精华内容
下载资源
问答
  • 运算器由算术逻辑单元(ALU)、累加寄存器、数据缓冲寄存器和状态条件寄存器组成,它是数据加工处理部件。相对控制器而言,运算器接受控制器的命令而进行动作 ,即运算器所进行的全部操作都是由控制器发出的控制信号来...

    运算器arithmetic unit计算机中执行各种算术和逻辑运算操作的部件。运算器的基本操作包括加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、比较和传送等操作,亦称算术逻辑部件(ALU)。计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。数据 运算器的处理对象是数据,所以数据长度和计算机数据表示方法,对运算器的性能影响极大。70年代微处理器常以1个、4个、8个、16个二进制位作为处理数据的基本单位。大多数通用计算机则以16、32、64位作为运算器处理数据的长度。能对一个数据的所有位同时进行处理的运算器称为并行运算器。如果一次只处理一位,则称为串行运算器。有的运算器一次可处理几位 (通常为6或8位),一个完整的数据分成若干段进行计算,称为串并行运算器。运算器往往只处理一种长度的数据。有的也能处理几种不同长度的数据,如半字长运算、双倍字长运算、四倍字长运算等。有的数据长度可以在运算过程中指定,称为变字长运算。按照数据的不同表示方法,可以有二进制运算器、十进制运算器、十六进制运算器、定点整数运算器、定点小数运算器、浮点数运算器等。按照数据的性质,有地址运算器和字符运算器等。操作 运算器能执行多少种操作和操作速度,标志着运算器能力的强弱,甚至标志着计算机本身的能力。运算器最基本的操作是加法。一个数与零相加,等于简单地传送这个数。将一个数的代码求补,与另一个数相加,相当于从后一个数中减去前一个数。将两个数相减可以比较它们的大小。左右移位是运算器的基本操作。在有符号的数中,符号不动而只移数据位,称为算术移位。若数据连同符号的所有位一齐移动,称为逻辑移位。若将数据的最高位与最低位链接进行逻辑移位,称为循环移位。运算器的逻辑操作可将两个数据按位进行与、或、异或,以及将一个数据的各位求非。有的运算器还能进行二值代码的16种逻辑操作。乘、除法操作较为复杂。很多计算机的运算器能直接完成这些操作。乘法操作是以加法操作为基础的,由乘数的一位或几位译码控制逐次产生部分积,部分积相加得乘积。除法则又常以乘法为基础,即选定若干因子乘以除数,使它近似为1,这些因子乘被除数则得商。没有执行乘法、除法硬件的计算机可用程序实现乘、除,但速度慢得多。有的运算器还能执行在一批数中寻求最大数,对一批数据连续执行同一种操作,求平方根等复杂操作。运算方法 实现运算器的操作,特别是四则运算,必须选择合理的运算方法。它直接影响运算器的性能,也关系到运算器的结构和成本。另外,在进行数值计算时,结果的有效数位可能较长,必须截取一定的有效数位,由此而产生最低有效数位的舍入问题。选用的舍入规则也影响到计算结果的精确度。结构 运算器包括寄存器、执行部件和控制电路3个部分。在典型的运算器中有3个寄存器:接收并保存一个操作数的接收寄存器;保存另一个操作数和运算结果的累加寄存器;在进行乘、除运算时保存乘数或商数的乘商寄存器。执行部件包括一个加法器和各种类型的输入输出门电路。控制电路按照一定的时间顺序发出不同的控制信号,使数据经过相应的门电路进入寄存器或加法器,完成规定的操作。为了减少对存储器的访问,很多计算机的运算器设有较多的寄存器,存放中间计算结果,以便在后面的运算中直接用作操作数。为了提高运算速度,某些大型计算机有多个运算器。它们可以是不同类型的运算器,如定点加法器、浮点加法器、乘法器等,也可以是相同类型的运算器。运算器由算术逻辑单元(ALU)、累加寄存器、数据缓冲寄存器和状态条件寄存器组成,它是数据加工处理部件。相对控制器而言,运算器接受控制器的命令而进行动作 ,即运算器所进行的全部操作都是由控制器发出的控制信号来指挥的所以它是执行部件。 主要功能:执行所有的算术运算; 执行所有的逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。

    运算器:是进行运算的部件,主要功能是算术运算和逻辑运算。

    展开全文
  • 寄存器,寄存器什么意思

    千次阅读 2021-07-28 06:43:33
    寄存器,寄存器什么意思寄存器定义寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器...

