精华内容
下载资源
问答
  • 寄存器,寄存器是什么意思寄存器定义寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器...

    寄存器,寄存器是什么意思

    寄存器定义

    寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。

    寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。

    寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。

    例如,x86 指令集定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。

    寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。

    特点及原理

    寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点:

    ①寄存器位于CPU内部,数量很少,仅十四个;

    ②寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据;

    ③每个内部寄存器都有一个名字,而没有类似存储器的地址编号。

    寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样说。

    外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。CPU对端口的访问也是依据端口的“编号”(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口地址,端口地址范围为0--3FFH。

    寄存器用途

    1.可将寄存器内的数据执行算术及逻辑运算;

    2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;

    3.可以用来读写数据到电脑的周边设备。

    数据寄存器

    8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。

    (1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).

    顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。

    数据寄存器分为:

    AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.

    BH&BL=BX(base):基址寄存器,常用于地址索引;

    CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.

    DH&DL=DX(data):数据寄存器,常用于数据传递。

    他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。

    另一组是指针寄存器和变址寄存器,包括:

    SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;

    BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;

    SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;

    DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。

    这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。

    (2) 指令指针IP(Instruction Pointer)

    指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。

    (3)标志寄存器FR(Flag Register)

    8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。

    OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

    DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。

    IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:

    (1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;

    (2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。

    TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。

    (1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。

    (2)如果TF=0,则处于连续工作模式。

    SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。当运算结果没有产生溢出时,运算结果等于逻辑结果(即因该得到的正确的结果),此时SF表示的是逻辑结果的正负,当运算结果产生溢出时,运算结果不等于逻辑结果,此时的SF值所表示的正负情况与逻辑结果相反,即:SF=0时,逻辑结果为负,SF=1时,逻辑结果为正。

    ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

    AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:

    (1)、在字操作时,发生低字节向高字节进位或借位时;

    (2)、在字节操作时,发生低4位向高4位进位或借位时。

    PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

    CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。

    (4)段寄存器(Segment Register)

    为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:

    CS(Code Segment):代码段寄存器;

    DS(Data Segment):数据段寄存器;

    SS(Stack Segment):堆栈段寄存器;

    ES(Extra Segment):附加段寄存器。

    当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。

    以上是8086寄存器的整体概况, 自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。

    =============================以下是80386的寄存器的一些资料======================================

    寄存器都是32-bits宽。

    A、通用寄存器

    下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。

    EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)

    EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。

    ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存器或段选择器)。

    EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)。

    同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。

    B、用作内存指针的特殊寄存器

    ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。

    EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。

    EBP:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。

    注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。

    C、段选择器:

    实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。

    CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。

    DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做).

    ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。

    FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。

    GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。

    SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。

    * 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。

    指令指针寄存器:

    EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)

    上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):

    CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。

    还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。

    TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。

    寄存器分类

    数据寄存器 - 用来储存整数数字(参考以下的浮点寄存器)。在某些简单/旧的 CPU,特别的数据寄存器是累加器,作为数学计算之用。

    地址寄存器 - 持有存储器地址,以及用来访问存储器。在某些简单/旧的CPU里,特别的地址寄存器是索引寄存器(可能出现一个或多个)。

    通用目的寄存器 (GPRs) - 可以保存数据或地址两者,也就是说他们是结合 数据/地址 寄存器的功用。

    浮点寄存器 (FPRs) - 用来储存浮点数字。

    常数寄存器 - 用来持有只读的数值(例如 0、1、圆周率等等)。

    向量寄存器 - 用来储存由向量处理器运行SIMD(Single Instruction, Multiple Data)指令所得到的数据。

    特殊目的寄存器 - 储存CPU内部的数据,像是程序计数器(或称为指令指针),堆栈寄存器,以及状态寄存器(或称微处理器状态字组)。

    指令寄存器(instruction register) - 储存现在正在被运行的指令

    索引寄存器(index register) - 是在程序运行实用来更改运算对象地址之用。

    在某些架构下,模式指示寄存器(也称为“机器指示寄存器”)储存和设置跟处理器自己有关的数据。由于他们的意图目的是附加到特定处理器的设计,因此他们并不被预期会成微处理器世代之间保留的标准。

