精华内容
下载资源
问答
  • 主成分分析法案例

    2018-05-31 23:15:19
    主成分分析法案例讲解Ppt,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多变量之间是具有一定的相关关系的。
  • 是一种实用的多准则决策方法。它把复杂的决策问题表示有序的递阶层次结构,通过人们的主观判断和科学计算给出备选方案的优劣顺序。
  • AHP(层次分析法)原理及案例先结合日常生活中的例子深入浅出的讲解了AHP的原理,随后结合案例给出了层次分析法的具体操作实现过程。
  • 杜邦分析法案例分析

    2021-01-20 03:01:02
    杜 邦 分 析 贵州茅台酒股份有限公司 公司简介 公司主营贵州茅台酒系列产品的生产和销售同时进行饮料食品包装材料的生产和销售防伪技术开发信息产业相关产品的研制开发 茅台酒是世界三大名酒(中国贵州
  • swot分析法案例.docx

    2019-06-05 20:03:48
    swot分析法案例.docx
  • 讲述了统计和数据处理中的因子分析方法的原理、数学模型,并以实际案例为例,介绍了其应用方法和步骤,值得学习。
  • 边界值分析法实例[2]

    2021-03-23 16:14:16
    边界值分析法实例[2]软件测试学生答题某学生有2答卷记录,但仅有1标准答案记录该学生是文件中的第1学生该学生是文件中最后1学生输出条件测试用例学生得分所有学生得分相同所有学生得分都不同一些学生(不是...
  • 决策理论与方法课程报告 数据包络分析法在管理决策运用中的实际案例分析 目 录 TOC \o "1-3" \h \z \u 第一...数据包络分析法案例 6 3.1 工程建设项目评标方法 6 3.2 环保项目评价 7 3.3 科研评价 8 第四章 总结 11 4.1
  • 一、层次分析法原理 层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于20世纪70年代中期提出,用于确定评价模型中各评价因子/准则的权重,进一步选择最优方案。该方法仍...
  • 层次分析法原理及应用案例

    万次阅读 2020-10-30 15:04:00
    层次分析法是指将一复杂的多目标决策问题作为一系统,将目标分解目标或准则,进而分解多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标...

    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

    层次分析法具体步骤:

    1.建立层次结构模型

    将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层是指决策的目的、要解决的问题。 最低层是指决策时的备选方案。 中间层是指考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。

    2.构造判断(成对比较)矩阵

    在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。

     重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵称作判断矩阵。判断矩阵具有如下性质:

    Aij度量方法:

    3.层次单排序及其一致性检验

    对应于判断矩阵最大特征根λ的特征向量,经归一化(使向量中各元素之和等于1)后记为W。W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。能否确认层次单排序,则需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。其中,n阶一致阵的唯一非零特征根为n;n 阶正互反阵A的最大特征根λ≥n,当且仅当λ=n时,A为一直矩阵,由于λ的连续依赖于aij,则λ 比n 大的越多,A的不一致性越严重,一致性指标用CI计算,CI越小,说明一致性越大。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量A 的不一致程度。定义一致性指标为:

    CI=0,有完全的一致性;CI 接近于0,有满意的一致性;CI 越大,不一致越严重。

    为衡量CI 的大小,引入随机一致性指标 RI:

     

    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表2:

    考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将CI和随机一致性指标RI进行比较,得出检验系数CR,公式如下:

    一般,如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。

    4.层次总排序及其一致性检验

    计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。

    5 算法举例

    算法举例:(成对矩阵中的值均需要人为按经验填写。)

    第一步:建立层次结构

    从苏州、杭州桂林三个城市选择一个城市去旅游。考虑的因素为景色、费用、居住、饮食、旅游5个因素。如下图所示:

    第二步:构造成对比较矩阵

    (注:矩阵中的各个元素均需要人为按经验填写)

    第三步:层次单排序及一致性检验

    求该矩阵的最大特征值及其对应的最大特征向量

    A的最大特征值为λ=5.037,归一化后的特征向量W={0.263,0.475,0.055,0.099,0.110}

    进行一致性检验

    A通过了一次性验证,结果是可行的。

    第四步:层次总排序及一次性检验

    与此类似,求出方案层中各方案的成对比较矩阵

     

    对每个成对矩阵汇总并进行一致性检验。

    全部通过。计算每个方案对最终目标的权重:

    B3对应的值最大,所以去桂林方案最佳。 

    展开全文
  • 介绍层次分析法的基本概念,同时也分析了层次分析法权重的计算方法及应用,层次分析法的计算方法有四种方法:几何平均法、算术平均法、特征向量法、最小二乘法,以往的文献利用层次分析法解决实际问题时,都是采用其中的...
  • 摘要:本文详细阐述了层次分析法及其步骤,利用Matlab和GUI技术整合来实现层次分析法,并用实例加以验证。使得层次分析法界面化简洁化,操作更便捷。  1.层次分析法基本原理  层次分析法(Analytic ...
  • 5Why分析法,它是一种诊断性技术,被用来识别和说明因果关系链,它的根源会引起恰当地定义问题。也被称作:为什么—为什么分析、5个为什么分析。
  • 妇科四例患者术后下肢麻木 根本原因案例分析 ;...为什么 1传统截石位摆脚架将托腿板支托患者大腿托腿板关节端置于腘窝处腓总神经沿股二头肌内侧缘向下斜行绕过腓骨小头后过窝腓总神经走行于腓骨小头的表层,其
  • 插值是数值分析领域的一主要部分,插值理论能解决物理已知的表格数值中查找未知的值。结合插值理论建立插值函数进行插值计算,得到甘油在某一温度下的粘度。内插和外插在实际预测汽油价格中的比较,得到外插的稳定性...
  • 主成分分析法的原理应用及计算步骤
  • 介绍了AHP的原理,以及三难度增加的应用案例分析
  • 虽为5个为什么,但使用时不限定只做“5次为什么的探讨”,主要是必须找到根本原因为止,有时可能只要3次,有时也许要10次,如古话所言:打破砂锅问到底。5why的关键所在:鼓励解决问题的人要努力避开主观或自负的...