    寄存器,寄存器是什么意思

    寄存器定义

    寄存器是中央处理器内的组成部分。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。

    寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。

    寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。

    例如,x86 指令集定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。

    寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。

    特点及原理

    寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点:

    ①寄存器位于CPU内部,数量很少,仅十四个;

    ②寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据;

    ③每个内部寄存器都有一个名字,而没有类似存储器的地址编号。

    寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样说。

    外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。CPU对端口的访问也是依据端口的“编号”(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口地址,端口地址范围为0--3FFH。

    寄存器用途

    1.可将寄存器内的数据执行算术及逻辑运算;

    2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;

    3.可以用来读写数据到电脑的周边设备。

    数据寄存器

    8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。

    (1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).

    顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。

    数据寄存器分为:

    AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.

    BH&BL=BX(base):基址寄存器,常用于地址索引;

    CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.

    DH&DL=DX(data):数据寄存器,常用于数据传递。

    他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。

    另一组是指针寄存器和变址寄存器,包括:

    SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;

    BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;

    SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;

    DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。

    这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。

    (2) 指令指针IP(Instruction Pointer)

    指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。

    (3)标志寄存器FR(Flag Register)

    8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。

    OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

    DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。

    IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:

    (1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;

    (2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。

    TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。

    (1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。

    (2)如果TF=0,则处于连续工作模式。

    SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。当运算结果没有产生溢出时,运算结果等于逻辑结果(即因该得到的正确的结果),此时SF表示的是逻辑结果的正负,当运算结果产生溢出时,运算结果不等于逻辑结果,此时的SF值所表示的正负情况与逻辑结果相反,即:SF=0时,逻辑结果为负,SF=1时,逻辑结果为正。

    ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

    AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:

    (1)、在字操作时,发生低字节向高字节进位或借位时;

    (2)、在字节操作时,发生低4位向高4位进位或借位时。

    PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

    CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。

    (4)段寄存器(Segment Register)

    为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:

    CS(Code Segment):代码段寄存器;

    DS(Data Segment):数据段寄存器;

    SS(Stack Segment):堆栈段寄存器;

    ES(Extra Segment):附加段寄存器。

    当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。

    以上是8086寄存器的整体概况, 自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。

    =============================以下是80386的寄存器的一些资料======================================

    寄存器都是32-bits宽。

    A、通用寄存器

    下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。

    EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)

    EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。

    ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存器或段选择器)。

    EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)。

    同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。

    B、用作内存指针的特殊寄存器

    ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。

    EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。

    EBP:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。

    注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。

    C、段选择器:

    实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。

    CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。

    DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做).

    ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。

    FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。

    GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。

    SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。

    * 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。

    指令指针寄存器:

    EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)

    上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):

    CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。

    还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。

    TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。

    寄存器分类

    数据寄存器 - 用来储存整数数字(参考以下的浮点寄存器)。在某些简单/旧的 CPU,特别的数据寄存器是累加器,作为数学计算之用。

    地址寄存器 - 持有存储器地址,以及用来访问存储器。在某些简单/旧的CPU里,特别的地址寄存器是索引寄存器(可能出现一个或多个)。

    通用目的寄存器 (GPRs) - 可以保存数据或地址两者,也就是说他们是结合 数据/地址 寄存器的功用。

    浮点寄存器 (FPRs) - 用来储存浮点数字。

    常数寄存器 - 用来持有只读的数值(例如 0、1、圆周率等等)。

    向量寄存器 - 用来储存由向量处理器运行SIMD(Single Instruction, Multiple Data)指令所得到的数据。

    特殊目的寄存器 - 储存CPU内部的数据,像是程序计数器(或称为指令指针),堆栈寄存器,以及状态寄存器(或称微处理器状态字组)。

    指令寄存器(instruction register) - 储存现在正在被运行的指令

    索引寄存器(index register) - 是在程序运行实用来更改运算对象地址之用。

    在某些架构下,模式指示寄存器(也称为“机器指示寄存器”)储存和设置跟处理器自己有关的数据。由于他们的意图目的是附加到特定处理器的设计,因此他们并不被预期会成微处理器世代之间保留的标准。

    有关从 随机存取存储器 提取信息的寄存器与CPU(位于不同芯片的储存寄存器集合)

