精华内容
下载资源
问答
  • 对数正态分布的实际应用
    万次阅读
    2016-11-22 15:27:21

    这块儿我是真的没听说过,所以直接抄了维基百科,维基万岁!

    概率密度函数

    在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是正态分布的随机变量,则 exp(X)为对数正态分布;同样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。 对于 x>0 ,对数正态分布的概率密度函数为:

    f(x;μ,σ)=1xσ2πe(lnxμ)2/2σ2

    其中 μ σ 分别是变量对数的平均值与标准差。
    推导过程:概率微分不变性。
    一个正的随机变量 x 是对数正态分布,当且仅当 x 是正态分布。那么:
    N(lnx;μ,σ)=1σ2πexp[(lnxμ)22σ2].

    利用概率微分不变性,有
    N(lnx)dlnx=N(lnx)dlnxdxdx=N(lnx)dxx=lnN(x)dx,
    ,
    其中,
    lnN(x;μ,σ)=1xσ2πexp[(lnxμ)22σ2],  x>0

    是对数正态分布函数。

    期望和方差:

    期望为

    E(X)=eμ+σ2/2

    方差为
    var(X)=(eσ21)e2μ+σ2.

    给定期望值与方差,也可以用这个关系求 μ σ :
    μ=ln(E(X))12ln(1+var(X)E(X)2),

    σ2=ln(1+var(X)E(X)2).

    注意:已知变换后的数据的统计特征可以反过来推导出原始数据的统计特征,不存在数据信息的损失(可以看到对数转换后变量的均值可以直接由样本数据的均值得到,但不进行变化却需要由样本均值方差两方面去推断得到),也可以发现对数正态分布实际上是对数据进行了对数变化,从而变成了正态分布,这样更加方便的得到了相关的统计学变量。

    局部期望

    随机变量 X 在阈值 k 上的局部期望定义为

    g(k)=k(xk)f(x)dx

    其中 f(x) 是概率密度。对于对数正态概率密度,这个定义可以表示为
    g(k)=exp(μ+σ2/2)Φ(ln(k)+μ+σ2σ)kΦ(ln(k)+μσ)

    其中 Φ 是标准正态部分的累积分布函数。对数正态分布的局部期望在保险业及经济领域都有应用,著名的Black-Scholes期权定价公式便可由此推导出。

    相关分布(与高斯分布的关系)

    如果 Y=ln(X)Y=ln(X) XLog-N(μ,σ2) ,则 YN(μ,σ2) 是正态分布。
    如果 XmLog-N(μ,σ2m), m=1...n¯¯¯¯¯¯¯ 是有同样 μ 参数、而 σ 可能不同的统计独立对数正态分布变量 ,并且 Y=m=1nXm ,则 Y 也是对数正态分布变量: YLog-N(nμ,m=1nσ2m)

    这是因为在高斯分布求和的分布性质。

    在股票中的应用

    对数正态分布一般被用来描述增长率。比如股票指数,假设今天标普从2000点涨到了2020,相比于n年前的某一天它从100点涨到101点,虽然今天上涨了20点,远高于另一天上涨的1点,但这两天的上涨率是相同的(1%)。
    至于为什么要取对数log(x2/x1),而不是直接用x2/x1,看一眼对数曲线就明白了。(x1,x2分别表示第一天和第二天的股指)。
    它有几个很好的性质:
    1.假如增长率不变,那么log(1)=0,位于正态分布的中央
    2.log(1/a) = -log(a),也就是说股票在一段时间内涨到两倍和跌一半的概率是一样的
    3.x为正(股指永远不会为负值),y值能取正无穷到负无穷。

    更多相关内容
  • 对数正态分布(Log-Normal Distribution)

    万次阅读 多人点赞 2017-11-01 16:02:07
    2017.11.1 人要有发耻心和羞耻心,突然想到了这么一句话,MARK一个博客困惑了...- 相关分布快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl + Q 插入链接 Ctrl + L 插入代码 Ctrl + K 插入图片 Ctrl + G 提升标题 Ctrl