    所谓5why分析法,又称“5问法”,也就是对一个问题点连续以5个“为什么”来自问,以追究其根本原因。

    虽为5个为什么,但使用时不限定只做“5次为什么的探讨”,主要是必须找到根本原因为止,有时可能只要3次,有时也许要10次,如古话所言:打破砂锅问到底。5why法的关键所在:

    鼓励解决问题的人要努力避开主观或自负的假设和逻辑陷阱,从结果着手,沿着因果关系链条,顺藤摸瓜,直至找出原有问题的根本原因。

     

    介绍

    这种方法最初是由丰田佐吉提出的;后来,丰田汽车公司在发展完善其制造方法学的过程之中也采用了这一方法。作为丰田生产系统(Toyota Production System)的入门课程的组成部分,这种方法成为其中问题求解培训的一项关键内容。

    丰田生产系统的设计师大野耐一曾经将五问法描述为:“……丰田科学方法的基础……重复五次,问题的本质及其解决办法随即显而易见。”

    目前,该方法在丰田之外已经得到了广泛采用,并且现在持续改善法(Kaizen),精益生产法(lean manufacturing)以及六西格玛法之中也得到了采用。

    实施方法

    5WHY从三个层面来实施:

    一、为什么会发生?从“制造”的角度。
    二、为什么没有发现?从“检验”的角度。
    三、为什么没有从系统上预防事故?从“体系”或“流程”的角度。

    每个层面连续5次或N次的询问,得出最终结论。只有以上三个层面的问题都探寻出来,才能发现根本问题,并寻求解决。

    经典案例

    丰田汽车公司前副社长大野耐一曾举了一个例子来找出停机的真正原因

    ★问题一:为什么机器停了?               答案一:因为机器超载,保险丝烧断了。

    ★问题二:为什么机器会超载?            答案二:因为轴承的润滑不足。

    ★问题三:为什么轴承会润滑不足?     答案三:因为润滑泵失灵了。

    ★问题四:为什么润滑泵会失灵?         答案四:因为它的轮轴耗损了。

    ★问题五:为什么润滑泵的轮轴会耗损?答案五:因为杂质跑到里面去了。

    经过连续五次不停地问“为什么”,才找到问题的真正原因和解决的方法,在润滑泵上加装滤网。
    如果员工没有以这种追根究底的精神来发掘问题,他们很可能只是换根保险丝草草了事,真正的问题还是没有解决。

    解决问题步骤

    第一部分:把握现状
    ★步骤1:识别问题。

    在方法的第一步中,你开始了解一个可能大、模糊或复杂的问题。你掌握一些信息,但一定没有掌握详细事实。
    问:我知道什么?

    ★步骤2:澄清问题

    方法中接下来的步骤是澄清问题。为得到更清楚的理解,问:实际发生了什么?应该发生什么?

    ★步骤3:分解问题

    在这一步,如果必要,需要向相关人员调查,将问题分解为小的、独立的元素。
    关于这个问题我还知道什么?还有其他子问题吗?

    ★步骤4:查找原因要点(PoC)

    现在,焦点集中在查找问题原因的实际要点上。你需要追溯来了解第一手的原因要点。问:
    我需要去哪里?我需要看什么?谁可能掌握有关问题的信息?

    ★步骤5:把握问题的倾向

    问:谁?哪个?什么时间?多少频次?多大量?
    在问为什么之前,问这些问题是很重要的。

    第二部分: 原因调查
    ★步骤6:识别并确认异常现象的直接原因。

    如果原因是可见的,验证它。如果原因是不可见的,考虑潜在原因并核实最可能的原因。依据事实确认直接原因。问:
    这个问题为什么发生?我能看见问题的直接原因吗?如果不能,我怀疑什么是潜在原因呢?我怎么核实最可能的潜在原因呢?我怎么确认直接原因?


    ★步骤7:使用“5个为什么”调查方法来建立一个通向根本原因的原因/效果关系链。问:

    处理直接原因会防止再发生吗?如果不能,我能发现下一级原因吗?如果不能,我怀疑什么是下一级原因呢?我怎么才能核实和确认下一级有原因呢?处理这一级原因会防止再发生吗?

    如果不能,继续问“为什么”直到找到根本原因。在必须处理以防止再发生的原因处停止,问:
    我已经找到问题的根本原因了吗?我能通过处理这个原因来防止再发生吗?这个原因能通过以事实为依据的原因/效果关系链与问题联系起来吗?这个链通过了“因此”检验了吗?如果我再问“为什么”会进入另一个问题吗?

    确认你已经使用“5个为什么”调查方法来回答这些问题。
    为什么我们有了这个问题?为什么问题会到达顾客处?为什么我们的系统允许问题发生?

    ★步骤8:采取明确的措施来处理问题

    使用临时措施来去除异常现象直到根本原因能够被处理掉。问:
    临时措施会遏止问题直到永久解决措施能被实施吗?
    实施纠正措施来处理根本原因以防止再发生。问:
    纠正措施会防止问题发生吗?
    跟踪并核实结果。问:
    解决方案有效吗?我如何确认?

    询问回答技巧

    通常情况下,在询问为什么的时候,因为是发散性思维,很难把握询问和回答者的在受控范围内。比如:

    这个工件为什么尺寸不合格?   因为装夹松动;
    为什么装夹松动?    因为操作工没装好;
    为什么操作工没装好?   因为操作工技能不足;
    为什么技能不足?    因为人事没有考评

    类似这样的情况,在5Why分析中,经常发现。所以,我们在利用5Why进行根本原因分析时,一定要把握好一些基本原则:

    1)回答的理由是受控的;
    2)询问和回答是在限定的一定的流程范围内;
    3)从回答的结果中,我们能够找到行动的方向。

    展开全文
  • 本文详细介绍了聚类分析方法的应用条件,并给了立体假意说明
  • 5why,仅供学习使用。资源来自网上,侵删。 因有真实案例,具备较高参考价值。 注意:此与六何不同(5w1h),属于另外一个分析方法
  • 数学建模:层次分析法实例以及代码

    万次阅读 多人点赞 2020-11-22 22:06:09
    目录层次分析法的思想层次分析法步骤具体案例(市政工程项目建设决策)1.问题提出2.建立递阶层次结构3.构造判断矩阵(成对比较阵)并赋值4.层次单排序(计算权向量)与检验(一致性检验)计算权向量一致性检验5.层次总...