    存储器缓冲寄存器(Memory buffer register)

    存储器数据寄存器(Memory data register)

    存储器地址寄存器(Memory address register)

    存储器型态范围寄存器(Memory Type Range Registers)[1][2]

    寄存器:

    寄存器是计算机和其他数字系统中用来存储代码或数据的逻辑部件。它的主要组成部分是触发器。一个触发器能存储1位二进制代码,所以要存储n位二进制代码的寄存器就需要用n个触发器组成。一个4位的集成寄存器74LS175的逻辑电路图和引脚图分别如图8.7.1(a)、(b)所示。其中,RD是异步清零控制端。在往寄存器中寄存数据或代码之前,必须先将寄存器清零,否则有可能出错。1D~4D 是数据输入端,在CP 脉冲上升沿作用下,1D~4D端的数据被并行地存入寄存器。输出数据可以并行从1Q~4Q 端引出,也可以并行从1Q~4Q 端引出反码输出。

    5dbab668d273ed04a3e15131558d8282.png

    74LS175的功能如表8.7.1所示。

    41ac387e577a99bfc0df96a889c5fe17.png

    上面介绍的寄存器只有寄存数据或代码的功能。有时为了处理数据,需要将寄存器中的各位数据在移位控制信号作用下,依次向高位或向低位移动1位。具有移位功能的寄存器称为移位寄存器。

    展开全文
  • 将某个信号同时用于异步复位和同步复位,可能导致只有部分寄存器的复位触发/释放,可能导致CDC问题或预期电路功能失效 在STA中,异步复位需要检查recovery time,同步复位需要检查set up time,将同一信号混用,可能...
    1. 将某个信号同时用于异步复位和同步复位,可能导致只有部分寄存器的复位触发/释放,可能导致CDC问题或预期电路功能失效
    2. 在STA中,异步复位需要检查recovery time,同步复位需要检查set up time,将同一信号混用,可能导致这一信号相关的时序难以满足
    展开全文
  • 通用寄存器

    2021-07-28 06:43:31
    通用寄存器用于传送和暂存数据,也可参与算术逻辑运算,并保存运算结果。除此之外,它们还各自具有一些特殊功能。汇编语言程序员必须熟悉每个寄存器的一般用途和特殊用途,只有这样,才能在程序中做到正确、合理地...

    通用寄存器可用于传送和暂存数据,也可参与算术逻辑运算,并保存运算结果。除此之外,它们还各自具有一些特殊功能。汇编语言程序员必须熟悉每个寄存器的一般用途和特殊用途,只有这样,才能在程序中做到正确、合理地使用它们。[1]

    中文名

    通用寄存器领    域

    计算机操作系统,汇编语言

    通用寄存器简介

    语音

    通用寄存器可用于传送和暂存数据,也可参与算术逻辑运算,并保存运算结果。除此之外,它们还各自具有一些特殊功能。通用寄存器的长度取决于机器字长,汇编语言程序员必须熟悉每个寄存器的一般用途和特殊用途,只有这样,才能在程序中做到正确、合理地使用它们。

    16位cpu通用寄存器共有 8 个:AX,BX,CX,DX,BP,SP,SI,DI.

    八个寄存器都可以作为普通的数据寄存器使用。

    但有的有特殊的用途:AX为累加器,CX为计数器,BX,BP为基址寄存器,SI,DI为变址寄存器,BP还可以是基

    指针,SP为堆栈指针。

    32位cpu通用寄存器共有 8 个: EAX,EBX,ECX,EDX,EBP,ESP,ESI,EDI功能和上面差不多

    通用寄存器分类

    语音

    通用寄存器数据寄存器

    数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。[1]

    32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 [1]

    4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 [1]

    寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高; 寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 [1]

    在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。详细内容请见第3.8节——32位地址的寻址方式。[1]

    通用寄存器变址寄存器

    32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。 [1]

    寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 [1]

    它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。[1]

    通用寄存器指针寄存器

    32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP和SP,对低16位数据的存取,不影响高16位的数据。 寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。[1]

    通用寄存器段寄存器

    段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。[1]

    通用寄存器指令指针寄存器

    32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 在实方式下,由于每个段的最大范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位的IP来反映程序中指令的执行次序。[1]