    有关从 随机存取存储器 提取信息的寄存器与CPU(位于不同芯片的储存寄存器集合)

    存储器缓冲寄存器(Memory buffer register)

    存储器数据寄存器(Memory data register)

    存储器地址寄存器(Memory address register)

    存储器型态范围寄存器(Memory Type Range Registers)[1][2]

    寄存器:

    寄存器是计算机和其他数字系统中用来存储代码或数据的逻辑部件。它的主要组成部分是触发器。一个触发器能存储1位二进制代码,所以要存储n位二进制代码的寄存器就需要用n个触发器组成。一个4位的集成寄存器74LS175的逻辑电路图和引脚图分别如图8.7.1(a)、(b)所示。其中,RD是异步清零控制端。在往寄存器中寄存数据或代码之前,必须先将寄存器清零,否则有可能出错。1D~4D 是数据输入端,在CP 脉冲上升沿作用下,1D~4D端的数据被并行地存入寄存器。输出数据可以并行从1Q~4Q 端引出,也可以并行从1Q~4Q 端引出反码输出。

    5dbab668d273ed04a3e15131558d8282.png

    74LS175的功能如表8.7.1所示。

    41ac387e577a99bfc0df96a889c5fe17.png

    上面介绍的寄存器只有寄存数据或代码的功能。有时为了处理数据,需要将寄存器中的各位数据在移位控制信号作用下,依次向高位或向低位移动1位。具有移位功能的寄存器称为移位寄存器。

    展开全文
  • (1)通用寄存器有8个, 又可以分成2,一是数据寄存器(4个),另一是指针寄存器及变址寄存器(4个).数据寄存器分为:AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有...

    6f32362c8d638a3a8c420758786b50c8.png

    8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。

    (1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).

    数据寄存器分为:

    AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.

    BH&BL=BX(base):基址寄存器,常用于地址索引;

    CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.

    DH&DL=DX(data):数据寄存器,常用于数据传递。

    他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。

    另一组是指针寄存器和变址寄存器,包括:

    SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;

    BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;

    SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;

    DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。

    这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。

    (2) 指令指针IP(Instruction Pointer)

    指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。

    (3)标志寄存器FR(Flag Register)

    8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。

    OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

    DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。

    IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:

    (1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;

    (2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。

    TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。

    (1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。

    (2)如果TF=0,则处于连续工作模式。

    SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。

    ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

    AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:

    (1)、在字操作时,发生低字节向高字节进位或借位时;

    (2)、在字节操作时,发生低4位向高4位进位或借位时。

    PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

    CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)

    4)段寄存器(Segment Register)

    为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:

    CS(Code Segment):代码段寄存器;

    DS(Data Segment):数据段寄存器;

    SS(Stack Segment):堆栈段寄存器;

    ES(Extra Segment):附加段寄存器。

    当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。

    ◆◆

    评论读取中....

    请登录后再发表评论!

    ◆◆

    修改失败,请稍后尝试

    展开全文
  • STM32外设寄存器地址定义

    千次阅读 2016-08-18 10:54:02
    一直都是用STM32做项目中的主控芯片,在编程的时候,之前一直忽视了一个问题,那就是寄存器的位置是如何定义的,为什么用一个USART1->CR操作就能够给这个CR寄存器赋值?其实这是一个比较底层的问题,不懂这方面的...
    一直都是用STM32做项目中的主控芯片,在编程的时候,之前一直忽视了一个问题,那就是寄存器的位置是如何定义的,为什么用一个USART1->CR操作就能够给这个CR寄存器赋值?其实这是一个比较底层的问题,不懂这方面的知识也并不影响使用STM32,因为底层的定义工作,厂家一般都会做好,但是多了解一点原理性的东西,对自己还是很有帮助的。 
    