    博主联系方式:
    QQ:1540984562
    微信:wxid_nz49532kbh9u22
    QQ交流群:892023501(嵌入式方向)
    QQ交流群:856398158(后端方向)

    层次分析法的思想

    层次分析法的思想:将所有要分析的问题层次化
    根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型
    最后,对问题进行优劣比较排序.

    层次分析法步骤

    1、找准各因素之间的隶属度关系,建立递阶层次结构
    2、构造判断矩阵,并赋值
    3、层次单排序(计算权向量)与检验(一致性检验)
    4、层次总排序(组合权向量)与检验(一致性检验)
    5、结果分析

    具体案例(市政工程项目建设决策)

    1.问题提出

    市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

    2.建立递阶层次结构

    1、明确决策目标:“合理建设市政工程,使综合效益最高”。

    2、为了实现这一目标,需要考虑的主要准则有三个,即经济效益社会效益环境效益
    还必须考虑直接经济效益间接经济效益方便日常出行方便假日出行减少环境污染改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

    3、解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

    这样递阶层次就形成了:
    在这里插入图片描述

    3.构造判断矩阵(成对比较阵)并赋值

    1、构造判断矩阵的方法:
    每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行第一列
    如下图所示:
    在这里插入图片描述
    2、如何对判断矩阵进行赋值:
    向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
    (可以类比模糊PID中的隶属程度,都是人为设定的,也是被人诟病的一个地方)
    在这里插入图片描述
    设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质:

    (1) aij>0
    (2) aji=1/ aji
    (3) aii=1

    判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
    在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik .
    当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
    对于上述的例子,可以构造出下面的判断矩阵:
    在这里插入图片描述

    4.层次单排序(计算权向量)与检验(一致性检验)

    计算权向量

    对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
    层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
    这里简要介绍和法:
    对于一致性判断矩阵,每一列归一化后就是相应的权重。
    对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

    公式: 在这里插入图片描述
    在层层排序中,要对判断矩阵进行一致性检验。判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。

    但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

    因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

    一致性检验

    第一步,计算一致性指标CI
    在这里插入图片描述
    第二步,查表确定相应的平均随机一致性指标RI
    据判断矩阵不同阶数查下表,得到平均随机一致性指标RI:
    在这里插入图片描述
    第三步,计算一致性比例CR并进行判断:
    在这里插入图片描述
    当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

    图1
    图2
    可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

    5.层次总排序(组合权向量)与检验(一致性检验)

    总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。这一权重的计算采用从上而下的方法,逐层合成。
    文字性描述公式如下:
    在这里插入图片描述

    计算过程如下,更好理解过程:
    P(C1/A) = P(C1/B1) * P(B1/A) = 0.5 * 0.1429 = 0.07145
    CR(C1/A) = CR(C/B) * CR(B/A) = 0 * 0 = 0
    P(D1/A) = P(D1/C1) * P(C1/B1) * P(B1/A)
    + P(D1/C2) * P(C2/B1) * P(B1/A)
    + P(D1/C3) * P(C3/B2) * P(B2/A)
    + P(D1/C4) * P(C4/B2) * P(B2/A)
    + P(D1/C5) * P(C5/B3) * P(B3/A)
    + P(D1/C6) * P(C6/B3) * P(B3/A)
    =0.8333 * 0.5 * 0.1429
    +0.75 * 0.5 * 0.1429
    +0.1667 * 0.75 * 0.4286
    +0.8750 * 0.25 * 0.4286
    +0.1667 * 0.75 * 0.4286
    +0.8333 * 0.25 * 0.4286

    在这里插入图片描述

    6.结果分析

    从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
    根据层次排序过程分析决策思路:

    1、对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益
    2、对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出
    3、从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

    由此我们可以分析出决策思路:
    即决策比较看重的是社会效益和环境效益,不太看重经济效益;(总结准则层B)
    因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,(总结准则层C)由此,最终的方案选择建地铁也就顺理成章了。

    7.层次分析法的优缺点

    优点:
    (1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
    (2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。
    (3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

    缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。当然,采取专家群体判断的办法是克服这个缺点的一种途径。

    层次分析法的代码实现(matlab)

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    使用示例:
    将上面代码保存名为test1,并在点运行的时候添加到路径;
    输入的A矩阵是要以向量的形式输入的;
    之后按下回车即可,可以看到和之前的第4步得到的结果是一样的。
    在这里插入图片描述
    通过不断的使用这个式子计算相应矩阵(准则层B到准则层C、准则层C到方案层D)的权向量,最后可以得到最终的结果。
    简单的修改上面的程序,传入参数为矩阵,免得每次都要打。

    function w= test1(A)
    % disp('请输入判断矩阵A(n阶)');
    % A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    输入:

    Array1=[1 1/3 1/3;3 1 1;3 1 1];
    Array2=[1 1;1 1];
    Array3=[1 3;1/3 1];
    Array4=[1 3;1/3 1];
    Array5=[1 5;1/5 1];
    Array6=[1 3;1/3 1];
    Array7=[1 1/5;5 1];
    Array8=[1 7;1/7 1];
    Array9=[1 1/5;5 1];
    Array10=[1 1/3;7 1];
    
    A=test1(Array1);
    B1=test1(Array2);
    B2=test1(Array3); 
    B3=test1(Array4);
    C1=test1(Array5);
    C2=test1(Array6);
    C3=test1(Array7);
    C4=test1(Array8);
    C5=test1(Array9);
    C6=test1(Array10);
    

