精华内容
下载资源
问答
  • TCP/IP协议详解

    万次阅读 多人点赞 2019-05-11 08:40:41
    它是互联网协议(Internet Protocol Suite),一个网络通信模型,是互联网的一个基本的构架。 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超...

    为什么会有TCP/IP协议

    在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别。就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样。计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用。只有把它们联合起来,电脑才会发挥出它最大的潜力。于是人们就想方设法的用电线把电脑连接到了一起。

    但是简单的连到一起是远远不够的,就好像语言不同的两个人互相见了面,完全不能交流信息。因而他们需要定义一些共通的东西来进行交流,TCP/IP就是为此而生。TCP/IP不是一个协议,而是一个协议族的统称。里面包括了IP协议,IMCP协议,TCP协议,以及我们更加熟悉的http、ftp、pop3协议等等。电脑有了这些,就好像学会了外语一样,就可以和其他的计算机终端做自由的交流了。

    TCP/IP模型

    在这里插入图片描述
    应用层:
    向用户提供一组常用的应用程序,比如电子邮件、文件传输访问、远程登录等。远程登录TELNET使用TELNET协议提供在网络其它主机上注册的接口。TELNET会话提供了基于字符的虚拟终端。文件传输访问FTP使用FTP协议来提供网络内机器间的文件拷贝功能。

    传输层:
    提供应用程序间的通信。其功能包括:一、格式化信息流;二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送。

    网络层 :
    负责相邻计算机之间的通信。其功能包括三方面。
    一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。

    二、处理输入数据报:首先检查其合法性,然后进行寻径–假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。

    三、处理路径、流控、拥塞等问题。

    网络接口层:
    这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层。

    IP

    IP 用于计算机之间的通信。

    IP 是无连接的通信协议。它不会占用两个正在通信的计算机之间的通信线路。这样,IP 就降低了对网络线路的需求。每条线可以同时满足许多不同的计算机之间的通信需要。

    通过 IP,消息(或者其他数据)被分割为小的独立的包,并通过因特网在计算机之间传送。

    IP 负责将每个包路由至它的目的地。

    IP地址

    每个计算机必须有一个 IP 地址才能够连入因特网。

    每个 IP 包必须有一个地址才能够发送到另一台计算机。

    网络上每一个节点都必须有一个独立的Internet地址(也叫做IP地址)。现在,通常使用的IP地址是一个32bit的数字,也就是我们常说的IPv4标准,这32bit的数字分成四组,也就是常见的255.255.255.255的样式。IPv4标准上,地址被分为五类,我们常用的是B类地址。具体的分类请参考其他文档。需要注意的是IP地址是网络号+主机号的组合,这非常重要。

    CP/IP 使用 32 个比特来编址。一个计算机字节是 8 比特。所以 TCP/IP 使用了 4 个字节。
    一个计算机字节可以包含 256 个不同的值:
    00000000、00000001、00000010、00000011、00000100、00000101、00000110、00000111、00001000 … 直到 11111111。
    现在,你知道了为什么 TCP/IP 地址是介于 0 到 255 之间的 4 个数字。

    TCP 使用固定的连接

    TCP 用于应用程序之间的通信。

    当应用程序希望通过 TCP 与另一个应用程序通信时,它会发送一个通信请求。这个请求必须被送到一个确切的地址。在双方“握手”之后,TCP 将在两个应用程序之间建立一个全双工 (full-duplex) 的通信。

    这个全双工的通信将占用两个计算机之间的通信线路,直到它被一方或双方关闭为止。

    UDP 和 TCP 很相似,但是更简单,同时可靠性低于 TCP。

    IP 路由器

    当一个 IP 包从一台计算机被发送,它会到达一个 IP 路由器。

    IP 路由器负责将这个包路由至它的目的地,直接地或者通过其他的路由器。

    在一个相同的通信中,一个包所经由的路径可能会和其他的包不同。而路由器负责根据通信量、网络中的错误或者其他参数来进行正确地寻址。

    域名

    12 个阿拉伯数字很难记忆。使用一个名称更容易。

    用于 TCP/IP 地址的名字被称为域名。www.baidu.com就是一个域名。

    当你键入一个像https://www.baidu.com/这样的域名,域名会被一种 DNS 程序翻译为数字。

    在全世界,数量庞大的 DNS 服务器被连入因特网。DNS 服务器负责将域名翻译为 TCP/IP 地址,同时负责使用新的域名信息更新彼此的系统。

    当一个新的域名连同其 TCP/IP 地址一同注册后,全世界的 DNS 服务器都会对此信息进行更新。

    TCP/IP

    TCP/IP 意味着 TCP 和 IP 在一起协同工作。

    TCP 负责应用软件(比如你的浏览器)和网络软件之间的通信。

    IP 负责计算机之间的通信。

    TCP 负责将数据分割并装入 IP 包,然后在它们到达的时候重新组合它们。

    IP 负责将包发送至接受者。

    TCP报文格式

    在这里插入图片描述
    16位源端口号:16位的源端口中包含初始化通信的端口。源端口和源IP地址的作用是标识报文的返回地址。

    16位目的端口号:16位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。

    32位序号:32位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN出现,序列码实际上是初始序列码(Initial Sequence Number,ISN),而第一个数据字节是ISN+1。这个序列号(序列码)可用来补偿传输中的不一致。

    32位确认序号:32位的序列号由接收端计算机使用,重组分段的报文成最初形式。如果设置了ACK控制位,这个值表示一个准备接收的包的序列码。

    4位首部长度:4位包括TCP头大小,指示何处数据开始。

    保留(6位):6位值域,这些位必须是0。为了将来定义新的用途而保留。

    标志:6位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。

    16位窗口大小:用来表示想收到的每个TCP数据段的大小。TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端正期望接收的字节。窗口大小是一个16字节字段,因而窗口大小最大为65535字节。

    16位校验和:16位TCP头。源机器基于数据内容计算一个数值,收信息机要与源机器数值 结果完全一样,从而证明数据的有效性。检验和覆盖了整个的TCP报文段:这是一个强制性的字段,一定是由发送端计算和存储,并由接收端进行验证的。

    16位紧急指针:指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。

    选项:长度不定,但长度必须为1个字节。如果没有选项就表示这个1字节的域等于0。

    数据:该TCP协议包负载的数据。

    在上述字段中,6位标志域的各个选项功能如下。

    URG:紧急标志。紧急标志为"1"表明该位有效。

    ACK:确认标志。表明确认编号栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。

    PSH:推标志。该标志置位时,接收端不将该数据进行队列处理,而是尽可能快地将数据转由应用处理。在处理Telnet或rlogin等交互模式的连接时,该标志总是置位的。

    RST:复位标志。用于复位相应的TCP连接。

    SYN:同步标志。表明同步序列编号栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。

    FIN:结束标志。

    TCP三次握手

    所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:
    在这里插入图片描述
    (1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

    (2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

    (3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

    简单来说,就是

    1、建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认

    2、服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态

    3、客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手,客户端与服务器开始传送数据。

    SYN攻击:

    在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:

    #netstat -nap | grep SYN_RECV
    

    TCP四次挥手

    所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:
    在这里插入图片描述
    由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。

    (1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。

    (2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。

    (3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。

    (4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

    为什么建立连接是三次握手,而关闭连接却是四次挥手呢?

