精华内容
下载资源
问答
  • 对数正态分布的特征函数
    千次阅读
    2021-07-24 17:13:15

    0引言

    最近在看偏正态分布相关的东西,偏正态分布的定义形式还是挺多样的,在偏态分布及其数字特征(R语言可视化)中我介绍的最初的一种定义。在平时做模型做随机模拟的时候的需要产生随机数来检验自己模型估计的有效性,我们可以通过各种分层表示用已知的分布去近似,也可以通过筛法使用均匀分布去生成、也可以用MCMC去采样。但是最为一个专业的统计软件——R语言肯定是有内置函数或者内置包去做的。大家感兴趣原理的也可以自行打开R函数查看。
    本文的主要目的是介绍R语言内部的产生下面分布的随机数的函数。
    – 一元正态分布随机数
    – 一元偏正态分布随机数
    – 一元对数正态随机数
    – 多元正态分布随机数
    – 多元偏正态分布随机数
    – 多元对数正态随机数

    1、函数名

    对于熟悉R语言的人只有函数名字和包名即可,下面列出具体名字。

    维度分布函数
    一维度正态分布rnormstats
    一维度偏正态分布rsnsn
    一维度对数正态rlnormstats
    多维度正态分布mvrnormMASS
    多维度偏正态分布rmsnsn
    多维度对数正态mvlognormalMethylCapSig

    但是对于很多R小白的科研大佬来说只有一个名字是比较浪费时间的,下面给出具体案例。

    2、示例

    先把该安装的包岸上并且载入,后面有备注大家按需安装载入。

    install.packages("MethylCapSig")  # 多元对数正态包
    install.packages("MASS")  # 多元正态分布包
    install.packages("sn")  # 偏态数据包
    library(MASS)
    library(sn)
    library(MethylCapSig)
    

    2.1正态分布随机数

    这块介绍如何生成一元和多元的正态分布随机数。生成正态分布的随机数的函数是rnorm,多元正态随机数用mvrnorm

    #生成n个均值0标准差1的正态随机数
    > n = 10
    > rnorm(n, mean = 0, sd = 1)
     [1]  0.6035027 -0.9081701  1.5303255  0.3761588 -1.6406858 -1.5728766
     [7] -1.6586157  0.8287051  1.7688131  1.1472097
    
    mvrnorm(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
    # 生成均值为mu,协方差矩阵为Sigma的10次观测的多元正态随机数
    > mu <- rep(0, 2)
    > mu
    [1] 0 0
    > Sigma <- matrix(c(5,1,1,2),2,2)
    > Sigma
         [,1] [,2]
    [1,]    5    1
    [2,]    1    2
    > mvrnorm(n, mu, Sigma)
                [,1]       [,2]
     [1,]  0.3458454  0.3552218
     [2,] -4.9145503 -2.2932391
     [3,]  2.3285543  1.7957570
     [4,]  2.6422543  1.4493042
     [5,] -2.0447422 -0.5195390
     [6,] -0.5682730 -0.1557601
     [7,] -0.0560933  0.6941458
     [8,]  3.5873361  2.1324344
     [9,] -0.3522617 -1.0535145
    [10,]  1.9490186 -1.7155158
    

    2.2偏正态分布

    这块介绍如何生成一元和多元的偏正态分布随机数。生成偏正态分布的随机数的函数是rsn,多元正态用rmsn

    rsn(n=1, xi=0, omega=1, alpha=0, tau=0,  dp=NULL)
    # 生成10个位置参数为5,标准差为2,偏度为5的一元偏正态分布
    > n = 10
    > rsn(n, 5, 2, 5)
     [1] 6.366628 4.622272 4.973537 5.716082 6.438601 7.489781 5.034990 5.762948
     [9] 9.547775 8.470482
    attr(,"family")
    [1] "SN"
    attr(,"parameters")
    [1] 5 2 5 0
    