    得到相应的矩阵:
    在这里插入图片描述

    展开全文
  • 模糊综合评价原理及案例分析,模糊综合评价原理及案例分析课件,模糊综合评价原理及案例分析PPT
  • 边界值分析法实例

    2021-03-23 14:53:49
    实例:“某一学生考试试卷评分和成绩统计的程序,其规格说明指出了对程序的要求:程序的输入文件由80字符的一些记录组成,这些记录分为三组:(1)标题:这一组只有一记录,其内容输出报告的名字。  实例: ...
  • AHP层次分析法例子+数据 先看再决定是否需要:https://blog.csdn.net/qq_17623363/article/details/104778300
  • 模糊层次分析案例

    2017-12-27 10:48:20
    层次分析法介绍,里面有详细教程和案例分析,计算过程详细
  • 【AHP】层次分析法 | 过程解读 案例实践

    万次阅读 多人点赞 2020-08-20 19:56:21
    AHP 层次分析法 一. AHP 层次分析法介绍 AHP 层次分析法简介 AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。在评价对象的待评价属性复杂多样,结构各异,...

    层次分析法 | 过程解读 案例实践


    导读

    本文将带领读者了解 AHP 法,通过案例学习,学会使用 AHP 法解决实际问题。在适当的地方将深入了解,例如 AHP 法过程中出现的不一致情况,我们将详细讨论为什么会出现不一致情况,如何验证是否不一致,如何解决不一致情况。

    本文无代码实现,更注重 AHP 法过程本身的原理。



    一. AHP 层次分析法介绍

    • AHP 层次分析法简介

      AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。在评价对象的待评价属性复杂多样,结构各异,难以量化的情况下AHP层次分析法也能发挥作用。

    • AHP 基本思想 [1]

      AHP 把复杂的问题分解为各个组成因素,又将这些因素按支配关系分组形成地递阶层次结构。通过两两比较的方式确定方式确定层次中诸因素的相对重要性。然后综合有人员的判断,确定备选方案相对重要性的总排序。整个过程体现了入门分解问题—判断—综合,的思想特征。

    • AHP 步骤

      1. 分析问题,明确需求,确定评价指标,并建立评价层次关系。
      2. 构造上一层每个节点与下一层的判断矩阵。
      3. 由判断矩阵得出层间的相对权重(层次单排序及一致性检验)。
      4. 计算各层对总评价目标的总权重(层次总排序),得出各备选方案的评估结果。

    注意


    下文中计算数值均四舍五入保留三位小数。一些归一化结果为了保证其结果和为1,可能存在一定的计算误差。但不影响最终结果的准确性


    二. AHP 的实际问题应用案例

    本章节我们将在选择购买空调的过程中使用 AHP 来完成决策。

    为了从三种空调,空调A、空调B、空调C,中选购最合适的空调,我们采用 AHP 法对我们的需求进行分析与评估,最终完成决策。

    1. 确定评价指标,建立层次关系

    为了选出最合适的空调,我们确定从四个指标来对空调进行评估,分别是:价格、噪声、功耗、寿命。 在 AHP 中,要构建三层层次关系:目标层、准则层、方案层。

    在这里插入图片描述

    • 目标层
      只有一个要素,是分析问题的预期结果或期望实现的最终目标,是评价的最高准则,可称为目的或目标层
    • 准则层
      准则层可以是多层构成,其包括所要考虑的准则,子准则等。
    • 方案层
      表示实现目标所提供的各种方案与措施,是最终评价对象,决策的结果将从中选出。

    2. 构造上一层每个节点与下一层的判断矩阵

    对一层的每一个节点,与其下层的所有与其有关联的节点构建判断矩阵。

    判断矩阵描述了下一层节点之间的相对重要性或优越性。为了量化节点间的优劣先后,将用到以下判断矩阵标度定义。

    标度含义
    1两个要素相比,重要性相同
    3两要素相比,前者比后者稍微重要或有优势
    5两要素相比,前者比后者比较重要或有优势
    7两要素相比,前者比后者十分重要或有优势
    9两要素相比,前者比后者绝对重要或有优势
    2,4,6,8为上述标度之间的中间值

    若要描述后者与前者比较,则用倒数为标度。例如 1/3 描述的是,后者比前者稍微重要。

    这么说还是有些抽象,我们用以上标度为规则,来构建目标层与准则层之间的判断矩阵如下。

    选购空调价格噪声功耗寿命
    价格11/31/51
    噪声3115
    功耗5115
    寿命11/51/51

    表中描述的是为了达到目标,准则层节点之间的相对重要程度,决定这些数值大小的可以是决策者的主观判断,也可以是基于调查或文献来判断,也可以是由专家讨论决定,本文中的值都由笔者主观决定。


    如,价格行,噪声列(矩阵中坐标为[1,3])值为 1/3 ,意味着相对于价格(前者)认为噪声(后者)的重要程度为 1/3。反过来,我们也可以说相对于噪声,价格的重要程度为 3。


    因此判断矩阵是斜对角线对称元素互为倒数的。 并且规定,而在斜对角线上,要素和自身比较的标度恒 1。判断矩阵是一个正互反矩阵

    同样的,需要构建准则层每一个节点到方案层所有节点的判断矩阵。

    • 三种空调对于价格的判断矩阵
    价格空调 A空调 B空调 C
    空调 A11/71/5
    空调 B712
    空调 C51/21

    图中 [2,1] 的值为 7 ,意味着空调 B 的价格优势相对于空调 A 十分有优势。 其他同理,下面多个判断矩阵也同理。

    • 三种空调对于噪声的判断矩阵
    噪声空调 A空调 B空调 C
    空调 A125
    空调 B1/214
    空调 C1/51/41
    • 三种空调对于功耗的判断矩阵
    功耗空调 A空调 B空调 C
    空调 A131/2
    空调 B1/311/5
    空调 C251
    • 三种空调对于寿命的判断矩阵
    寿命空调 A空调 B空调 C
    空调 A11/51/3
    空调 B514
    空调 C31/41