    这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。

    为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?
    原因有二:
    一、保证TCP协议的全双工连接能够可靠关闭
    二、保证这次连接的重复数据段从网络中消失

    先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。

    再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。

    认识HTTP协议

    它是互联网协议(Internet Protocol Suite),一个网络通信模型,是互联网的一个基本的构架。

    HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送协议。

    HTTP是一个基于TCP/IP通信协议来传递数据(HTML 文件, 图片文件, 查询结果等)。

    HTTP是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展。目前在WWW中使用的是HTTP/1.0的第六版,HTTP/1.1的规范化工作正在进行之中,而且HTTP-NG(Next Generation of HTTP)的建议已经提出。

    HTTP协议工作于客户端-服务端架构为上。浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发送所有请求。Web服务器根据接收到的请求后,向客户端发送响应信息。

    TCP/IP协议它们并不是一个协议,而是一个协议簇,这些协议的目的,就是使计算机之间可以进行信息交换,并且两大协议其中都包含其他的协议,虽然放在了一起,但它们的作用和工作是不一样的。

    HTTP协议定义了内容的格式,这是一个应用层的协议,应用层协议的内容需要通过传输层在浏览器和服务器之间传送,TCP/IP协议是ISO网络参考模型的一种实现。在TCP/IP协议中,与网络程序员相关的主要有两层:传输层和应用层。

    传输层协议负责解决数据传输问题,包括数据通行的可靠性问题。传输层依赖更底层的网络层来完成实际的数据传输,在TCP/IP网络协议中,负责可靠通信的传输层协议为TCP协议。而网络层一般用网络驱动来实现,普通的程序员不会涉及;在TCP/IP协议中,网络层的协议为IP协议。

    HTTP请求处理图解

    浏览器与Web服务器之间的协议是应用层协议,当前,我们主要遵循的协议为HTTP/1.1。HTTP协议是Web开发的基础,这是一个无状态的协议,客户机与服务器之间通过请求和相应完成一次会话(Session)。
    在这里插入图片描述

    客户端、web服务器、HTTP三者之间的联系

    (1)客户端与web服务器工作过程
    当浏览器寻找到Web服务器的地址之后,浏览器帮助我们把对服务器的请求转换为一系列参数发送给Web服务器。服务器受到浏览器发来的请求参数之后,将会分析这些数据,并进行处理。然后向浏览器回应处理的结果,也就是一些新的数据;这些数据通常是HTML网页或者图片。浏览器收到之后,解析这些数据,将它们呈现在浏览器的窗口中,这就是我们看到的网页。
    (2)客户端与web服务器遵守共同标准:HTTP协议
    在浏览器与Web服务器的对话中,需要使用双方都能够理解的语法规范进行通信,这种程序之间进行通信的语法规范,我们称之为协议。协议有许多种,根据国际标准化组织ISO的网络参考模型,程序与程序之间的通信可分为7层,从低到高依次为:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。

    ISO模型:
    在这里插入图片描述
    (3)客户端、web服务器、数据库服务器图解
    在这里插入图片描述

    浏览器与服务器图解

    HTTP协议就是TCP/IP协议中专门用于浏览器与Web服务器之间通信的应用层协议。应用层协议依赖于传输层协议完成数据传输,传输层协议依赖于网络层协议王城数据传输,他们之间的关系如下图(浏览器与服务器之间网络通信的传输过程):
    在这里插入图片描述

    写在后面

    如果觉得本文帮助了你,还请高抬贵手赠予 uh5 项目 一个 Star。

    展开全文
  • 常用互联网协议TCP/IP协议

    千次阅读 2019-03-26 11:38:11
    1、TCP/IP含义 一般来说,TCP/IP是利用IP进行通信时所必须用到的协议群的统称。 具体点,IP或ICMP、TCP或UDP、TELENT或FTP、以及HTTP等都属于TCP/IP协议,而TCP/IP一词泛指这些协议,有时称它们为TCP/IP为网际...

    一、TCP/IP的标准化

    1、TCP/IP的含义

    一般来说,TCP/IP是利用IP进行通信时所必须用到的协议群的统称。

    具体点,IP或ICMP、TCP或UDP、TELENT或FTP、以及HTTP等都属于TCP/IP协议,而TCP/IP一词泛指这些协议,有时称它们为TCP/IP为网际协议族/TCP/IP协议族

    如下图所示:

     

    二、TCP/IP协议分层模型

    1、TCP/IP与OSI参考模型

      各层之间的作用:

          

    下面是从网络上找到的TCP/IP通信数据流

                                                 

     

    2、HTTP 关系密切的协议 : IP、TCP 和 DNS

        IP协议:IP(Internet protocol),这里的IP不是值得我们通常所说的192.168.1.1.这个IP指的是一种协议,而后面的数字值得是IP地址。IP协议的作用在于把各种数据包准确无误的传递给对方,其中两个重要的条件是IP地址,和MAC地址(Media Access Control Address)。由于IP地址是稀有资源,不可能每个人都拥有一个IP地址,所以我们通常的IP地址是路由器给我们生成的IP地址,路由器里面会记录我们的MAC地址。而MAC地址是全球唯一的,除去人为因素外不可能重复。举一个现实生活中的例子,IP地址就如同是我们居住小区的地址,而MAC地址就是我们住的那栋楼那个房间那个人。关于MAC地址,如果我没讲清楚,可点击连接,查看百度。以下内容摘抄自《图解HTTP》

       使用 ARP 协议凭借 MAC 地址进行通信

       IP 间的通信依赖 MAC 地址。在网络上,通信的双方在同一局域网(LAN)内的情况是很少的,通常是经过多台计算机和网络设备中转才能连接到对方。而在进行中转时,会利用下一站中转设备的 MAC 地址来搜索下一个中转目标。这时,会采用 ARP 协议(Address Resolution Protocol)。ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址

        感兴趣的可以参考ARP协议(Address Resolution Protocol),题外话,从文档上来看,百度百科要比维基百科介绍的好的多。

     你向另外一台电脑发送一条信息,怎么再茫茫人海中瞬间找到对方,以下是图示:

       

                

     

    TCP协议:如果说IP协议是找到对方的详细地址。那么TCP协议就是把安全的把东西带给对方。各有分工,互不冲突。

          按层次分,TCP属于传输层,提供可靠的字节流服务。什么叫字节流服务呢?这个名字听起来让人不知所以然,下面听下我通俗的解释。所谓的字节流,其实就类似于信息切割。比如你是一个卖自行车的,你要去送货。安装好的自行车,太过庞大,又不稳定,容易损伤。不如直接把自行车拆开来,每个零件上都贴上收货人的姓名。最后送到后按照把属于同一个人的自行车再组装起来,这个拆解、运输、拼装的过程其实就是TCP字节流的过程。

         我们看下严谨的学术表达是怎样的:

         所谓的字节流服务(Byte Stream Service)是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。而可靠的传输服务是指,能够把数据准确可靠地传给对方。一言以蔽之,TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方。

         为了确保信息能够确保准确无误的到达,TCP采用了著名的三次握手策略(three-way handshaking).下面我写一段对话来模拟下这三次握手。

         

    DNS:DNS(Domain names System) 和HTTP协议一样是处于应用层的服务,提供域名到IP地址之间的解析服务。

    互联网之间是通过IP地址通信的,但是IP地址并不符合认得记忆习惯,人喜欢记忆有意义的字词。所以DNS服务就为了解决这个问题而生了。其实很好理解,形如我们电脑中host文件。

    192.168.1.11       roverliang.com  

    当我们访问roverliang.com 的时候,电脑便不会去外网服务器上查询了,直接去访问192.168.1.111。这是一个简单的域名劫持,足以说明DNS的涵义了。

    下面是我们访问一个网页,各种协议在里面起的作用。

    原始出处,不详,检索多篇后,自认为写的不错的文章,本文略作注解,方便大家阅读和理解,希望能够在原作的基础上更好地帮助大家。

    文章转自:https://blog.csdn.net/u010785091/article/details/78791543

     

    展开全文
  • 互联网通信用的协议是所谓 TCP/IP 协议族。通常认为 TCP/IP 协议族包括四层:应用层、传输层、网络层、链路层。链路层将一些数据放在电线上;网络层对数据进行路由;传输层将数据持久化;应用层以应用的形式提供数据...
  • 计算机网络 | 一文搞懂什么是TCP/IP协议

    万次阅读 多人点赞 2019-10-28 12:48:16
    什么是TCP/IP协议? 计算机与网络设备之间如果要相互通信,双方就必须基于相同的方法.比如如何探测到通信目标.由哪一边先发起通信,...也就是说,TCP/IP互联网相关各类协议族的总称。 TCP/IP 的分层管理 TCP/IP协...

    什么是TCP/IP协议?