    这里我就以STM32F407的USART寄存器为例,介绍一下ST厂家是如何做寄存器定义的。

    首先在stm32f4xx.h中

    typedef struct
    {
      __IO uint16_t SR;         /*!< USART Status register,                   Address offset: 0x00 */
      uint16_t      RESERVED0;  /*!< Reserved, 0x02                                                */
      __IO uint16_t DR;         /*!< USART Data register,                     Address offset: 0x04 */
      uint16_t      RESERVED1;  /*!< Reserved, 0x06                                                */
      __IO uint16_t BRR;        /*!< USART Baud rate register,                Address offset: 0x08 */
      uint16_t      RESERVED2;  /*!< Reserved, 0x0A                                                */
      __IO uint16_t CR1;        /*!< USART Control register 1,                Address offset: 0x0C */
      uint16_t      RESERVED3;  /*!< Reserved, 0x0E                                                */
      __IO uint16_t CR2;        /*!< USART Control register 2,                Address offset: 0x10 */
      uint16_t      RESERVED4;  /*!< Reserved, 0x12                                                */
      __IO uint16_t CR3;        /*!< USART Control register 3,                Address offset: 0x14 */
      uint16_t      RESERVED5;  /*!< Reserved, 0x16                                                */
      __IO uint16_t GTPR;       /*!< USART Guard time and prescaler register, Address offset: 0x18 */
      uint16_t      RESERVED6;  /*!< Reserved, 0x1A                                                */
    } USART_TypeDef;
    这是因为USART的寄存器组包括SR,DR,BRR,CR1,CR2,CR3,GPTR这几个寄存器,所以用一个USART_TypeDef结构体包含这些寄存器。如果在别的程序中用到这些寄存器,只需要如下:

    USART_TypeDef   USART1//任意取名,尽量与Datasheet中给出的名字一致便于理解
    USART1.SR = 0x0000 0001;
    或者 
    USART_TypeDef*   USART1
    USART1->SR = 0x0000 0001;
    (*USART1).SR = 0x0000 0011;
     
    

    那么具体到各个寄存器的位置到底是怎样的呢?从Datasheet和reference manual中可以看到

    USART2属于APB1管理的外设,起始地址是0x4000 4400,STM32上所有的外设的基地址都是0x4000 0000(这其实是ARM公司规定的),这也是APB1的起始地址,然后USART2的起始地址在APB1外设基地址的基础上偏移0x4400,于是便可以按照下面代码来分配各个外设的起始地址了

    #define PERIPH_BASE           ((uint32_t)0x40000000)
    /*!< Peripheral base address in the alias region*/
     
    /*!< Peripheral memory map */
    #define APB1PERIPH_BASE       PERIPH_BASE
     
    #define USART2_BASE           (APB1PERIPH_BASE + 0x4400)
    #define USART3_BASE           (APB1PERIPH_BASE + 0x4800)
    #define UART4_BASE            (APB1PERIPH_BASE + 0x4C00)
    #define UART5_BASE            (APB1PERIPH_BASE + 0x5000)
     
    #define USART2              ((USART_TypeDef *) USART2_BASE)
    #define USART3              ((USART_TypeDef *) USART3_BASE)
    #define UART4               ((USART_TypeDef *) UART4_BASE)
    #define UART5               ((USART_TypeDef *) UART5_BASE)

    有了这些外设的基地址,加上上面提到的寄存器结构体,便可以操作各个寄存器了,例如,只需要如下语句,便可以使能USART2

    USART_Cmd(USART2, ENABLE);
    USART_Cmd这是ST官方给出的库函数,具体定义如下
    void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState)
    {
      /* Check the parameters */
      assert_param(IS_USART_ALL_PERIPH(USARTx));
      assert_param(IS_FUNCTIONAL_STATE(NewState));
      
      if (NewState != DISABLE)
      {
        /* Enable the selected USART by setting the UE bit in the CR1 register */
        USARTx->CR1 |= USART_CR1_UE;
      }
      else
      {
        /* Disable the selected USART by clearing the UE bit in the CR1 register */
        USARTx->CR1 &= (uint16_t)~((uint16_t)USART_CR1_UE);
      }
    }

    如果理解了上述所讲的内容,你会发现,这种通过结构体定义寄存器的方法非常常见,这是因为现在的处理器,各种寄存器相当多(成百上千),如果按照传统的定义方法去操作寄存器,会相当的麻烦。不只是STM32,我知道的有TI的C2000系列DSP,NXP的ARM系列MCU,瑞萨的ARM R4 RZ/T1处理器都是按这样的方法来定义寄存器。

    展开全文
  • TMC5160寄存器定义

    2018-11-08 09:53:07
    TMC5160寄存器定义的头文件。结构体定义与位字段定义组合,可以直接使用
  • 寄存器定义

    千次阅读 2014-03-14 14:39:11
    寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件...

    寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
      寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。 
      寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。 
      例如,x86 指令集定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。
      寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
    特点及原理

      寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点: 
      ①寄存器位于CPU内部,数量很少,仅十四个;
      ②寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据;
      ③每个内部寄存器都有一个名字,而没有类似存储器的地址编号。
      寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样说。
      外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。CPU对端口的访问也是依据端口的“编号”(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口地址,端口地址范围为0--3FFH。
    寄存器用途

      1.可将寄存器内的数据执行算术及逻辑运算;
      2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;
      3.可以用来读写数据到电脑的周边设备。
    数据寄存器

      8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。
      (1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).
      顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。
      数据寄存器分为:
      AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.
      BH&BL=BX(base):基址寄存器,常用于地址索引;
      CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.
      DH&DL=DX(data):数据寄存器,常用于数据传递。
      他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。
      另一组是指针寄存器和变址寄存器,包括:
      SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;
      BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;
      SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;
      DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。
      这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。
      (2) 指令指针IP(Instruction Pointer)
      指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。
      (3)标志寄存器FR(Flag Register)
      8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。
      OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。
      DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。 
      IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下: 
      (1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求; 
      (2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。 
      TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。
      (1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。
      (2)如果TF=0,则处于连续工作模式。
      SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。当运算结果没有产生溢出时,运算结果等于逻辑结果(即因该得到的正确的结果),此时SF表示的是逻辑结果的正负,当运算结果产生溢出时,运算结果不等于逻辑结果,此时的SF值所表示的正负情况与逻辑结果相反,即:SF=0时,逻辑结果为负,SF=1时,逻辑结果为正。 
      ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。 
      AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0: 
      (1)、在字操作时,发生低字节向高字节进位或借位时; 
      (2)、在字节操作时,发生低4位向高4位进位或借位时。 
      PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。 
      CF:进位标志CF主要用来反映无符号数运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。
      (4)段寄存器(Segment Register)
      为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
      CS(Code Segment):代码段寄存器;
      DS(Data Segment):数据段寄存器;
      SS(Stack Segment):堆栈段寄存器;
      ES(Extra Segment):附加段寄存器。
      当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。
      以上是8086寄存器的整体概况, 自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。
      =============================以下是80386的寄存器的一些资料======================================
      寄存器都是32-bits宽。
      A、通用寄存器 
      下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。 
      EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器) 
      EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。 
      ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存器或段选择器)。
      EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)。 
      同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。 
      B、用作内存指针的特殊寄存器
      ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。 
      EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。 
      EBP和ESP:作为指针的寄存器,也可作为16位寄存器BP, SP使用,常用于椎栈操作。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。 
      注意,这四个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP、SP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。 
      C、段选择器:
      实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。 
      CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。 
      DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做). 
      ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。 
      FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。 
      GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。 
      SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。 
      * 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。 
      D、指令指针寄存器:
      EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址,存放指令的偏移地址。微处理器工作于实模式下,EIP是IP(16位)寄存器。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器) 
      E、标志寄存器EFR
      EFR(extra flags register)包括状态位、控制位和系统标志位,用于指示微处理器的状态并控制微处理器的操作。80486 CPU标志寄存器如图2.12所示。 
      ① 状态标志位:包括进位标志CF、奇偶标志PF、辅助进位标志AF、零标志ZF 、符号标志SF和溢出标志OF。 
      ② 控制标志位:包括陷阱标志(单步操作标志)TF、中断标志IF和方向标志DF。80486 CPU标志寄存器中的状态标志位和控制标志位与8086 CPU标志寄存器中的状态标志位和控制标志位的功能完全一样,这里就不再赘述。 
      ③ 系统标志位和IOPL字段:在EFR寄存器中的系统标志和IOPL字段,用于控制操作系统或执行某种操作。它们不能被应用程序修改。
      IOPL(I/O privilege level field):输入/输出特权级标志位。它规定了能使用I/O敏感指令的特权级。在保护模式下,利用这两位编码可以分别表示0, 1, 2, 3这四种特权级,0级特权最高,3级特权最低。在80286以上的处理器中有一些I/O敏感指令,如CLI(关中断指令)、STI(开中断指令)、IN(输入)、OUT(输出)。IOPL的值规定了能执行这些指令的特权级。只有特权高于IOPL的程序才能执行I/O敏感指令,而特权低于IOPL的程序,若企图执行敏感指令,则会引起异常中断。
      NT(nested task flag):任务嵌套标志。在保护模式下,指示当前执行的任务嵌套于另一任务中。当任务被嵌套时,NT=1,否则NT=0。 
      RF(resume flag):恢复标志。与调试寄存器一起使用,用于保证不重复处理断点。当RF=1时,即使遇到断点或故障,也不产生异常中断。 
      VM(virtual 8086 mode flag):虚拟8086模式标志。用于在保护模式系统中选择虚拟操作模式。VM=1,启用虚拟8086模式;VM=0,返回保护模式。 
      AC(alignment check flag):队列检查标志。如果在不是字或双字的边界上寻址一个字或双字,队列检查标志将被激活。 
      上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):
      CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。 
      还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。 
      TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。
    寄存器分类