    注意


    • 判断矩阵的值显然只需要填写上半三角区或下半三角区就可以确定整个判断矩阵,请务必保持判断矩阵的 " \ " 向对角线对称的元素互为倒数。
    • 标度的定义是谁更重要或有优势,不是直接比较其量的大小。例如在三种空调对于功耗的判断矩阵中,[1,2] 的值为 3,指的不是空调 A 的功耗相对于空调 B 比较有大,这意味着空调 A 比空调 B 更耗电。标度的实际意思是空调 A 的功耗相对于空调 B 比较有优势,这意味着空调 A 比空调 B 更有优势,更省电。
    • 判断矩阵的数值不能随便乱填,还需要遵守逻辑规范。例如在三种空调对于寿命的判断矩阵中可知,空调 B 的寿命比空调 C 更有优势,而空调 C 也比 空调 A 更有优势,那么就不能说空调 A 比 空调 B 更有优势,这显然是违背逻辑的 ,为了避免这种逻辑上的差错,我们可以先填矩阵,后利用一致性检验(下文即将介绍)来判断我们的矩阵是否存在逻辑上的错误,若有我们则修改标度。

    3. 层次单排序及一致性检验

    所谓层次单排序,指的是:根据判断矩阵计算对于上一层的一个节点而言本层次与之有联系的所有节点的重要性次序的权重值,从而根据权重对其进行重要性排序。

    我们以目标层与准则层开始。

    选购空调价格噪声功耗寿命 w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 A w i 0 \mathbf{Aw}_i^0 Awi0 λ m i \mathbf{λ}_{mi} λmi
    价格11/31/510.5080.0990.4004.040
    噪声31151.9680.3811.5464.058
    功耗51152.2360.4331.7444.028
    寿命11/51/510.4470.0870.3494.011

    λ m a x = 4.033 , C . I . = 0.011 , R . I . = 0.89 , C . R . = 0.012 < 0.1 \mathbf{λ}_{max} = 4.033,C.I. = 0.011,R.I. = 0.89,C.R. = 0.012<0.1 λmax=4.033C.I.=0.011R.I.=0.89C.R.=0.012<0.1


    连续出现了一系列的新值,我们将一一介绍。


    • w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 w i \mathbf{w}_i wi基于判断矩阵计算得出,采用方根法计算,其计算过程为

      1. 判断矩阵各行元素求几何平均数。


        w = [ 1 × 1 3 × 1 5 × 1 4 3 × 1 × 1 × 5 4 5 × 1 × 1 × 5 4 1 × 1 5 × 1 5 × 1 4 ] = [ 0.508 1.968 2.236 0.447 ] \mathbf{w}_ = \left[ \begin{matrix} \sqrt[4]{1\times\frac{1}{3}\times\frac{1}{5}\times1} \\ \sqrt[4]{3\times1\times1\times5} \\ \sqrt[4]{5\times1\times1\times5} \\ \sqrt[4]{1\times\frac{1}{5}\times\frac{1}{5}\times1} \\ \end{matrix} \right] =\left[ \begin{matrix} 0.508\\ 1.968\\ 2.236\\ 0.447 \end{matrix} \right] w=41×31×51×1 43×1×1×5 45×1×1×5 41×51×51×1 =0.5081.9682.2360.447

      2. w i \mathbf{w}_i wi 归一化得到要素相对权重 w i 0 \mathbf{w}_i^0 wi0


        w 0 = [ 0.508 0.508 + 1.968 + 2.236 + 0.447 1.968 0.508 + 1.968 + 2.236 + 0.447 2.236 0.508 + 1.968 + 2.236 + 0.447 0.447 0.508 + 1.968 + 2.236 + 0.447 ] = [ 0.099 0.381 0.433 0.087 ] \mathbf{w}^0 = \left[ \begin{matrix} \frac{0.508}{0.508+1.968+2.236+0.447}\\ \frac{1.968}{0.508+1.968+2.236+0.447}\\ \frac{2.236}{0.508+1.968+2.236+0.447}\\ \frac{0.447}{0.508+1.968+2.236+0.447} \end{matrix} \right] = \left[ \begin{matrix} 0.099 \\ 0.381 \\ 0.433 \\ 0.087 \end{matrix} \right] w0=0.508+1.968+2.236+0.4470.5080.508+1.968+2.236+0.4471.9680.508+1.968+2.236+0.4472.2360.508+1.968+2.236+0.4470.447=0.0990.3810.4330.087

      而对于采用方根法的通用公式为


      特 征 矩 阵 : A = [ a 11 a 12 ⋯ a 1 n a 21 ⋮ ⋱ a n 1 a n n ] , w i 0 = ( ∏ j = 1 n a i j ) 1 n ∑ i = 1 n ( ∏ j = 1 n a i , j ) 1 n , n = 1 , 2 , ⋯   , n 特征矩阵:A = \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}\\ \vdots&&\ddots\\ a_{n1}&&&a_{nn} \end{matrix} \right] ,\mathbf{w}_i^0 = \frac{(\prod_{j=1}^na_{ij})^{\frac{1}{n}}}{\sum_{i=1}^n (\prod_{j=1}^n a_{i,j})^{\frac{1}{n}}},n=1,2,\cdots,n A=a11a21an1a12a1nannwi0=i=1n(j=1nai,j)n1(j=1naij)n1,n=1,2,,n


      也可以使用求和法计算权重 w i 0 \mathbf{w}_i^0 wi0 ,这里只给出公式不给出本例的计算过程。求和法得到的 w i 0 \mathbf{w}_i^0 wi0 值可能与方根法求到的 w i 0 \mathbf{w}_i^0 wi0 不完全一样,这是正常的。


      w i 0 = 1 n ∑ j = 1 n a i j ∑ k = 1 n a i j , n = 1 , 2 , ⋯   , n \mathbf{w}_i^0 = \frac{1}{n}\sum_{j=1}^n\frac{a_{ij}}{\sum_{k=1}^na_{ij}},n = 1,2,\cdots,n wi0=n1j=1nk=1naijaij,n=1,2,,n

