe53654db76adca32b7b75d7403.png图25 Q=2.5时相频特性图各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)1ccbda11e701697442a2288f31565e38.png图26仿真波形图从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率(fr )附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。5、硬件设计此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。5.1、原理图设计:由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。79ea63e5ed5bc026d8a66a10a6345917.png图27硬件原理图5.2、PCB设计:PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。5.2.1、3D效果32495ae17583ee3d0c8f4d0b4dfe2e91.png图28PCBA渲染图5.2.2、邮票孔拼版效果图:2cb65cd084decf38141e0b2fa56f1ac0.png图29邮票孔拼版图5.2.3、V-cut拼版效果图1f0f7263dd59ed2ac20488589b441cc2.png图30V-Cut拼版图5.3、实际测试前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。38490948eace25b15550f34cf1b8188a.png图31实物图5.3.1、测试结果示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。f=12Hz时:7f58bbb9ed687cd7e5deb095b7fcc8b6.png图32 f=12Hz时的波形对比f=20Hz时b55971b581096f648fa84ef4997d6adb.png图33 f=20Hz时的波形对比f=60Hz时:80eae66a143302a71159205a10a7863d.png图34 f=60Hz时波形对比图注:此部分测试结果可以参见附件视频。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器%LPF 传递函数计算f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2) c1  =1e-6;r1  =4549;%HPF 传递函数计算f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5) c2  =1e-6;r2  =10615;for q=0.1:0.2:3    %LPF   Avp1 = 3-(1/q);    %R1 = 2*r1*Avp1/(Avp1-1);    %R2 = 2*r1*Avp1;   k1  = (3-Avp1)/(c1*r1);   k2  = 1/(c1*c1*r1*r1);   k3  = Avp1/(c1*c1*r1*r1);   num1=[k3]; %传递函数分子   den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2   G1=tf(num1,den1);    %HPF   Avp2 = 3-(1/q);    %R1 = 2*r2*Avp2/(Avp2-1);    %R2 = 2*r2*Avp2;   k4  = (3-Avp2)/(c2*r2);   k5  = 1/(c2*c2*r2*r2);   k6  = Avp2;    num2=[k60 0];                                %传递函数分子,此处为s2需要特别注意   den2=[1 k4 k5];                               %传递函数分母格,式为:s2+k4s+k5   G2=tf(num2,den2);   p=bodeoptions;   p.FreqUnits='Hz';   p.Grid= 'on';   [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘   printsys(num,den)                             %显示串联后的总传递函数   hold on;      bode(num,den,p);                               %绘制波特图%    hold on;%    bode(G1,p);%    hold on;%    bode(G2,p);   Endlegend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');title('有源二阶模拟带通滤波器相频特性'); %标题

    c9dc8554af045ad21e1820db7c1ef027.png

    展开全文
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 带通滤波器(BPF)被广泛用于通带非常...这种带可调品质因数的带通滤波器(参考文献1中的1)由一个双T单元和一个差分电路组成。  本文要讨论的这种设计可以将带通滤波器方案中的差分电路剔除在外,H.Martinez et a
  • 本文介绍了一种工程上最为常用的多路负反馈有源二阶带通滤波器的原理,计算公式,设计参数自动计算资源,以及PSPICE仿真结果。可以帮助工程研发人员迅速设计出实际可用的带通滤波器电路
  • 带通滤波器(BPF)被广泛用于通带非常...这种带可调品质因数的带通滤波器(参考文献1中的1)由一个双T单元和一个差分电路组成。  本文要讨论的这种设计可以将带通滤波器方案中的差分电路剔除在外,H.Martinez et a
  • 1 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。(1) 传递函数(2) 频率特性可见该低通滤波器特点是阻尼系数...
  • 1 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。(1) 传递函数(2) 频率特性可见该低通滤波器特点是阻尼系数...
  • 滤波器设计