    计算机与网络设备之间如果要相互通信,双方就必须基于相同的方法.比如如何探测到通信目标.由哪一边先发起通信,使用哪种语言进行通信,怎样结束通信等规则都需要事先确定.不同的硬件,操作系统之间的通信,所有这一切都需要一种规则.而我们就将这种规则称为协议 (protocol).

    image-20191027150025587

    也就是说,TCP/IP 是互联网相关各类协议族的总称。

    TCP/IP 的分层管理

    TCP/IP协议里最重要的一点就是分层。TCP/IP协议族按层次分别为 应用层,传输层,网络层,数据链路层,物理层。当然也有按不同的模型分为4层或者7层的。

    为什么要分层呢?

    把 TCP/IP 协议分层之后,如果后期某个地方设计修改,那么就无需全部替换,只需要将变动的层替换。而且从设计上来说,也变得简单了。处于应用层上的应用可以只考虑分派给自己的任务,而不需要弄清对方在地球上哪个地方,怎样传输,如果确保到达率等问题。

    image-20191027150352733

    如上图所示,我们将TCP/IP分为5层,越靠下越接近硬件。我们由下到上来了解一下这些分层。

    1. 物理层

      该层负责 比特流在节点之间的传输,即负责物理传输,这一层的协议既与链路有关,也与传输的介质有关。通俗来说就是把计算机连接起来的物理手段。

    2. 数据链路层

      控制网络层与物理层之间的通信,主要功能是保证物理线路上进行可靠的数据传递。为了保证传输,从网络层接收到的数据被分割成特定的可被物理层传输的帧。帧是用来移动数据结构的结构包,他不仅包含原始数据,还包含发送方和接收方的物理地址以及纠错和控制信息。其中的地址确定了帧将发送到何处,而纠错和控制信息则确保帧无差错到达。如果在传达数据时,接收点检测到所传数据中有差错,就要通知发送方重发这一帧。

    3. 网络层

      决定如何将数据从发送方路由到接收方。网络层通过综合考虑发送优先权,网络拥塞程度,服务质量以及可选路由的花费等来决定从网络中的A节点到B节点的最佳途径。即建立主机到主机的通信。

    4. 传输层

      该层为两台主机上的应用程序提供端到端的通信。传输层有两个传输协议:TCP(传输控制协议)和 UDP(用户数据报协议)。其中,TCP是一个可靠的面向连接的协议,udp是不可靠的或者说无连接的协议

    5. 应用层

      应用程序收到传输层的数据后,接下来就要进行解读。解读必须事先规定好格式,而应用层就是规定应用程序的数据格式。主要的协议有:HTTP.FTP,Telent等。

    TCP与UDP

    TCP/UDP 都是传输层协议,但是两者具有不同的特效,同时也具有不同的应用场景。

    image-20191027212512703

    面向报文

    面向报文的传输方式是应用层交给UDP多长的报文,UDP发送多长的报文,即一次发送一个报文。因此,应用程序必须选择合适大小的报文。

    面向字节流

    虽然应用程序和TCP的交互是一次一个数据块(大小不等),但TCP把应用程序看成是一连串的无结构的字节流。TCP有一个缓冲,当应该程序传送的数据块太长,TCP就可以把它划分短一些再传送。

    TCP的三次握手与四次挥手

    具体过程如下:

    • 第一次握手:建立连接。客户端发送连接请求报文段,并将syn(标记位)设置为1,Squence Number(数据包序号)(seq)为x,接下来等待服务端确认,客户端进入SYN_SENT状态(请求连接);

    • 第二次握手:服务端收到客户端的 SYN 报文段,对 SYN 报文段进行确认,设置 ack(确认号)为 x+1(即seq+1 ; 同时自己还要发送 SYN 请求信息,将 SYN 设置为1, seq为 y。服务端将上述所有信息放到 SYN+ACK 报文段中,一并发送给客户端,此时服务器进入 SYN_RECV状态。

      SYN_RECV是指,服务端被动打开后,接收到了客户端的SYN并且发送了ACK时的状态。再进一步接收到客户端的ACK就进入ESTABLISHED状态。

    • 第三次握手:客户端收到服务端的 SYN+ACK(确认符) 报文段;然后将 ACK 设置为 y+1,向服务端发送ACK报文段,这个报文段发送完毕后,客户端和服务端都进入ESTABLISHED(连接成功)状态,完成TCP 的三次握手。

    上面的解释可能有点不好理解,用《图解HTTP》中的一副插图 帮助大家。

    img

    当客户端和服务端通过三次握手建立了 TCP 连接以后,当数据传送完毕,断开连接就需要进行TCP的四次挥手。其四次挥手如下所示:

    • 第一次挥手

      客户端设置seq和 ACK ,向服务器发送一个 FIN(终结)报文段。此时,客户端进入 FIN_WAIT_1 状态,表示客户端没有数据要发送给服务端了。

    • 第二次挥手

      服务端收到了客户端发送的 FIN 报文段,向客户端回了一个 ACK 报文段。

    • 第三次挥手

      服务端向客户端发送FIN 报文段,请求关闭连接,同时服务端进入 LAST_ACK 状态。

    • 第四次挥手

      客户端收到服务端发送的 FIN 报文段后,向服务端发送 ACK 报文段,然后客户端进入 TIME_WAIT 状态。服务端收到客户端的 ACK 报文段以后,就关闭连接。此时,客户端等待 2MSL(指一个片段在网络中最大的存活时间)后依然没有收到回复,则说明服务端已经正常关闭,这样客户端就可以关闭连接了。

    最后再看一下完整的过程:

    img

    如果有大量的连接,每次在连接,关闭都要经历三次握手,四次挥手,这显然会造成性能低下。因此。Http 有一种叫做 长连接(keepalive connections) 的机制。它可以在传输数据后仍保持连接,当客户端需要再次获取数据时,直接使用刚刚空闲下来的连接而无需再次握手。

    img

    一些问题汇总:

    1. 为什么要三次握手?

    为了防止已失效的连接请求报文突然又传送到了服务端,因为产生错误。

    具体解释: “已失效的连接请求报文段”产生情况:

    client 发出的第一个连接请求报文段并没有丢失,而是在某个网络节点长时间滞留,因此导致延误到连接释放以后的某个时间才到达 service。如果没有三次握手,那么此时server收到此失效的连接请求报文段,就误认为是 client再次发出的一个新的连接请求,于是向 client 发出确认报文段,同意建立连接,而此时 client 并没有发出建立连接的情况,因此并不会理会服务端的响应,而service将会一直等待client发送数据,因此就会导致这条连接线路白白浪费。

    如果此时变成两次挥手行不行?

    这个时候需要明白全双工与半双工,再进行回答。比如:

    • 第一次握手: A给B打电话说,你可以听到我说话吗?
    • 第二次握手: B收到了A的信息,然后对A说: 我可以听得到你说话啊,你能听得到我说话吗?
    • 第三次握手: A收到了B的信息,然后说可以的,我要给你发信息啦!

    在三次握手之后,A和B都能确定这么一件事: 我说的话,你能听到; 你说的话,我也能听到。 这样,就可以开始正常通信了,如果是两次,那将无法确定。

    2. 为什么要四次挥手?

    TCP 协议是一种面向连接,可靠,基于字节流的传输层通信协议。TCP 是全双工模式(同一时刻可以同时发送和接收),这就意味着,当主机1发出 FIN 报文段时,只是表示主机1已结没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回 ACK报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会中断这次TCP连接。

    3.为什么要等待 2MSL

    MSL:报文段最大生存时间,它是任何报文段被丢弃前在网络内的最长时间

    原因如下:

    • 保证TCP协议的全双工连接能够可靠关闭
    • 保证这次连接的重复数据从网络中消息

    第一点: 如果主机1直接 关闭,由于IP协议的不可靠性或者其他网络原因,导致主机2没有收到主机1最后回复的 ACK。那么主机2就会在超时之后继续发送 FIN,此时由于主机1已经关闭,就找不到与重发的 FIN 对应的连接。所以,主机1 不是直接进入 关闭,而是TIME_WAIT 状态。当再次收到 FIN 的时候,能够保证对方收到 ACK ,最后正确关闭连接。

    第二点:如果主机1直接 关闭,然后又再向主机 2 发起一个新连接,我们不能保证这个新连接与刚才关闭的连接端口是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但还是有特殊情况出现;假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中( Lost Duplicate ),那些延迟数据在建立新连接之后才到达主机2,由于新连接和老连接的端口号是一样的,TCP 协议就认为哪个延迟的数据时属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接要在 TIME_WAIT 状态等待两倍 MSL ,保证本次连接的所有数据都从网络中消失。




    参考内容

    <图解HTTP>
    <Android进阶之光-网络篇>
    知乎-TCP 为什么是三次握手,而不是两次或四次?