      1. 将判断矩阵的每列归一化,即 a i j ∑ k = 1 n a i j \frac{a_{ij}}{\sum_{k=1}^na_{ij}} k=1naijaij
      2. 将得到的新矩阵求各行的算数平均数得到 w i 0 \mathbf{w}_i^0 wi0
    • A w i 0 \mathbf{Aw}_i^0 Awi0 即为判断矩阵 A \mathbf{A} A 与权重 w i 0 \mathbf{w}_i^0 wi0 的矩阵点乘运算结果


      A w 0 = [ 1 1 3 1 5 1 3 1 1 5 5 1 1 5 1 1 5 1 5 1 ] ⋅ [ 0.508 1.968 2.236 0.447 ] = [ 0.4 1.546 1.744 0.349 ] \mathbf{Aw}^0 = \left[ \begin{matrix} 1 & \frac{1}{3} & \frac{1}{5} & 1 \\ 3 & 1 & 1 & 5 \\ 5 & 1 & 1 & 5 \\ 1 & \frac{1}{5} & \frac{1}{5} & 1 \end{matrix} \right]· \left[ \begin{matrix} 0.508\\ 1.968\\ 2.236\\ 0.447 \end{matrix} \right]= \left[ \begin{matrix} 0.4\\ 1.546\\ 1.744\\ 0.349 \end{matrix} \right] Aw0=135131115151115115510.5081.9682.2360.447=0.41.5461.7440.349

    • λ m i \mathbf{λ}_{mi} λmi 是用于计算 λ m a x \mathbf{λ}_{max} λmax 的中间值,而 λ m a x \mathbf{λ}_{max} λmax 用于一致性检验。


      λ m i = A w i 0 w i 0 \mathbf{λ}_{mi} = \frac{\mathbf{Aw}_i^0}{\mathbf{w}_i^0} λmi=wi0Awi0

    • λ m a x \mathbf{λ}_{max} λmax 用于计算后续的 C . I . \mathbf{C.I.} C.I. 值,从而完成一致性检验。


      λ m a x = 1 n ∑ i = 1 n λ m i \mathbf{λ}_{max} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{λ}_{mi} λmax=n1i=1nλmi

    • C . I . \mathbf{C.I.} C.I. R . I . \mathbf{R.I.} R.I. C . R . \mathbf{C.R.} C.R. C . I . \mathbf{C.I.} C.I. 为一致性指标, R . I . \mathbf{R.I.} R.I. 为平均随机一致性指标, C . R . \mathbf{C.R.} C.R. 为一致性指标,这些指标用于完成判断矩阵的一致性检验。


      C . I . = λ m a x − n n − 1 \mathbf{C.I.} = \frac{\mathbf{λ}_{max}-n}{n-1} C.I.=n1λmaxn


      R . I . \mathbf{R.I.} R.I. 的值要参考平均随机一致性指标表来确定,其值由 n \mathbf{n} n 即判断矩阵的阶 数,查下表得

      n \mathbf{n} n1234567891011121314
      R . I . \mathbf{R.I.} R.I.000.520.891.121.261.361.411.461.491.521.541.561.58

      本例中 n = 4 \mathbf{n}=4 n=4 R . I . = 0.89 \mathbf{R.I.} = 0.89 R.I.=0.89


      C . R . = C . I . R . I . \mathbf{C.R.}=\frac{\mathbf{C.I.}}{\mathbf{R.I.}} C.R.=R.I.C.I.


      C . R . < 0.1 \mathbf{C.R.} < 0.1 C.R.<0.1 则认为判断矩阵通过了一致性检验,若不满足条件则需要检查判断矩阵,并对其值进行调整。 本例中 C . R . = 0.012 < 0.1 \mathbf{C.R. = 0.012<0.1} C.R.=0.012<0.1,因此通过了一致性检验,可继续进行后续的步骤。

    在完成目标层与准则层的层次单排序与一致性检验之后,还需对准则层到方案层的多个判断矩阵完成该过程。这里直接给出结果。

    • 三种空调对于价格的判断矩阵的层次单排序与一致性检验

      价格空调 A空调 B空调 C w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 A w i 0 \mathbf{Aw}_i^0 Awi0 λ m i \mathbf{λ}_{mi} λmi
      空调 A11/71/50.3060.0750.2263.016
      空调 B7122.410.5921.7833.011
      空调 C51/211.3570.3331.0043.015

      λ m a x = 3.014 , C . I . = 0.007 , R . I . = 0.52 , C . R . = 0.013 < 0.1 \mathbf{λ}_{max} = 3.014,C.I. = 0.007,R.I. = 0.52,C.R. = 0.013<0.1 λmax=3.014C.I.=0.007R.I.=0.52C.R.=0.013<0.1

    • 三种空调对于噪声的判断矩阵的层次单排序与一致性检验

      噪声空调 A空调 B空调C w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 A w i 0 \mathbf{Aw}_i^0 Awi0 λ m i \mathbf{λ}_{mi} λmi
      空调 A1252.1540.5701.7213.019
      空调 B1/2141.260.3331.0063.021
      空调 C1/51/410.3680.0970.2943.030

      λ m a x = 3.023 , C . I . = 0.012 , R . I . = 0.52 , C . R . = 0.023 < 0.1 \mathbf{λ}_{max} = 3.023,C.I. = 0.012,R.I. = 0.52,C.R. = 0.023<0.1 λmax=3.023C.I.=0.012R.I.=0.52C.R.=0.023<0.1