    2017.11.1 人要有发耻心和羞耻心,突然想到了这么一句话,MARK一个博客

    困惑了好久,还是写个博客Mark一下,方便以后查询使用

    • 概率密度函数
    • 局部期望

    - 相关分布

    概率密度函数

    对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 Y 是正态分布的随机变量,则exp(Y)是对数正态分布;同样,如果 X 是对数正态分布,则ln(X)为正态分布,如果一个变量可以看成是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。 给定一个 x>0 ,对数正态分布的概率密度函数为:

    f(x;μ;σ)=12πxσe(lnxμ)22σ2

    其中, μ σ 分别是变量对数的平均值和标准差。期望值和方差分别为:
    E(X)=eμ+σ2/2

    var(X)=(eσ21)e2μ+σ2

    给定期望值与方差,也可以用这个关系求 μ σ 的大小
    μ=ln(E(X))12ln(1+var(X)E(X)2)
    σ2=ln(1+var(X)E(X)2)

    求解时,需要将 μ σ 计算出来带入到上面的 f(x;μ;σ) 中使用matlab带有的 logncdflognpdf获取对数正态分布的累积分布函数和密度函数。
    注解:已知变换后的数据的统计特征可以反过来推导出原始数据的统计特征,不存在数据信息的损失(对数转换后变量的均值可以直接由样本数据的均值得到,但不进行变化却需要由样本均值方法两方面去推断得到),参见: 机器学习小组知识点17 也可以发现对数正态分布实际上是对数据进行了对数变化,从而变成了正态分布,方便得到相关的统计学变量。

    局部期望

    随机变量 X 在阈值k上的局部期望定义为:

    g(k)=k(xk)f(x)dx

    其中 f(x) 是概率密度,对于对数正态概率密度,这个定义为:
    g(k)=exp(μ+σ2/2)Φ(ln(k)+μ+σ2σ)kΦ(ln(k)+μσ)

    其中 Φ 是标准正态分布的累积分布函数,对数正态分布的局部期望在经济领域应用广泛。

    相关分布

    这里指的是与高斯分布的关系
    如果 Y=ln(X) X LogN(μ,σ2) ,则 Y N(μ,σ2) 是正态分布.
    如果 Xm=LogN(μ,σ2m),m=1...n¯¯¯¯¯¯¯ 是有同样% μ 参数,而 σ 可能不同的统计独立对数正态分布变量,并且 Y=Nm=1Xm ,则 Y 也是正态分布变量:YLogN(nμ,nm=1σ2m),满足高斯分布求和性质。

    参数的最大似然估计

    为了确定对数正态分布参数 μ σ 最大似然估计,可以采用与正态分布参数最大似然估计同样的方法。

    fL(x;μ,σ)=1xfN(lnx;μ,σ)

    其中用 fL() 表示对数正态分布的概率密度函数,用 fN() 表示正态分布,因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:
    lL(μ,σ|x1,x2,,xn)=klnxk+lN(μ,σ|lnx1,lnx2,,lnxn)=constant+lN(μ,σ|lnx1,lnx2,,lnxn)

    由于第一项相对于 μ sigma 来说是常数,两个对数最大似然函数 lL lN 在同样的 μ σ 处有最大值。因此,根据正态分布最大似然参数估计器的公式以及上面的方程,推导出对数正态分布参数最大似然估计为:
    μ^=klnxkn,σ^2=(lnxkμ^)2n

    展开全文
  • 拉丁超立方抽样-对数正态分布0、拉丁超立方抽样的理论基础1、导入库和基本准备2、生成(具有对数正态分布的随机变量)参数的随机数3、将生成的随机数输出到Excel中4、将生成的随机数输出到图像中5、代码肯定可以实现...