    展开全文
  • 太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    万次阅读 多人点赞 2020-05-07 09:30:15
    OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更强调“在计算机上实现协议应该开发哪种程序”。 二、 TCP/IP 基础 1. TCP/IP 的具体含义 从字面意义上讲,有人可能会认为...

     

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    一图看完本文

     

    一、 计算机网络体系结构分层

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    计算机网络体系结构分层

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    计算机网络体系结构分层

    不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更强调“在计算机上实现协议应该开发哪种程序”。

     

    二、 TCP/IP 基础

    1. TCP/IP 的具体含义

    从字面意义上讲,有人可能会认为 TCP/IP 是指 TCP 和 IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用 IP 进行通信时所必须用到的协议群的统称。具体来说,IP 或 ICMP、TCP 或 UDP、TELNET 或 FTP、以及 HTTP 等都属于 TCP/IP 协议。他们与 TCP 或 IP 的关系紧密,是互联网必不可少的组成部分。TCP/IP 一词泛指这些协议,因此,有时也称 TCP/IP 为网际协议群。

    互联网进行通信时,需要相应的网络协议,TCP/IP 原本就是为使用互联网而开发制定的协议族。因此,互联网的协议就是 TCP/IP,TCP/IP 就是互联网的协议。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    网际协议群

    2. 数据包

    包、帧、数据包、段、消息

    以上五个术语都用来表述数据的单位,大致区分如下:

    • 包可以说是全能性术语;
    • 帧用于表示数据链路层中包的单位;
    • 数据包是 IP 和 UDP 等网络层以上的分层中包的单位;
    • 段则表示 TCP 数据流中的信息;
    • 消息是指应用协议中数据的单位。

    每个分层中,都会对所发送的数据附加一个首部,在这个首部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包首部,所要发送的内容为数据。在下一层的角度看,从上一层收到的包全部都被认为是本层的数据。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    数据包首部

    网络中传输的数据包由两部分组成:一部分是协议所要用到的首部,另一部分是上一层传过来的数据。首部的结构由协议的具体规范详细定义。在数据包的首部,明确标明了协议应该如何读取数据。反过来说,看到首部,也就能够了解该协议必要的信息以及所要处理的数据。包首部就像协议的脸。

    3. 数据处理流程

    下图以用户 a 向用户 b 发送邮件为例子:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    数据处理流程

    • ① 应用程序处理
    • 首先应用程序会进行编码处理,这些编码相当于 OSI 的表示层功能;
    • 编码转化后,邮件不一定马上被发送出去,这种何时建立通信连接何时发送数据的管理功能,相当于 OSI 的会话层功能。
    • ② TCP 模块的处理
    • TCP 根据应用的指示,负责建立连接、发送数据以及断开连接。TCP 提供将应用层发来的数据顺利发送至对端的可靠传输。为了实现这一功能,需要在应用层数据的前端附加一个 TCP 首部。
    • ③ IP 模块的处理
    • IP 将 TCP 传过来的 TCP 首部和 TCP 数据合起来当做自己的数据,并在 TCP 首部的前端加上自己的 IP 首部。IP 包生成后,参考路由控制表决定接受此 IP 包的路由或主机。
    • ④ 网络接口(以太网驱动)的处理
    • 从 IP 传过来的 IP 包对于以太网来说就是数据。给这些数据附加上以太网首部并进行发送处理,生成的以太网数据包将通过物理层传输给接收端。
    • ⑤ 网络接口(以太网驱动)的处理
    • 主机收到以太网包后,首先从以太网包首部找到 MAC 地址判断是否为发送给自己的包,若不是则丢弃数据。
    • 如果是发送给自己的包,则从以太网包首部中的类型确定数据类型,再传给相应的模块,如 IP、ARP 等。这里的例子则是 IP 。
    • ⑥ IP 模块的处理
    • IP 模块接收到 数据后也做类似的处理。从包首部中判断此 IP 地址是否与自己的 IP 地址匹配,如果匹配则根据首部的协议类型将数据发送给对应的模块,如 TCP、UDP。这里的例子则是 TCP。
    • 另外吗,对于有路由器的情况,接收端地址往往不是自己的地址,此时,需要借助路由控制表,在调查应该送往的主机或路由器之后再进行转发数据。
    • ⑦ TCP 模块的处理
    • 在 TCP 模块中,首先会计算一下校验和,判断数据是否被破坏。然后检查是否在按照序号接收数据。最后检查端口号,确定具体的应用程序。数据被完整地接收以后,会传给由端口号识别的应用程序。
    • ⑧ 应用程序的处理
    • 接收端应用程序会直接接收发送端发送的数据。通过解析数据,展示相应的内容。

     

    三、传输层中的 TCP 和 UDP

    TCP/IP 中有两个具有代表性的传输层协议,分别是 TCP 和 UDP。

    • TCP 是面向连接的、可靠的流协议。流就是指不间断的数据结构,当应用程序采用 TCP 发送消息时,虽然可以保证发送的顺序,但还是犹如没有任何间隔的数据流发送给接收端。TCP 为提供可靠性传输,实行“顺序控制”或“重发控制”机制。此外还具备“流控制(流量控制)”、“拥塞控制”、提高网络利用率等众多功能。
    • UDP 是不具有可靠性的数据报协议。细微的处理它会交给上层的应用去完成。在 UDP 的情况下,虽然可以确保发送消息的大小,却不能保证消息一定会到达。因此,应用有时会根据自己的需要进行重发处理。
    • TCP 和 UDP 的优缺点无法简单地、绝对地去做比较:TCP 用于在传输层有必要实现可靠传输的情况;而在一方面,UDP 主要用于那些对高速传输和实时性有较高要求的通信或广播通信。TCP 和 UDP 应该根据应用的目的按需使用。

    1. 端口号

    数据链路和 IP 中的地址,分别指的是 MAC 地址和 IP 地址。前者用来识别同一链路中不同的计算机,后者用来识别 TCP/IP 网络中互连的主机和路由器。在传输层也有这种类似于地址的概念,那就是端口号。端口号用来识别同一台计算机中进行通信的不同应用程序。因此,它也被称为程序地址。

    1.1 根据端口号识别应用

    一台计算机上同时可以运行多个程序。传输层协议正是利用这些端口号识别本机中正在进行通信的应用程序,并准确地将数据传输。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    通过端口号识别应用

    1.2 通过 IP 地址、端口号、协议号进行通信识别

    • 仅凭目标端口号识别某一个通信是远远不够的。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    通过端口号、IP地址、协议号进行通信识别

    • ① 和② 的通信是在两台计算机上进行的。它们的目标端口号相同,都是80。这里可以根据源端口号加以区分。
    • ③ 和 ① 的目标端口号和源端口号完全相同,但它们各自的源 IP 地址不同。
    • 此外,当 IP 地址和端口号全都一样时,我们还可以通过协议号来区分(TCP 和 UDP)。