      • 三种空调对于噪声的判断矩阵的层次单排序与一致性检验

      功耗空调 A空调 B空调C w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 A w i 0 \mathbf{Aw}_i^0 Awi0 λ m i \mathbf{λ}_{mi} λmi
      空调 A131/21.1450.3090.9273.000
      空调 B1/311/50.4050.1090.3283.009
      空调 C2512.1540.5821.7453.000

      λ m a x = 3.003 , C . I . = 0.0015 , R . I . = 0.52 , C . R . = 0.003 < 0.1 \mathbf{λ}_{max} = 3.003,C.I. = 0.0015,R.I. = 0.52,C.R. = 0.003<0.1 λmax=3.003C.I.=0.0015R.I.=0.52C.R.=0.003<0.1

      • 三种空调对于噪声的判断矩阵的层次单排序与一致性检验

      寿命空调 A空调 B空调C w i \mathbf{w}_i wi w i 0 \mathbf{w}_i^0 wi0 A w i 0 \mathbf{Aw}_i^0 Awi0 λ m i \mathbf{λ}_{mi} λmi
      空调 A11/51/30.4050.10.3103.100
      空调 B5142.410.6742.0783.083
      空调 C31/410.9090.2260.6953.075

      λ m a x = 3.086 , C . I . = 0.043 , R . I . = 0.52 , C . R . = 0.083 < 0.1 \mathbf{λ}_{max} = 3.086,C.I. = 0.043,R.I. = 0.52,C.R. = 0.083<0.1 λmax=3.086C.I.=0.043R.I.=0.52C.R.=0.083<0.1

    注意


    在层次单排序过程中的 平均随机一致性表( R . I . \mathbf{R.I.} R.I. 值表)是由蒙特卡洛算法模拟随机矩阵验证一致性是否可以接受得来的。有兴趣的读者可以查询,了解。

    总结


    完成一个判断矩阵的层次单排序与一致性检验的求值过程为,简单总结如下:

    1. 选定方法求 w i \mathbf{w_{i}} wi(尚未归一化的权重)
    2. 归一化 w i \mathbf{w_{i}} wi 得到 w i 0 \mathbf{w_{i}^0} wi0(相对重要性权重)
    3. 将判断矩阵 A 与 w i 0 \mathbf{w_{i}^0} wi0 矩阵点乘得到 A w i 0 \mathbf{Aw}_i^0 Awi0
    4. A w i 0 \mathbf{Aw}_i^0 Awi0 除以 w i 0 \mathbf{w_{i}^0} wi0 得到 λ m i \mathbf{λ}_{mi} λmi
    5. 使用 λ m i \mathbf{λ}_{mi} λmi 求得 λ m a x \mathbf{λ}_{max} λmax
    6. 利用 λ m a x \mathbf{λ}_{max} λmax C . I . \mathbf{C.I.} C.I.,查表得到 R . I . \mathbf{R.I.} R.I. 对应的值,将 C . I . \mathbf{C.I.} C.I. R . I . \mathbf{R.I.} R.I. 相除得到 C . R . \mathbf{C.R.} C.R.
    7. 比较 C . R . \mathbf{C.R.} C.R. 与 0.1 的大小,确定是否通过一致性检验,不通过则修改判断矩阵的值,直到通过一致性检验。
    8. 完成层次单排序,获得结果 w i 0 \mathbf{w_{i}^0} wi0

    4. 层次总排序

    层次总排序得出了方案层对于目标层的重要程度权重,从而我们可以选出权重最大的为决策结果

    评价标准价格噪声功耗寿命
    最终评分
    总权重(w)
    权重0.0990.3810.4330.087
    空调 A0.0750.5700.3090.1000.367
    空调 B0.5920.3330.1090.6740.291
    空调 C0.3330.0910.5820.2260.342

    以上表格关于四大评价指标对各空调的权重(第二行)来自于目标层与准则层判断矩阵的层次单排序结果权重。空调 ABC 对于四大评价指标的分别权重来自于准则层到方案层的判断矩阵层次单排序结果权重。表格中的最终得分计算方法是:用各评价指标的权重,乘上某空调各个指标对应的权重求和。以求空调 A 的最终得分为例,公式如下


    空 调 A 评 分 = 0.099 × 0.075 + 0.381 × 0.570 + 0.433 × 0.309 + 0.087 × 0.100 = 0.367 空调 A 评分 = 0.099\times0.075+0.381\times0.570+0.433\times0.309+0.087\times0.100=0.367 A=0.099×0.075+0.381×0.570+0.433×0.309+0.087×0.100=0.367


    空调 BC 的评分同理。因为 w 空 调 A > w 空 调 C > w 空 调 B \mathbf{w_{空调A}}>\mathbf{w_{空调C}}>\mathbf{w_{空调B}} wA>wC>wB,所以我们通过 AHP 法得出购买空调 A 最符合我们的需求。


    三. 不一致现象 与 一致性检验

    上文中有提到判断矩阵中会出现不一致的现象,也使用计算一致性比例的问题来判断判断矩阵是否出现不一致的现象。本章节将较为详细的分析讲解判断矩阵中出现的不一致现象,并介绍一种和求和法与方根法同样常用的求要素相对权重的方法——特征值法。

    正如上文中所提到的不一致现象,我们继续利用空调对寿命的判断矩阵来进行分析。

    寿命空调 A空调 B空调 C
    空调 A11/51/3
    空调 B514
    空调 C31/41

    该判断矩阵在上一章中已经通过一致性检验。但我们仔细分析,会发现该判断矩阵中依然存在不一致的问题。我们进行下列推断


    [ 2 , 1 ] = 5 ⇒ 空 调 B 比 空 调 A 比 较 有 优 势 [ 3 , 1 ] = 3 ⇒ 空 调 C 比 空 调 A 稍 微 有 优 势 则 , 空 调 B 比 空 调 C 应 该 稍 微 ① 有 优 势 ② [2,1] = 5 \Rightarrow 空调 B 比 空调 A 比较有优势\\ [3,1] = 3 \Rightarrow 空调 C 比 空调 A 稍微有优势\\ 则,空调 B 比 空调 C应该稍微^{①}有优势^{②} [2,1]=5BA[3,1]=3CABC