    0、拉丁超立方抽样的理论基础

    0.1、概况

    拉丁超立方体采样(LHS)最早由McKay等提出,并由Iman和Conover进一步发展,在很多领域中具有广泛的应用性。

    拉丁超立方抽样也是一种分层抽样,在蒙特∙卡罗抽样方法的基础上对采样策略进行了改进,从而做到在保持统计显著性的同时减小采样规模。根据对每个超立方体内样本点的确定方式不同,可将拉丁超立方抽样技术分为:

    • 中值拉丁超立方抽样法
    • 拉丁超立方重要抽样法
    • 含随机排序法的拉丁超立方抽样

    笔者重点介绍含随机排序法拉丁超立方抽样法的基本原理。

    0.2、基本原理

    拉丁超立方抽样的关键是对累积概率分布进行分层,累积概率在0到1之间,分成相等的间隔块后,根据间隔块的概率值得到样本区间。然后从每个样本区间中随机抽取样本,于是以抽样点代表每个区间的值。
    根据n个随机变量 x 1 x_1 x1, x 2 x_2 x2,∙∙∙, x k x_k xk,∙∙∙, x n x_n xn建立 n n n维向量空间,每个随机变量都遵循一定的概率分布, x k x_k xk的累积概率分布函数可以表示为
    y k = f ( x ) y_{k}=f\left ( x \right ) yk=f(x)

    0.3、基本步骤

    假设在每一维向量空间中抽取N个样本,得到拉丁超立方抽样模拟的步骤为:

    1. 将每一维向量空间分成N份,根据式上式的反函数求得对应区间,使得每个区间具有相同的概率;
    2. 在每一维的每个区间中随机选取一个点作为采样点;
    3. 对每一维空间选出的样本点进行随机排序组成各自向量;
    4. 将上面采集到的样本向量进行组合就得到一个 k × N k×N k×N的样本矩阵。

    如下图所示,累积概率分布函数曲线被分成三个区间,每个区间都抽取一个样本,每个区间都有样本取出,且一旦取出后,这个区间将不再被抽样。
    1
    避免了在抽样量较少时可能出现的“聚集”问题,样本可以更加准确反映输入概率分布,实际应用时具有高效性。

    1、导入库和基本准备

    如前正态分布的抽样博客。

    相对于生成生态分布随机变量的抽样方法及代码,仅仅需要改变生成部分即可,故本文仅仅展示了修改部分代码,其他部分请参见博文《对应于正态分布的拉丁超立方抽样

    2、生成(具有对数正态分布的随机变量)参数的随机数

    代码转第6条

    3、将生成的随机数输出到Excel中

    如前正态分布的抽样博客。

    注意参数个数-D的变化对代码的影响

    4、将生成的随机数输出到图像中

    如前正态分布的抽样博客。

    注意参数个数-D的变化对代码的影响

    5、代码肯定可以实现抽样,若需一步一步的更详尽解释,请“挪步”佐佑思维公众号→免费、有问必答!

    6、 ★佐佑思维二维码★

    佐佑思维

    展开全文
  • 导出了对数正态分布场合下恒定应力加速寿命中含有缺失定数截尾样本的近似极大似然估计(AMLE),得到了分布参数和加速方程中未知参数的AMLE的显式解,便于实际计算和工程应用,数值模拟的结果表明本方法可行。
  • 正态分布 高斯分布(数学)

    千次阅读 2020-04-26 20:57:49
    正态分布(Normal distribution),也称高斯分布(Gaussian distribution) ... 4正态分布应用 5数据正态分布检验 Q-Q图[1] 6参考文献 [编辑] 什么是正态分布  正态分布是一种概率分布...