    通用寄存器主要用途

    语音

    通用寄存器数据

    寄存器AX乘、除运算,字的输入输出,中间结果的缓存

    AL字节的乘、除运算,字节的输入输出,十进制算术运算

    AH字节的乘、除运算,存放中断的功能号

    BX存储器指针

    CX串操作、循环控制的计数器

    CL移位操作的计数器

    DX字的乘、除运算,间接的输入输出

    变址

    寄存器SI存储器指针、串指令中的源操作数指针

    DI存储器指针、串指令中的目的操作数指针

    变址

    042a1d431208006b15c2a47bb817ad82.png

    分类示意图寄存器BP存储器指针、存取堆栈的指针

    SP堆栈的栈顶指针

    指令指针IP/EIP

    标志位寄存器Flag/EFlag

    32位

    CPU的

    段寄存器16位CPU的

    段寄存器ES 附加段寄存器

    CS 代码段寄存器

    SS 堆栈段寄存器

    DS 数据段寄存器

    新增加的

    段寄存器FS 附加段寄存器

    GS 附加段寄存器

    通用寄存器相关信息

    语音

    寄存器是CPU内部重要的数据存储资源,用来暂存数据和地址,是汇编程序员能直接使用的硬件资源之一。由于寄存器的存取速度比内存快,所以,在用汇编语言编写程序时,要尽可能充分利用寄存器的存储功能。

    49dddf132fb00f360ba8a5625072d285.gif

    运算器结构寄存器一般用来保存程序的中间结果,为随后的指令快速提供操作数,从而避免把中间结果存入内存,再读取内存的操作。在高级语言(如:C/C++语言)中,也有定义变量为寄存器类型的,这就是提高寄存器利用率的一种可行的方法。

    另外,由于寄存器的个数和容量都有限,不可能把所有中间结果都存储在寄存器中,所以,要对寄存器进行适当的调度。根据指令的要求,如何安排适当的寄存器,避免操作数过多的传送操作是一项细致而又周密的工作。

    参考资料

    1.

    汇编之通用寄存器

    .百度文库[引用日期2015-03-14]

    展开全文
  • 这是有道理的,因为对于用C编写的程序,堆栈帧对于调试最有用,而其他方面则没什么用。 (不过,您可以使用2982409126048048957440保持堆栈帧,同时启用其他优化功能。) 尽管相同的ABI应用于所有二进制文件,但是...
  • (一) 运算器1、 算术逻辑运算单元ALU(Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。在某些CPU中还有专门用于处理移位操作的移位器。通常A...
  • 寄存器的作用

    2021-07-28 07:23:41
    [From]AX/EAX: 累加器,算术通用寄存器,与端口的通讯也用这个...和累加器结合表示双字长的数,其中累加器用于存低位数.[From]http://blog.csdn.net/huangwei1024/archive/2007/01/29/1496560.aspx2.1 寄存器寄存器...
  • 寄存器

    2021-09-15 09:39:40
    1.ARM共有37个32位(=4字节=1字)寄存器。其中,31个为通用寄存器,6个为状态寄存器。 2.ARM状态下的寄存器 3.寄存器介绍 Sys和Usr共用一套寄存器 (1) 通用寄存器(31/37) 1) R0 - R7 所有工作模式下...
  • 汇编中寄存器的详解

    2021-02-25 19:58:07
    1、数据寄存器数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。...
  • 汇编——寄存器的分类和功能

    千次阅读 2021-01-01 20:59:45
    先说一下寄存器什么吧,其实就是一部分的空间,我们可以使用这些空间来存储内容。 寄存器的空间都是16位的(80x86中,后来有增长),也就是1个字的空间。 堆栈则有一点不一样,我们的堆栈空间是在程序中定义的,...
  • 寄存器电路

    2021-07-28 06:44:41
    在数字电路系统工作过程中,把正在处理的二进制数据或代码暂时存储起来的操作叫做寄存,寄存器电路就是实现寄存功能的电路,是数字逻辑电路的基础模块。[1]中文名寄存器电路外文名register circuit拼音jì cún qì ...
  • 请注意,设置此操作时,操作系统可能会跳过段寄存器并直接写入描述符高速缓存寄存器,这是用于缓存由段寄存器引用触发的GDT / LDT查找的“隐藏”寄存器,在这种情况下,如果您尝试要从段寄存器中读取,您将看不到它....
  • 内存资料寄存器