    1.3 端口号的确定

    • 标准既定的端口号:这种方法也叫静态方法。它是指每个应用程序都有其指定的端口号。但并不是说可以随意使用任何一个端口号。例如 HTTP、FTP、TELNET 等广为使用的应用协议中所使用的端口号就是固定的。这些端口号被称为知名端口号,分布在 0~1023 之间;除知名端口号之外,还有一些端口号被正式注册,它们分布在 1024~49151 之间,不过这些端口号可用于任何通信用途。
    • 时序分配法:服务器有必要确定监听端口号,但是接受服务的客户端没必要确定端口号。在这种方法下,客户端应用程序完全可以不用自己设置端口号,而全权交给操作系统进行分配。动态分配的端口号范围在 49152~65535 之间。

    1.4 端口号与协议

    • 端口号由其使用的传输层协议决定。因此,不同的传输层协议可以使用相同的端口号。
    • 此外,那些知名端口号与传输层协议并无关系。只要端口一致都将分配同一种应用程序进行处理。

    2. UDP

    • UDP 不提供复杂的控制机制,利用 IP 提供面向无连接的通信服务。
    • 并且它是将应用程序发来的数据在收到的那一刻,立即按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况,UDP 也无法进行流量控制等避免网络拥塞行为。
    • 此外,传输途中出现丢包,UDP 也不负责重发。
    • 甚至当包的到达顺序出现乱序时也没有纠正的功能。
    • 如果需要以上的细节控制,不得不交由采用 UDP 的应用程序去处理。
    • UDP 常用于一下几个方面:1.包总量较少的通信(DNS、SNMP等);2.视频、音频等多媒体通信(即时通信);3.限定于 LAN 等特定网络中的应用通信;4.广播通信(广播、多播)。

    3. TCP

    • TCP 与 UDP 的区别相当大。它充分地实现了数据传输时各种控制功能,可以进行丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在 UDP 中都没有。
    • 此外,TCP 作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。
    • 根据 TCP 的这些机制,在 IP 这种无连接的网络上也能够实现高可靠性的通信( 主要通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现)。

    3.1 三次握手(重点)

    • TCP 提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好两端之间的准备工作。
    • 所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发。

    下面来看看三次握手的流程图:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    三次握手

    • 第一次握手:客户端将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给服务器端,客户端进入SYN_SENT状态,等待服务器端确认。
    • 第二次握手:服务器端收到数据包后由标志位SYN=1知道客户端请求建立连接,服务器端将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给客户端以确认连接请求,服务器端进入SYN_RCVD状态。
    • 第三次握手:客户端收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给服务器端,服务器端检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,客户端和服务器端进入ESTABLISHED状态,完成三次握手,随后客户端与服务器端之间可以开始传输数据了。

    3.2 四次挥手(重点)

    • 四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发。
    • 由于TCP连接是全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

    下面来看看四次挥手的流程图:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    四次挥手

    • 中断连接端可以是客户端,也可以是服务器端。
    • 第一次挥手:客户端发送一个FIN=M,用来关闭客户端到服务器端的数据传送,客户端进入FIN_WAIT_1状态。意思是说"我客户端没有数据要发给你了",但是如果你服务器端还有数据没有发送完成,则不必急着关闭连接,可以继续发送数据。
    • 第二次挥手:服务器端收到FIN后,先发送ack=M+1,告诉客户端,你的请求我收到了,但是我还没准备好,请继续你等我的消息。这个时候客户端就进入FIN_WAIT_2 状态,继续等待服务器端的FIN报文。
    • 第三次挥手:当服务器端确定数据已发送完成,则向客户端发送FIN=N报文,告诉客户端,好了,我这边数据发完了,准备好关闭连接了。服务器端进入LAST_ACK状态。
    • 第四次挥手:客户端收到FIN=N报文后,就知道可以关闭连接了,但是他还是不相信网络,怕服务器端不知道要关闭,所以发送ack=N+1后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。服务器端收到ACK后,就知道可以断开连接了。客户端等待了2MSL后依然没有收到回复,则证明服务器端已正常关闭,那好,我客户端也可以关闭连接了。最终完成了四次握手。

    上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况,

    具体流程如下图:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    同时挥手

    3.3 通过序列号与确认应答提高可靠性

    • 在 TCP 中,当发送端的数据到达接收主机时,接收端主机会返回一个已收到消息的通知。这个消息叫做确认应答(ACK)。当发送端将数据发出之后会等待对端的确认应答。如果有确认应答,说明数据已经成功到达对端。反之,则数据丢失的可能性很大
    • 在一定时间内没有等待到确认应答,发送端就可以认为数据已经丢失,并进行重发。由此,即使产生了丢包,仍然能够保证数据能够到达对端,实现可靠传输。
    • 未收到确认应答并不意味着数据一定丢失。也有可能是数据对方已经收到,只是返回的确认应答在途中丢失。这种情况也会导致发送端误以为数据没有到达目的地而重发数据。
    • 此外,也有可能因为一些其他原因导致确认应答延迟到达,在源主机重发数据以后才到达的情况也屡见不鲜。此时,源主机只要按照机制重发数据即可。
    • 对于目标主机来说,反复收到相同的数据是不可取的。为了对上层应用提供可靠的传输,目标主机必须放弃重复的数据包。为此我们引入了序列号。
    • 序列号是按照顺序给发送数据的每一个字节(8位字节)都标上号码的编号。接收端查询接收数据 TCP 首部中的序列号和数据的长度,将自己下一步应该接收的序列号作为确认应答返送回去。通过序列号和确认应答号,TCP 能够识别是否已经接收数据,又能够判断是否需要接收,从而实现可靠传输。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    序列号和确认应答

    3.4 重发超时的确定

    • 重发超时是指在重发数据之前,等待确认应答到来的那个特定时间间隔。如果超过这个时间仍未收到确认应答,发送端将进行数据重发。最理想的是,找到一个最小时间,它能保证“确认应答一定能在这个时间内返回”。
    • TCP 要求不论处在何种网络环境下都要提供高性能通信,并且无论网络拥堵情况发生何种变化,都必须保持这一特性。为此,它在每次发包时都会计算往返时间及其偏差。将这个往返时间和偏差时间相加,重发超时的时间就是比这个总和要稍大一点的值。
    • 在 BSD 的 Unix 以及 Windows 系统中,超时都以0.5秒为单位进行控制,因此重发超时都是0.5秒的整数倍。不过,最初其重发超时的默认值一般设置为6秒左右。
    • 数据被重发之后若还是收不到确认应答,则进行再次发送。此时,等待确认应答的时间将会以2倍、4倍的指数函数延长。
    • 此外,数据也不会被无限、反复地重发。达到一定重发次数之后,如果仍没有任何确认应答返回,就会判断为网络或对端主机发生了异常,强制关闭连接。并且通知应用通信异常强行终止。

    3.5 以段为单位发送数据

    • 在建立 TCP 连接的同时,也可以确定发送数据包的单位,我们也可以称其为“最大消息长度”(MSS)。最理想的情况是,最大消息长度正好是 IP 中不会被分片处理的最大数据长度。
    • TCP 在传送大量数据时,是以 MSS 的大小将数据进行分割发送。进行重发时也是以 MSS 为单位。
    • MSS 在三次握手的时候,在两端主机之间被计算得出。两端的主机在发出建立连接的请求时,会在 TCP 首部中写入 MSS 选项,告诉对方自己的接口能够适应的 MSS 的大小。然后会在两者之间选择一个较小的值投入使用。

    3.6 利用窗口控制提高速度

    • TCP 以1个段为单位,每发送一个段进行一次确认应答的处理。这样的传输方式有一个缺点,就是包的往返时间越长通信性能就越低。
    • 为解决这个问题,TCP 引入了窗口这个概念。确认应答不再是以每个分段,而是以更大的单位进行确认,转发时间将会被大幅地缩短。也就是说,发送端主机,在发送了一个段以后不必要一直等待确认应答,而是继续发送。如下图所示:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    •  
    • 窗口控制
    • 窗口大小就是指无需等待确认应答而可以继续发送数据的最大值。上图中窗口大小为4个段。这个机制实现了使用大量的缓冲区,通过对多个段同时进行确认应答的功能。