      数据寄存器 - 用来储存整数数字(参考以下的浮点寄存器)。在某些简单/旧的 CPU,特别的数据寄存器是累加器,作为数学计算之用。
      地址寄存器 - 持有存储器地址,以及用来访问存储器。在某些简单/旧的CPU里,特别的地址寄存器是索引寄存器(可能出现一个或多个)。
      通用目的寄存器 (GPRs) - 可以保存数据或地址两者,也就是说他们是结合 数据/地址 寄存器的功用。
      浮点寄存器 (FPRs) - 用来储存浮点数字。
      常数寄存器 - 用来持有只读的数值(例如 0、1、圆周率等等)。
      向量寄存器 - 用来储存由向量处理器运行SIMD(Single Instruction, Multiple Data)指令所得到的数据。
      特殊目的寄存器 - 储存CPU内部的数据,像是程序计数器(或称为指令指针),堆栈寄存器,以及状态寄存器(或称微处理器状态字组)。
      指令寄存器(instruction register) - 储存现在正在被运行的指令
      索引寄存器(index register) - 是在程序运行实用来更改运算对象地址之用。
      在某些架构下,模式指示寄存器(也称为“机器指示寄存器”)储存和设置跟处理器自己有关的数据。由于他们的意图目的是附加到特定处理器的设计,因此他们并不被预期会成微处理器世代之间保留的标准。
      有关从 随机存取存储器 提取信息的寄存器与CPU(位于不同芯片的储存寄存器集合)
      存储器缓冲寄存器(Memory buffer register)
      存储器数据寄存器(Memory data register)
      存储器地址寄存器(Memory address register)
      存储器型态范围寄存器(Memory Type Range Registers)[1][2]
    段寄存器在寻址过程中的作用

      寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。

    展开全文
  • 寄存器组

    千次阅读 2007-01-29 00:27:00
    2.1 寄存器组寄存器是CPU内部重要的数据存储资源,是汇编程序员能直接使用的硬件资源之一。由于寄存器的存取速度比内存快,所以,在用汇编语言编写程序时,要尽可能充分利用寄存器的存储功能。寄存器一般用来保存...
  • NVIC寄存器组

    千次阅读 2012-01-05 20:14:01
    在STM32中用到了Cortex-M3定义的三组寄存器,有关这三组...在STM32的固件库中定义了三个结构体与这三个寄存器组相对应,这三个结构体与ARM手册中寄存器的对应关系如下:   一、NVIC寄存器组 STM32的固件库
  • Cortex M3寄存器组

    千次阅读 2016-04-08 08:51:55
    寄存器组 宗旨:技术的学习是有限的,分享的精神的无限的。   1、通用目的寄存器R0~R7  R0-R7 也被称为低组寄存器。所有指令都能访问它们。它们的字长全是 32 位,复位后的初始值是不可预料的。 2、通用目的...
  • VHDL 寄存器组的设计