    2021-07-28 08:56:47
    内存资料寄存器(Memory Data Register,MDR),又称数据寄存器、缓冲寄存器,是计算机控制单元中的寄存器,寄存了将要写入到计算机主存储器(例如:RAM)的数据,或由计算机主存储器读取后的数据。它就像缓冲器,持有从...
  • 2.CPU体系架构-寄存器

    2021-03-18 14:55:35
    CPU通用寄存器作为CPU体系架构的一部分,不可或缺。通用寄存器是CPU的算术逻辑运算操作最直接,频繁的位置。对于RISC体系的CPU,算术逻辑运算甚至只能够操作CPU通用寄存器中的数据。我们的目的不在于详尽的说明每一...
  • 反汇编里rep stos dword ptr es:[edi] 是做什么的?参考资料:1....
  • 此博客上带有原创标识的文章、图片、文件等,未经本人允许,不得用于商业用途以及传统媒体。 本文首发于CSDN,其他网站均为转载。网络媒体或个人转载请注明出处和链接,否则属于侵权行为。 原博客链接:...
  • 外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样...
  • x86 调试寄存器

    2021-05-26 14:58:24
    调试状态寄存器Dr6: 该寄存器用于表示进入陷阱1的原因,各个位的含义如下: B0~B3,如果其中任何一个位置位,则表示是相应的Dr0~3断点引发的调试陷阱。但还需注意的是,有时候不管GiLi如何设置,只要是遇到Drx...
  • PHY寄存器

    千次阅读 2021-02-26 09:47:49
    02、状态寄存器寄存器1) 寄存器1是PHY状态寄存器主要包含PHY的状态信息。 bit15 100BASE-T4 PHY使用100BASE-T4信令规范执行链路传输和接收的能力。1:具有能力;0:不具有能力。 bit14 100BASE-X Full Duplex ...
  • 寄存器的最初目的是允许程序访问许多不同的(大)内存段,这些段旨在独立并且是持久性虚拟存储的一部分。这个想法来自1966年的Multics操作系统,该操作系统将文件视为简单的可寻址内存段。没有BS“打开文件,写记录...
  • 1.计算机中寄存器定义,分类寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。寄存器的用途:1.可将寄存器内的数据执行算术及...AL=AX:累加寄存器,常用于运算;BH&B...
  • 寄存器的种类和作用:1、代码段寄存器CS,用于存放当前正在运行的程序代码所在段。2、数据段寄存器DS,用于存放数据段。3、堆栈段寄存器SS,存放堆栈段。4、附加段寄存器ES,存放当前程序使用附加数据段。本教程...
  • PC Register介绍JVM中的程序计数寄存器(Program Counter Register)中,Register 的命名源于CPU的寄存器寄存器存储指令相关的现场信息。CPU只有把数据装载到寄存器才能够运行这里,并非是广义上所指的物理寄存器,...
  • 《计算机组成原理寄存器实验》由会员分享,可在线阅读,更多相关《计算机组成原理寄存器实验(9页珍藏版)》请在人人文库网上搜索。1、成绩:实 验 报 告课程名称:计算机组成原理实验实验项目:寄存器实验姓 名:专 ...
  • 通用寄存器组: CM3 拥有通用寄存器 R0-R15 以及一些特殊功能寄存器。 R0-R12 是最“通用目的”的,但是绝大多数的 16 位指令只能使用 R0-R7(低组寄存器),而 32 位的 Thumb-2 指令则可以访问所有通用寄存器。特殊...
  • 内存:内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。如RAM,SDRAM,Flash等。 物理地址:操作系统会给每一个内存单元编上一个绝对的号,
  • 一般寄存器:AX、BX、CX、DX AX:累积暂存器,BX:基底暂存器,CX:计数暂存器,DX:资料暂存器 索引暂存器:SI、DI SI:来源索引暂存器,DI:目的索引暂存器 堆叠、基底暂存器:SP、BP SP:堆叠指标暂存器,BP:基底指标暂存器...
  • 8086数据寄存器介绍通用寄存器在8086CPU中,通用寄存器有8个,分别是AX,BX,CX,DX,SP,BP,SI,DI下面介绍这几个通用寄存器:数据寄存器(AX,BX,CX,DX):数据寄存器有AX,BX,CX,DX四个组成,由于在8086之前的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 232,434
精华内容 92,973
关键字:

寄存器主要用于什么