    3.7 滑动窗口控制

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    滑动窗口

    • 上图中的窗口内的数据即便没有收到确认应答也可以被发送出去。不过,在整个窗口的确认应答没有到达之前,如果其中部分数据出现丢包,那么发送端仍然要负责重传。为此,发送端主机需要设置缓存保留这些待被重传的数据,直到收到他们的确认应答。
    • 在滑动窗口以外的部分包括未发送的数据以及已经确认对端已收到的数据。当数据发出后若如期收到确认应答就可以不用再进行重发,此时数据就可以从缓存区清除。
    • 收到确认应答的情况下,将窗口滑动到确认应答中的序列号的位置。这样可以顺序地将多个段同时发送提高通信性能。这种机制也别称为滑动窗口控制。

    3.8 窗口控制中的重发控制

    在使用窗口控制中, 出现丢包一般分为两种情况:

    • ① 确认应答未能返回的情况。在这种情况下,数据已经到达对端,是不需要再进行重发的,如下图:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    部分确认应答丢失

    • ② 某个报文段丢失的情况。接收主机如果收到一个自己应该接收的序列号以外的数据时,会针对当前为止收到数据返回确认应答。如下图所示,当某一报文段丢失后,发送端会一直收到序号为1001的确认应答,因此,在窗口比较大,又出现报文段丢失的情况下,同一个序列号的确认应答将会被重复不断地返回。而发送端主机如果连续3次收到同一个确认应答,就会将其对应的数据进行重发。这种机制比之前提到的超时管理更加高效,因此也被称为高速重发控制。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    高速重发控制

     

    四、网络层中的 IP 协议

    • IP(IPv4、IPv6)相当于 OSI 参考模型中的第3层——网络层。网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点通信”。
    • 网络的下一层——数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递。而一旦跨越多种数据链路,就需要借助网络层。网络层可以跨越不同的数据链路,即使是在不同的数据链路上也能实现两端节点之间的数据包传输。
    • IP 大致分为三大作用模块,它们是 IP 寻址、路由(最终节点为止的转发)以及 IP 分包与组包。

    1. IP 地址

    1.1 IP 地址概述

    • 在计算机通信中,为了识别通信对端,必须要有一个类似于地址的识别码进行标识。在数据链路中的 MAC 地址正是用来标识同一个链路中不同计算机的一种识别码。
    • 作为网络层的 IP ,也有这种地址信息,一般叫做 IP 地址。IP 地址用于在“连接到网络中的所有主机中识别出进行通信的目标地址”。因此,在 TCP/IP 通信中所有主机或路由器必须设定自己的 IP 地址。
    • 不论一台主机与哪种数据链路连接,其 IP 地址的形式都保持不变。
    • IP 地址(IPv4 地址)由32位正整数来表示。IP 地址在计算机内部以二进制方式被处理。然而,由于我们并不习惯于采用二进制方式,我们将32位的 IP 地址以每8位为一组,分成4组,每组以 “.” 隔开,再将每组数转换成十进制数。如下:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    1.2 IP 地址由网络和主机两部分标识组成

    • 如下图,网络标识在数据链路的每个段配置不同的值。网络标识必须保证相互连接的每个段的地址不相重复。而相同段内相连的主机必须有相同的网络地址。IP 地址的“主机标识”则不允许在同一个网段内重复出现。由此,可以通过设置网络地址和主机地址,在相互连接的整个网络中保证每台主机的 IP 地址都不会相互重叠。即 IP 地址具有了唯一性。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    IP地址的主机标识

    • 如下图,IP 包被转发到途中某个路由器时,正是利用目标 IP 地址的网络标识进行路由。因为即使不看主机标识,只要一见到网络标识就能判断出是否为该网段内的主机。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    IP地址的网络标识

    1.3 IP 地址的分类

    • IP 地址分为四个级别,分别为A类、B类、C类、D类。它根据 IP 地址中从第 1 位到第 4 位的比特列对其网络标识和主机标识进行区分。
    • A 类 IP 地址是首位以 “0” 开头的地址。从第 1 位到第 8 位是它的网络标识。用十进制表示的话,0.0.0.0~127.0.0.0 是 A 类的网络地址。A 类地址的后 24 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为16,777,214个。
    • B 类 IP 地址是前两位 “10” 的地址。从第 1 位到第 16 位是它的网络标识。用十进制表示的话,128.0.0.0~191.255.0.0 是 B 类的网络地址。B 类地址的后 16 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为65,534个。
    • C 类 IP 地址是前三位为 “110” 的地址。从第 1 位到第 24 位是它的网络标识。用十进制表示的话,192.0.0.0~223.255.255.0 是 C 类的网络地址。C 类地址的后 8 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为254个。
    • D 类 IP 地址是前四位为 “1110” 的地址。从第 1 位到第 32 位是它的网络标识。用十进制表示的话,224.0.0.0~239.255.255.255 是 D 类的网络地址。D 类地址没有主机标识,常用于多播。
    • 在分配 IP 地址时关于主机标识有一点需要注意。即要用比特位表示主机地址时,不可以全部为 0 或全部为 1。因为全部为 0 只有在表示对应的网络地址或 IP 地址不可以获知的情况下才使用。而全部为 1 的主机通常作为广播地址。因此,在分配过程中,应该去掉这两种情况。这也是为什么 C 类地址每个网段最多只能有 254( 28 - 2 = 254)个主机地址的原因。

    1.4 广播地址

    • 广播地址用于在同一个链路中相互连接的主机之间发送数据包。将 IP 地址中的主机地址部分全部设置为 1,就成了广播地址。
    • 广播分为本地广播和直接广播两种。在本网络内的广播叫做本地广播;在不同网络之间的广播叫做直接广播。

    1.5 IP 多播

    • 多播用于将包发送给特定组内的所有主机。由于其直接使用 IP 地址,因此也不存在可靠传输。
    • 相比于广播,多播既可以穿透路由器,又可以实现只给那些必要的组发送数据包。请看下图:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    •  
    • IP 多播
    • 多播使用 D 类地址。因此,如果从首位开始到第 4 位是 “1110”,就可以认为是多播地址。而剩下的 28 位可以成为多播的组编号。
    • 此外, 对于多播,所有的主机(路由器以外的主机和终端主机)必须属于 224.0.0.1 的组,所有的路由器必须属于 224.0.0.2 的组。

    1.6 子网掩码

    • 现在一个 IP 地址的网络标识和主机标识已不再受限于该地址的类别,而是由一个叫做“子网掩码”的识别码通过子网网络地址细分出比 A 类、B 类、C 类更小粒度的网络。这种方式实际上就是将原来 A 类、B 类、C 类等分类中的主机地址部分用作子网地址,可以将原网络分为多个物理网络的一种机制。
    • 子网掩码用二进制方式表示的话,也是一个 32 位的数字。它对应 IP 地址网络标识部分的位全部为 “1”,对应 IP 地址主机标识的部分则全部为 “0”。由此,一个 IP 地址可以不再受限于自己的类别,而是可以用这样的子网掩码自由地定位自己的网络标识长度。当然,子网掩码必须是 IP 地址的首位开始连续的 “1”。
    • 对于子网掩码,目前有两种表示方式。第一种是,将 IP 地址与子网掩码的地址分别用两行来表示。以 172.20.100.52 的前 26 位是网络地址的情况为例,如下:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    • 第二种表示方式是,在每个 IP 地址后面追加网络地址的位数用 “/ ” 隔开,如下:

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    2. 路由

    • 发送数据包时所使用的地址是网络层的地址,即 IP 地址。然而仅仅有 IP 地址还不足以实现将数据包发送到对端目标地址,在数据发送过程中还需要类似于“指明路由器或主机”的信息,以便真正发往目标地址。保存这种信息的就是路由控制表。
    • 该路由控制表的形成方式有两种:一种是管理员手动设置,另一种是路由器与其他路由器相互交换信息时自动刷新。前者也叫做静态路由控制,而后者叫做动态路由控制。
    • IP 协议始终认为路由表是正确的。然后,IP 本身并没有定义制作路由控制表的协议。即 IP 没有制作路由控制表的机制。该表示由一个叫做“路由协议”的协议制作而成。