    2012-03-10 17:30:42
    组成原理课程实验。用VHDL语言设计寄存器组,实现数据对寄存器选择性的输入,输出。
  • [转载]... 存储器是一个寄存器数组。存储器使用如下方式说明: reg [ msb: 1sb] memory1 [ upper1: lower1], memory2 [upper2: lower2],. . . ; 例如: reg [0:3 ] MyMem [0:63] //MyMem为64个...
  • 通用寄存器组: CM3 拥有通用寄存器 R0-R15 以及一些特殊功能寄存器。 R0-R12 是最“通用目的”的,但是绝大多数的 16 位指令只能使用 R0-R7(低组寄存器),而 32 位的 Thumb-2 指令则可以访问所有通用寄存器。特殊...
  • Cortex-M3寄存器组

    2017-11-26 22:51:38
     R0-R7 也被称为低组寄存器。所有指令都能访问它们。它们的字长全是 32 位,复位后的初始值是不可预料的。 2、通用目的寄存器 R8-R12  R8-R12 也被称为高组寄存器。这是因为只有很少的 16 位 Thumb 指令能访问...
  • 文章目录MIPS 寄存器组协处理器 MIPS 寄存器组 MIPS 有 32 个通用寄存器($0-$31),各寄存器的功能及汇编程序中使用约定如下: 下表描述 32 个通用寄存器的别名和用途 ;REGISTER NAME USAGE $0 $zero 常量 0 ...
  • 寄存器定义,分类

    2012-07-09 17:05:22
    寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。 寄存器的用途: 1.可将寄存器内的数据执行算术及逻辑运算。 2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。 ...
  • 今天碰到了这个问题:Verilog寄存器数组的定义与赋初值 结果是:代码右边拼接的矩阵数超过了左边定义的边界 分配了未封装的矩阵,必须要聚合表达式,违反了verilog的语法标准。 这种定义方法需要先定义后赋值。 ....
  • CPU内部寄存器组 Intel 8086/8088 CPU内部共有14个16位寄存器,根据其作用可以分为通用寄存器,段寄存器,指令指针和标志寄存器。 1、 通用寄存器 特点:通用。 特殊用法: 在循环指令(loop)中,循环次数必须...
  • 访问CP15寄存器指令的编码格式及语法说明如下: 31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0 cond 1 1 1 0 opcode_1 L cr n rd 1 1 1 1 opcode_2 1 crm 说明::协处理器行为操作码,对于CP15来说,...
  • 通用寄存器 32位通用寄存器:EAX、EBX 、ECX、 EDX;...说明:为了说明一个段的描述符放在哪个表中、序号是多少以及特权级的高低,为每个段定义了一个16位的选择符,该选择符装入段寄存器即段寄存器中存放选择...
  • verilog, 数据扩展,寄存器组

    千次阅读 2015-05-11 21:02:36
    多维寄存器:reg [`SLOT_QTY-1:0] rin_nodes_success [MAX_PATH_LEN:0][ROUTER_QUANT-1:0];  [MAX_PATH_LEN:0][ROUTER_QUANT-1:0]表示维数, [`SLOT_QTY-1:0]表示一个数据单元的位数。
  • 寄存器

    千次阅读 2018-08-08 18:37:35
    1.寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和地址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑...
  • 在开始讲对C51单片机中特殊寄存器(SPR)的定义前,先简单介绍下我们在进行51单片机开发时经常看到的两个关键字"sbit”和"sfr“:sfr用于将一个单片机的特殊功能寄存器(specialfunctionregister)赋值给一个变量,...
  • 寄存器详解

    2014-11-12 13:32:25
    寄存器定义  寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的...
  • Integer寄存器类型

    2020-12-09 13:47:02
    msb和lsb是定义整数数界限的常量表达式,数组界限的定义是可选的。注意容许无位界限的情况。一个整数最少容纳32位。但是具体实现可提供更多的位。下面是整数说明的实例。integer A, B, C; //三个整数型寄存器。...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 105,556
精华内容 42,222
关键字:

寄存器组定义