    2017-09-04 00:08:43
    二阶低通滤波器 三阶低通滤波器 二阶高通滤波器 三阶高通滤波器 带通滤波器 电路图 参数选择 设计步骤 设计实例
  • 二阶有源低通滤波器是由两个独立的储能电容、外围电阻和一个运放组成的,电路图如下所示: 电路原理图 其中,R、C、R1、Rf代表的是电阻电容的阻值或容值。 根据电路中的复频域分析方法,画出电路的频域模型: ...
  • 本文介绍如何用一种低成本的方法,来构造一个失真很少、由总线控制的正弦波...设计的,也即部分是振荡器,包括双重滤波构建块IC(U1)、二阶时钟滤波器(其带通滤波器部分设置振荡器的频率)以及比较器(U2A)。带通滤波器
  • 如何弄懂低通、高通、带通、带阻、状态可调...【低通滤波器】-(二阶压控低通滤波器)阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。
  • 低通滤波器1 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。 (1) 传递函数 (2) 频率特性 可见该低通滤波器...
  • 二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。  (1) 传递函数  (2) 频率特性 ...
  • 1. 设计思路:因为方波中含有丰富的谐波分量,可以利用电压比较器将题中所给的正弦信号转化为方波,因为方波中含有丰富的谐波分量,再利用二阶带通滤波器筛选出3khz的谐波分量,因为考虑到滤波器输出电压幅值过大,...
  • 二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。 (1) 传递函数 (2) 频率特性 可见该低通滤波器特点是阻尼系数ζ ...
  • 1 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。(1) 传递函数(2) 频率特性可见该低通滤波器特点是阻尼系数...
  • 本文介绍如何用一种低成本的方法,来构造一个失真很少、由总线控制的正弦波...设计的核心,也即第一部分是振荡器,包括双重滤波构建块IC(U1)、二阶时钟滤波器(其带通滤波器部分设置振荡器的频率)以及比较器(U2A)。带通
  • 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。(1) 传递函数(2) 频率特性可见该低通滤波器特点是阻尼系数ζ ...
  • 二阶压控低通滤波器二阶压控低通滤波器电路所示,由R1、C1 及R2、C2 分别构成两个一阶低通滤波器,但C1 接输出端,引入电压正反馈,形成压控滤波器。(1) 传递函数(2) 频率特性可见该低通滤波器特点是阻尼系数ζ ...
  • 它内含两个独立的二阶有源滤波电路,可分别同时进行低通和带通滤波,也可通过级联实现四阶有源滤波,中心频率/截止频率可达300kHz。 MAX275无需时钟电路,因此与开关电容滤波器相比,其噪声更低,动态...
  • 提出了一种基于多输出电流传输器的二阶多功能电流模式滤波器,该电路采用单输入单输出的形式,电路结构十分简单,仅有二个有源器件,四个电容或阻抗构成;这一结构可以实现高通、带通、低通滤波器,且电容均接地。...
  • 无源滤波器的缺点: 带负载能力差,无放大作用,特性不理想,边沿不陡峭,各级相互影响. ...上中(a)低通滤波器、(b)高通滤波器、(c)带通滤波器、(d)带阻滤波器 理想滤波器的幅频特性: 几种按照“最
  • │ 有源带通滤波器.ms8 │ 有源谐振滤波器.ms8 │ 有源陷波器.ms8 │ 有源高通滤波器.ms8 │ 标准三角波发生器.ms8 │ 测量三相电路功率.ms8 │ 电压表内接法.ms8 │ 电压表外接法.ms8 │ 电容特性仿真测试.ms8 │ ...
  • 1 引 言  A.Fabre等提出的电流... 本文基于梅森信号流理论,讨论了n阶滤波器的信号流设计方法,成功设计出了一种新颖的基于CCCII和MOCCCII实现的n阶多功能滤波器电路模型,该电路能实现低通、高通和带通滤波功

空空如也

空空如也

1 2
收藏数 33
精华内容 13
关键字:

二阶带通滤波器电路图