    2.1 IP 地址与路由控制

    • IP 地址的网络地址部分用于进行路由控制。
    • 路由控制表中记录着网络地址与下一步应该发送至路由器的地址。
    • 在发送 IP 包时,首先要确定 IP 包首部中的目标地址,再从路由控制表中找到与该地址具有相同网络地址的记录,根据该记录将 IP 包转发给相应的下一个路由器。如果路由控制表中存在多条相同网络地址的记录,就选择一个最为吻合的网络地址。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

    路由控制表与 IP 包发送

    3. IP 分包与组包

    • 每种数据链路的最大传输单元(MTU)都不尽相同,因为每个不同类型的数据链路的使用目的不同。使用目的不同,可承载的 MTU 也就不同。
    • 任何一台主机都有必要对 IP 分片进行相应的处理。分片往往在网络上遇到比较大的报文无法一下子发送出去时才会进行处理。
    • 经过分片之后的 IP 数据报在被重组的时候,只能由目标主机进行。路由器虽然做分片但不会进行重组。

    3.1 路径 MTU 发现

    • 分片机制也有它的不足。如路由器的处理负荷加重之类。因此,只要允许,是不希望由路由器进行 IP 数据包的分片处理的。
    • 为了应对分片机制的不足,“路径 MTU 发现” 技术应运而生。路径 MTU 指的是,从发送端主机到接收端主机之间不需要分片是最大 MTU 的大小。即路径中存在的所有数据链路中最小的 MTU 。
    • 进行路径 MTU 发现,就可以避免在中途的路由器上进行分片处理,也可以在 TCP 中发送更大的包。

    4. IPv6

    • IPv6(IP version 6)是为了根本解决 IPv4 地址耗尽的问题而被标准化的网际协议。IPv4 的地址长度为 4 个 8 位字节,即 32 比特。而 IPv6 的地址长度则是原来的 4 倍,即 128 比特,一般写成 8 个 16 位字节。

    4.1 IPv6 的特点

    • IP 得知的扩大与路由控制表的聚合。
    • 性能提升。包首部长度采用固定的值(40字节),不再采用首部检验码。简化首部结构,减轻路由器负担。路由器不再做分片处理。
    • 支持即插即用功能。即使没有DHCP服务器也可以实现自动分配 IP 地址。
    • 采用认证与加密功能。应对伪造 IP 地址的网络安全功能以及防止线路窃听的功能。
    • 多播、Mobile IP 成为扩展功能。

    4.2 IPv6 中 IP 地址的标记方法

    • 一般人们将 128 比特 IP 地址以每 16 比特为一组,每组用冒号(“:”)隔开进行标记。
    • 而且如果出现连续的 0 时还可以将这些 0 省略,并用两个冒号(“::”)隔开。但是,一个 IP 地址中只允许出现一次两个连续的冒号。

    4.3 IPv6 地址的结构

    • IPv6 类似 IPv4,也是通过 IP 地址的前几位标识 IP 地址的种类。
    • 在互联网通信中,使用一种全局的单播地址。它是互联网中唯一的一个地址,不需要正式分配 IP 地址。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    4.4 全局单播地址

    • 全局单播地址是指世界上唯一的一个地址。它是互联网通信以及各个域内部通信中最为常用的一个 IPv6 地址。
    • 格式如下图所示,现在 IPv6 的网络中所使用的格式为,n = 48,m = 16 以及 128 - n - m = 64。即前 64 比特为网络标识,后 64 比特为主机标识。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    全局单播地址

    4.5 链路本地单播地址

    • 链路本地单播地址是指在同一个数据链路内唯一的地址。它用于不经过路由器,在同一个链路中的通信。通常接口 ID 保存 64 比特版的 MAC 地址。

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    链路本地单播地址

    4.6 唯一本地地址

    • 唯一本地地址是不进行互联网通信时所用的地址。
    • 唯一本地地址虽然不会与互联网连接,但是也会尽可能地随机生成一个唯一的全局 ID。
    • L 通常被置为 1
    • 全局 ID 的值随机决定
    • 子网 ID 是指该域子网地址
    • 接口 ID 即为接口的 ID

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    唯一本地地址

    4.7 IPv6 分段处理

    • IPv6 的分片处理只在作为起点的发送端主机上进行,路由器不参与分片。
    • IPv6 中最小 MTU 为 1280 字节,因此,在嵌入式系统中对于那些有一定系统资源限制的设备来说,不需要进行“路径 MTU 发现”,而是在发送 IP 包时直接以 1280 字节为单位分片送出。

    4.8 IP 首部(暂略)

    5. IP 协议相关技术

    • IP 旨在让最终目标主机收到数据包,但是在这一过程中仅仅有 IP 是无法实现通信的。必须还有能够解析主机名称和 MAC 地址的功能,以及数据包在发送过程中异常情况处理的功能。

    5.1 DNS

    • 我们平常在访问某个网站时不适用 IP 地址,而是用一串由罗马字和点号组成的字符串。而一般用户在使用 TCP/IP 进行通信时也不使用 IP 地址。能够这样做是因为有了 DNS (Domain Name System)功能的支持。DNS 可以将那串字符串自动转换为具体的 IP 地址。
    • 这种 DNS 不仅适用于 IPv4,还适用于 IPv6。

    5.2 ARP

    • 只要确定了 IP 地址,就可以向这个目标地址发送 IP 数据报。然而,在底层数据链路层,进行实际通信时却有必要了解每个 IP 地址所对应的 MAC 地址。
    • ARP 是一种解决地址问题的协议。以目标 IP 地址为线索,用来定位下一个应该接收数据分包的网络设备对应的 MAC 地址。不过 ARP 只适用于 IPv4,不能用于 IPv6。IPv6 中可以用 ICMPv6 替代 ARP 发送邻居探索消息。
    • RARP 是将 ARP 反过来,从 MAC 地址定位 IP 地址的一种协议。

    5.3 ICMP

    • ICMP 的主要功能包括,确认 IP 包是否成功送达目标地址,通知在发送过程当中 IP 包被废弃的具体原因,改善网络设置等。
    • IPv4 中 ICMP 仅作为一个辅助作用支持 IPv4。也就是说,在 IPv4 时期,即使没有 ICMP,仍然可以实现 IP 通信。然而,在 IPv6 中,ICMP 的作用被扩大,如果没有 ICMPv6,IPv6 就无法进行正常通信。

    5.4 DHCP

    • 如果逐一为每一台主机设置 IP 地址会是非常繁琐的事情。特别是在移动使用笔记本电脑、只能终端以及平板电脑等设备时,每移动到一个新的地方,都要重新设置 IP 地址。
    • 于是,为了实现自动设置 IP 地址、统一管理 IP 地址分配,就产生了 DHCP(Dynamic Host Configuration Protocol)协议。有了 DHCP,计算机只要连接到网络,就可以进行 TCP/IP 通信。也就是说,DHCP 让即插即用变得可能。
    • DHCP 不仅在 IPv4 中,在 IPv6 中也可以使用。

    5.5 NAT

    • NAT(Network Address Translator)是用于在本地网络中使用私有地址,在连接互联网时转而使用全局 IP 地址的技术。
    • 除转换 IP 地址外,还出现了可以转换 TCP、UDP 端口号的 NAPT(Network Address Ports Translator)技术,由此可以实现用一个全局 IP 地址与多个主机的通信。
    • NAT(NAPT)实际上是为正在面临地址枯竭的 IPv4 而开发的技术。不过,在 IPv6 中为了提高网络安全也在使用 NAT,在 IPv4 和 IPv6 之间的相互通信当中常常使用 NAT-PT。

    5.6 IP 隧道

    太厉害了,终于有人能把TCP/IP 协议讲的明明白白了

     