    正态分布(Normal distribution),也称高斯分布(Gaussian distribution)

    目录

    [隐藏]

    [编辑]

    什么是正态分布

      正态分布是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

    [编辑]

    正态分布的发展

      正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布。高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。皮埃尔-西蒙·拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen)在一篇论文中正式提出了这个学说。

      其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。皮埃尔-西蒙·拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。

    [编辑]

    正态分布的主要特征

      1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

      2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

      3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

      4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

      5、u变换:为了便于描述和应用,常将正态变量作数据转换。

    [编辑]

    正态分布的应用

      1.估计正态分布资料的频数分布

      例1.某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.70cm,标准差s=4.01cm,

      ①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数;

      ②分别求\bar{X}\pm 1s\bar{X}\pm 1.96s\bar{X}\pm 2.58s范围内18岁男大学生占该地18岁男大学生总数的实际百分数,并与理论百分数比较。

      本例,μ、σ未知但样本含量n较大,按式u=\frac{X-\mu}{\sigma}用样本均数\bar{X}和标准差S分别代替μ和σ,求得u值,u=(168-172.70)/4.01=-1.17。查附表标准正态曲线下的面积,在表的左侧找到-1.1,表的上方找到0.07,两者相交处为0.1210=12.10%。该地18岁男大学生身高在168cm以下者,约占总数12.10%。其它计算结果见表-1。

      表-1:1100名18岁男大学生身高的实际分布与理论分布

      Image:正态分布13.jpg

      2.制定医学参考值范围:亦称医学正常值范围。它是指所谓“正常人”的解剖、生理、生化等指标的波动范围。制定正常值范围时,首先要确定一批样本含量足够大的 “正常人”,所谓“正常人”不是指“健康人”,而是指排除了影响所研究指标的疾病和有关因素的同质人群;其次需根据研究目的和使用要求选定适当的百分界值,如80%,90%,95%和99%,常用95%;根据指标的实际用途确定单侧或双侧界值,如白细胞计数过高过低皆属不正常须确定双侧界值,又如肝功中转氨酶过高属不正常须确定单侧上界,肺活量过低属不正常须确定单侧下界。另外,还要根据资料的分布特点,选用恰当的计算方法。常用方法有:

      (1)正态分布法:适用于正态或近似正态分布的资料。

      双侧界值:\bar{X}\pm u_aS单侧上界:\bar{X}+u_aS,或单侧下界:\bar{X}-u_aS

      (2)对数正态分布法:适用于对数正态分布资料。

      双侧界值:lg^{-1}(\bar{X}_{lgx}\pm u_{a}S_{lgx});单侧上界:lg^{-1}(\bar{X}_{lgx}+u_{a}S_{lgx}),或单侧下界:lg^{-1}(\bar{X}_{lgx}-u_{a}S_{lgx})

      常用u值可根据要求由表-2查出。

      (3)百分位数法:常用于偏态分布资料以及资料中一端或两端无确切数值的资料。

      双侧界值:P2.5和P97.5;单侧上界:P95,或单侧下界:P5。

      表-2:常用u值表

    参考值范围(%)单侧双侧
    800.8421.282
    901.2821.645
    951.6451.960
    992.3262.576

      3.正态分布是许多统计方法的理论基础:如t分布、F分布、x2分布都是在正态分布的基础上推导出来的,u检验也是以正态分布为基础的。此外,t分布、二项分布Poisson分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。

    [编辑]

    数据正态分布检验 Q-Q图[1]

      要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验):

      1:在spss(Statistical Package for the Social Sciences,即“社会科学统计软件包”)里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive Statistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With norma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图:

      数据正态分布柱状图

      从上图中可以看出,该组数据基本符合正态分布。

      2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。

      具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。

      纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。

      如下图:

      spss正态分布Q-Q图

    展开全文
  • 大千世界随机现象众多,其分布各异。按数据变量类型划分可以分为离散型与连续性两类:离散型变量根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种结果。你可以把...
  • 正态分布(Normal distribution)正态分布又称高斯分布,是一种很重要的连续型分布,应用甚广。在医学卫生领域中有许多变量的频数分布资料可绘制成直方图而且频数分布是中间(靠近均数处)频数多,两边频数少,且...
  • 几张图帮助快速了解内容 ... 特征处理之使数据分布逼近正态分布 在机器学习和深度学习中,我们经常要对输入的数据做归一化或者在隐藏层使用Batch-Normlization...
  • 与离散型随机变量相对,连续...正态分布可能是定量研究工作中应用最广泛的连续概率分布。它在现代投资组合理论和许多风险管理技术中发挥着关键作用。因为它有很多用途,所以是投资专业人士必备知识。正态分布在统...
  • 连续型变量 如:正态分布 离散型变量 如:二项分布、泊松分布 三者之间的关系 二项分布(Binomial distribution) 二项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布,记作。伯努利试验是...
  • 利用matlab产生正态分布数组

    千次阅读 2021-04-20 11:29:13
    利用matlab产生正态分布数组 思路 课本 2.6 节——“数字噪声的产生”中介绍了两种产生标准正态分布随机数列的方法: 1) 利用随机数字生成器产生 12 个 0~1 之间均匀分布的随机数,通过对这 12 个随机数字 求和来...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技...为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式来介绍正态分布。 在机器学习的世界中...
  • 对数正态随机数

    2021-05-26 02:55:56
    相关文献引言大量测试数据表明,现代雷达杂波的幅度概率分布明显偏离瑞利分布具有较长尾部。计算机蒙特卡洛模拟是计算非瑞莉杂波中雷达检测性能的最适宜的方法〔1,幻。来用这种方法解决实际问题时,最关键的问题有两个...
  • 正态分布(高斯分布)

    万次阅读 多人点赞 2018-11-09 15:54:21
    正态分布 概要 历史 正态分布的定义 概率密度函数 累积分布函数 生成函数 性质 动差或矩(moment) 中心极限定理 无限可分性 稳定性 标准偏差 相关分布 参量估计 参数的极大似然估计 计量误差 参考...
  • 概要性介绍正态分布并给出基于python/scikit-learn的代码示例实验
  • 正态分布(normal distribution)什么是正态分布编辑本段回目录正态分布是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机...
  • 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量X服从一个数学期望为μ、标准...
  • C#:实现蒙特卡罗(对数正态分布的随机数的产生)算法(附完整源码)
  • 本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在数据科学和机器学习领域,它几乎无处不在。我将会从基础概念出发,解释有关正态分布的一切,并揭示它为何如此重要。▲1893 年人类身高分布图,...
  • 来源:云脑智库 本文约15000字,建议阅读10+分钟 本文将结合《数理统计学简史》一书,从早期概率论的发展、棣莫弗的二项概率逼近讲到贝叶斯方法、最小二乘法、误差与正态分布等问题,有详有略...
  • 正态分布(normal distribution)[编辑]什么是正态分布正态分布是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差...
  • 导读:为什么正态分布如此特殊?为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式来介绍正态分布。在机器学习的世界中,以概率分...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技大本营(ID: rgznai100)为什么正态分布如此特殊?为什么大量数据科学和机器学习的...本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在...
  • java正态分布的运用

    千次阅读 2019-07-19 10:26:29
    正态分布概念是由德国的数学家和天文学家Moivre(棣莫弗)于1733年受次提出的,但由于德国数学家Gauss(高斯)率先将其应用于天文学家研究,故正态分布又叫高斯分布。正态分布起源于误差分析,早期的天文学家通过...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技大本营(ID: rgznai100)为什么正态分布如此特殊?为什么大量数据科学和机器学习的...本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技大本营(ID: rgznai100)为什么正态分布如此特殊?为什么大量数据科学...
  • 用MATLAB产生正态分布随机噪声来测量直扩系统抗噪性能目前,扩频技术因其良好的抗干扰能力及低截获概率性,因而在通信领域得到了广泛的应用。直接序列扩频是扩频技术的一种主要方式,它是用PN码和二元信息数字序列模...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,559
精华内容 2,623
热门标签
关键字:

对数正态分布的实际应用