    在结论中有两小点:

    • 我们在上文中说明过,如果认为空调 C 比空调 B 更有优势则与②相反,违背了逻辑,这种不一致是不被允许的。假如我们颠倒空调 BC 的优势顺序,得到以下判断矩阵:

      寿命空调 A空调 B空调 C
      空调 A11/51/3
      空调 B511/4
      空调 C341

      λ m a x = 4.24 , C . I . = 0.62 , R . I . = 0.52 , C . R . = 1.192 > 0.1 \mathbf{λ}_{max} = 4.24,C.I. = 0.62,R.I. = 0.52,C.R. =1.192>0.1 λmax=4.24C.I.=0.62R.I.=0.52C.R.=1.192>0.1
      经过计算,发现一致性检验不通过。

      若我们将空调 BC 的优势程度写为一样有优势则得到以下判断矩阵:

      寿命空调 A空调 B空调 C
      空调 A11/51/3
      空调 B511
      空调 C311

      λ m a x = 3.866 , C . I . = 0.433 , R . I . = 0.52 , C . R . = 0.833 > 0.1 \mathbf{λ}_{max} = 3.866,C.I. = 0.433,R.I. = 0.52,C.R. =0.833>0.1 λmax=3.866C.I.=0.433R.I.=0.52C.R.=0.833>0.1
      也不通过一致性检验。因此一致性检验确实起到了避免判断矩阵中数值出现逻辑冲突的情况

    • 在结论①中,其确定了的是空调 B 比空调 C 优势的程度大小为多少。结论中我们写的是 “稍微有优势”,那么判断矩阵中对应的位置应该是 3 和 1/3,但原题目中判断矩阵对应的位置为 4 和 1/4。我们可以试着计算一下判断矩阵是否通过一致性检验:

      寿命空调 A空调 B空调 C
      空调 A11/51/3
      空调 B513
      空调 C31/31

      λ m a x = 3.029 , C . I . = 0.0145 , R . I . = 0.52 , C . R . = 0.028 < 0.1 \mathbf{λ}_{max} = 3.029,C.I. = 0.0145,R.I. = 0.52,C.R. =0.028<0.1 λmax=3.029C.I.=0.0145R.I.=0.52C.R.=0.028<0.1
      通过一致性检验。而原来的 4 与 1/4 也通过了一致性检验,因此可见在基本的谁比谁有优势确定后,其优势程度大小是有可调节的弹性的。这是因为相对重要性标度本身对于要素之间的优势程度定义是模糊的。


    四. (补充) 特征值法求相对重要性权重

    上文中有介绍两种求要素相对重要性权重的方法:方根法与求和法。本章介绍一种和这两种同样常用的方法来求权重——特征值法。

    • 特征向量与特征值[2]


      A 为 n × n 矩 阵 , x 为 非 零 向 量 , 若 存 在 数 λ 使 得 A x = λ x 有 非 平 凡 解 x , 则 称 λ 为 A 的 特 征 值 , x 称 为 对 应 与 λ 的 特 征 向 量 。 \mathbf{A} 为 \mathbf{n\times n} 矩阵,\mathbf{x} 为非零向量,\\若存在数 \mathbf{\lambda} 使得 \mathbf{Ax=\lambda x} 有非平凡解 \mathbf{x},\\则称 \mathbf{\lambda} 为 \mathbf{A} 的特征值,\mathbf{x} 称为对应与 \mathbf{\lambda} 的特征向量。 An×nxλ使Ax=λxxλAxλ


      利用特征值法求相对重要性权重,就是求判断矩阵的特征向量,并将特征向量列归一化,然后直接作为相对重要性权重向量。但这个方法对判断矩阵严格要求其为一致矩阵,而我们上例中的判断矩阵都是不完全一致的,因此不适用此方法(可重新确定判断矩阵的值使其为一致矩阵再用此方法)。

    • 一致矩阵


      若 矩 阵 A = [ a 11 a 12 ⋯ a 1 n a 21 ⋮ ⋱ a n 1 a n n ] 满 足 :   a i j > 0 a 11 = a 22 = ⋯ = a n n = 1 [ a i 1 , a i 2 , ⋯   , a i n ] = k i [ a 11 , a 12 , ⋯   , a 1 n ] 则 称 矩 阵 A 为 一 致 矩 阵 若矩阵 A= \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}\\ \vdots&&\ddots\\ a_{n1}&&&a_{nn} \end{matrix} \right]满足: \\ \space\\ a_{ij}>0\\a_{11}=a_{22}=\cdots=a_{nn}=1\\ [a_{i1},a_{i2},\cdots,a_{in}] = k_i[a_{11},a_{12},\cdots,a_{1n}] \\则称矩阵 A 为一致矩阵 A=a11a21an1a12a1nann: aij>0a11=a22==ann=1[ai1,ai2,,ain]=ki[a11,a12,,a1n]A


      由于涉及到的知识点过多,篇幅受限不做详细介绍与证明。


    参考文献

    [1] 汪应洛.系统工程[M].5版.北京:机械工业出版社,2015.12:123.

    [2] David C. Lay,Steven R. Lay,Judi J. McDonald.线性代数及其应用[M].机械工业出版社:北京,2018.6:265.


    文章内容来自个人学习总结
    欢迎指出本文中存在的问题
    未经本人同意禁止转载,不得用于商业用途
    展开全文
  • 鱼骨图分析法实例.pdf

    2019-09-24 16:42:45
    鱼骨图是由日本管理大师石川馨先生所发展出来的,故又称石传图。
  • 模糊层次综评模型及应用实例 摘要介绍了模糊层次评价水环境质量的基本原理和方法步骤建立了水环 境质量综合评价模型利用?该评价?方法就?无锡市主要河流上控制断面的水质监 测结果进行了具体分析计算确定水质优劣...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 150,767
精华内容 60,306
关键字:

五个为什么分析法案例