    夹着 IPv4 网络的两个 IPv6 网络

    • 如上图的网络环境中,网络 A 与网络 B 之间无法直接进行通信,为了让它们之间正常通信,这时必须得采用 IP 隧道的功能。
    • IP 隧道可以将那些从网络 A 发过来的 IPv6 的包统合为一个数据,再为之追加一个 IPv4 的首部以后转发给网络 C。
    • 一般情况下,紧接着 IP 首部的是 TCP 或 UDP 的首部。然而,现在的应用当中“ IP 首部的后面还是 IP 首部”或者“ IP 首部的后面是 IPv6 的首部”等情况与日俱增。这种在网络层的首部后面追加网络层首部的通信方法就叫做“ IP 隧道”。

     

    作者:涤生_Woo

    链接:https://www.jianshu.com/p/9f3e879a4c9c

     

    展开全文
  • 在网络通信协议中TCP/IP(transmission contro1 protoco1/internet protoco1)是互联网中使用的最基本的协议互联网的广泛使用使TCP/IP成为网络协议标准。TCP/IP内部分为4层:链路层、网络层、传输层应用层,如...
  • TCP/IP协议

    千次阅读 2019-11-08 22:55:37
    TCP/IP协议 TCP/IP: TCP/IP的全称为...TCP/IP协议从名字上面看是指TCP协议和IP协议,但是实际上不仅仅指的是TCP 和IP两个协议,而是指一个由FTP、SMTP、TCP、UDP、IP协议构成的协议簇, 只是因为在TCP/IP协议中TC...
  • TCP/IP协议和路由协议

    千次阅读 2019-05-12 22:46:39
    TCP/IP协议和IP地址 起源: 特点: ⑴ 开放的协议标准: 可以免费使用,并且独立于特定的 计算机硬件与操作系统。 ⑵ 独立于特定的网络硬件: 可以运行在局域网、广域网 ,更适用于互联网中。 ⑶ 统一的网络...
  • HTTP关系密切的协议IPTCP、DNS

    千次阅读 2019-11-03 13:58:17
    负责传输的IP协议 按层次分,IP(Internet ...TCP/IP 协议IP 指的就是网际协议协议名称占据了一半位置,其重要性可见一般,可能有人会把 IP IP地址 搞混,IP 其实是一种协议的名称。 IP 协议的作...
  • TCP/IP协议在分层的位置: TCP/IP协议通过“三次握手”建立连接,并发送数据,结束后以“四次挥手”的形式终止连接。 所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要...
  • 互联网协议TCP/IP 网络结构

    千次阅读 2018-04-17 15:53:19
    什么是 TCP/IP 网络?为什么远隔万里的计算机可以互相通信?计算机网络作为 IT 行业的基石,是工程师永远绕不开的话题。 计算机网络的分层体系结构 计算机网络是一个非常庞大且复杂的系统,所以在设计之初...
  • 文章目录网络协议TCP/IP协议IP协议TCP协议(传输控制协议)HTTP协议(超文本传输协议)网络参考模型1、OSI参考模型(开放系统互连参考模型 )2、TCP/IP参考模型(简化的七层OSI模型) 网络协议 网络协议为计算机...
  • TCP/IP 由军用网络发展而来,后续逐渐连接了四所大学或研究所,形成了ARPANET,成为互联网的鼻祖,在ARPANET的一个研究机构研发了TCP/IP。并逐步成为最常用的以太网通信协议TCP/IP协议 TCP/IP 协议不仅包括TCP...
  • TCP/IP协议族 详解(TCP/IP四层模型、OSI七层模型)

    千次阅读 多人点赞 2018-04-12 21:53:09
    由于在网络通讯协议普遍采用分层的结构,当多个层次的协议共同工作时,类似计算机科学的堆栈,因此又被称为TCP/IP协议栈(英语:TCP/IP Protocol Stack)。这些协议最早发源于美国国防部(缩写为DoD)的ARPA网项目...
  • TCP/IP协议详解(TCP/IP protocol)

    千次阅读 2017-09-06 19:21:51
    本文转载自菜鸟教程TCP/IP 教程TCPIP 教程 TCPIP 介绍 计算机通信协议Computer Communication Protocol 什么是 TCPIP 在 TCPIP 内部 TCP 使用固定的连接 IP 是无连接的 IP 路由器 ...协议TCP/IP 教程TCP/
  • TCP/IP协议(1): IP 地址寻址方式 —— IP 协议的基础

    千次阅读 多人点赞 2018-07-21 21:20:29
    TCP/IP协议(1): IP 地址寻址方式 最近在重学计算机网络,给自己立一个 flag,有感而发的时候写关于 TCP/IP 协议栈的系列博客。 IP 地址 IP 地址(Internet Protocol address, IP address) 在 TCP/IP 协议栈...
  • 3、OSI和TCP/IP两种模型结构的比较: 4、关于各层间的作用(基于TCP/IP): 5、TCP/IP协议栈与数据封装 6、以太网帧格式 7、ARP协议 8、RARP协议 9、IP协议 IP如何分片;IP的组装;IP地址与路由; 10、UDP协议 11、TCP...
  • TCP/IP协议TCP和UDP的区别及特点

    万次阅读 多人点赞 2019-03-11 10:27:28
    这篇博客主要用来纪录自己对TCP/IP和UDP的个人理解,若有不对还请慷慨指正 一些基础知识 IP地址:用来标识网络的一个通信实体的地址。通信实体可以是计算机、路由器等。 比如互联网的每个服务器都要有自己的IP...
  • TCPIP协议互联网的基石,甚至可以说没有TCPIP协议就没有互联网的今天。TCPIP协议的重 要性不言而喻。如果学习TCPIP协议只是停留在书本上的描叙,会很抽象,也不会留下很深的印象。 本文拟结合具体的实例,...
  • TCP/IP协议简述

    万次阅读 多人点赞 2018-07-22 15:23:50
    TCP/IP 协议采用4层结构,分别是应用层、传输层、网络层链路层,每一层都呼叫它的下一层所提供的协议来完成自己的需求。由于我们大部分时间都工作在应用层,下层的事情不用我们操心;其次网络协议体系本身就很复杂...
  • TCP/IP网络协议详解

    千次阅读 2021-03-30 18:54:59
    一、 计算机网络体系结构分层 一图看完本文 计算机网络体系结构...从字面意义上讲,有人可能会认为 TCP/IP 是指 TCP IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用 I.
  • TCP/IP 协议TCP/IP 基础

    千次阅读 2014-10-20 11:49:24
    1. TCP / IP 协议分层, 简单介绍了 链路层, 网络层, 传输层, 应用层的主要协议 . . . 2. 互联网 IP 地址分类 : A B C D E 类地址如何分类, 以及 IP 地址范围 . . . 3. 域名 端口号 的使用 . . . 4. TCP / IP ...
  • TCP/IP协议理论

    千次阅读 2017-08-28 19:35:28
    TCP-IP详解卷一:协议》 《用TCP-IP进行网际互联第一卷:原理、协议与结构》 《LwIP协议深度剖析与实战演练》 《嵌入式Internet TCP IP基础、实现及应用》 TCP/IP协议族通俗综述 OSI结构仅仅停留在...
  • tcp_ip协议详解

    2011-11-19 17:55:24
    TCP/IP协议详解 ...确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议协议组。 TCP/IP整体构架概述
  • TCP/IP协议栈扫盲班

    千次阅读 2019-02-28 13:37:04
    前言 本文的东西是基础理论知识,大多数来源于网络...简单来说TCP/IP协议是网络所有相关协议簇的简称,它是众多网络协议的集合,这一类协议簇是有非常多的协议,如常见的:ARP/TCP/UDP/IP/ICMP/IGMP/HTTP/DNS/DHCP...
  • 一、计算机网络体系结构分层 ...从字面意义上讲,有人可能会认为 TCP/IP 是指 TCP IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用 IP 进行通信时所必须用到的协议
  • TCP/IP协议族分层详解

    万次阅读 多人点赞 2017-04-02 10:41:52
    1、TCP/IP的介绍互联网协议族(Internet Protocol Suite,缩写IPS)是一个网络通信模型,以及一整个网络传输协议家族, 为互联网的基础通信架构。它常被通称为TCP/IP协议族(TCP/IP Protocol Suite,或TCP/IP ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 113,561
精华内容 45,424
关键字:

互联网协议中ip和tcp的含义