    rmsn(n=1, xi=rep(0,length(alpha)), Omega, alpha,  tau=0, dp=NULL)
    # 生成多元偏态分布,均值向量xi,协方差矩阵,偏度向量 alpha
    > xi <- c(0, 0)
    > xi
    [1] 0 0
    > Omega <- matrix(c(5,1,1,2),2,2)
    > Omega
         [,1] [,2]
    [1,]    5    1
    [2,]    1    2
    > alpha <- c(2,-2)
    > alpha
    [1]  2 -2
    > rmsn(10, xi, Omega, alpha)
                 [,1]       [,2]
     [1,] -0.65320266  0.6861521
     [2,]  1.37481687 -0.1659318
     [3,]  3.14522100  0.4529551
     [4,] -0.07057607 -0.6608571
     [5,] -2.68493331 -2.9035422
     [6,]  2.19216656  0.7597699
     [7,]  1.50244323  0.7730602
     [8,] -1.81347772 -1.4717120
     [9,] -0.56875748 -0.8176260
    [10,]  0.88476306 -0.3663496
    attr(,"family")
    [1] "SN"
    attr(,"parameters")
    attr(,"parameters")$xi
    [1] 0 0
    
    attr(,"parameters")$Omega
         [,1] [,2]
    [1,]    5    1
    [2,]    1    2
    
    attr(,"parameters")$alpha
    [1]  2 -2
    
    attr(,"parameters")$tau
    [1] 0
    

    2.3对数正态分布

    这块介绍如何生成一元和多元的对数正态分布随机数。生成对数正态分布的随机数的函数是rlnorm,多元对数正态用mvlognormal

    生成10个对数均值为0,对数标准差为1的对数随机数。
    > n = 10
    > rlnorm(n, meanlog = 0, sdlog = 1)
     [1] 1.5638173 0.7085567 0.9552697 0.7990129 0.3913724 2.3829746 2.7009141
     [8] 2.3251721 4.7090633 0.5284348
    
    mvlognormal(n, Mu, Sigma, R)
    # 生成10个 5维度的多元对数正态分布
    > n = 10
    > p = 5
    > Mu = runif(p, 0, 1)
    > mvlognormal(n, Mu, Sigma = rep(2, p), R = toeplitz(0.5^(0:(p-1))))
                [,1]       [,2]       [,3]       [,4]       [,5]
     [1,] 0.19001058 1.03046394 0.96453695 0.82259809 0.15816013
     [2,] 0.17443047 0.06155735 0.37621382 0.33498919 0.27119953
     [3,] 0.34553546 0.28509934 0.29120016 0.04141813 0.22553617
     [4,] 0.11498941 0.35994614 0.23380755 0.15672124 0.04621199
     [5,] 0.32452033 0.11553876 0.55283657 0.26637357 0.11062302
     [6,] 0.04953786 0.16264098 1.75032911 6.34862167 1.38340544
     [7,] 0.32886451 0.30378793 0.02375825 0.02375620 0.89213319
     [8,] 0.16846539 0.03653899 0.11298382 0.22751003 0.09530435
     [9,] 0.07762988 0.31748557 0.05862739 0.03529833 0.12301490
    [10,] 0.18367711 2.58261427 0.03078996 0.01153906 0.07951331
    > 
    

    写在最后的话

    希望可以帮助大家学习R语言。水平有限发现错误还望及时评论区指正,您的意见和批评是我不断前进的动力。

    更多相关内容
  • 一个金矿矿化的对数正态分布及指数函数波动特征,李俊英,李培良,本文从数理统计、三度空间分布等诸方面,研究描述了新城金矿床的品位、线金属量等矿化丰度特征。发现新城金矿焦家式矿体矿化数据
  • 对数正态分布(Log-Normal Distribution)

    万次阅读 多人点赞 2017-11-01 16:02:07
    2017.11.1 人要有发耻心和羞耻心,突然想到了这么一句...概率密度函数 局部期望 - 相关分布快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl + Q 插入链接 Ctrl + L 插入代码 Ctrl + K 插入图片 Ctrl + G 提升标题 Ctrl

    2017.11.1 人要有发耻心和羞耻心,突然想到了这么一句话,MARK一个博客

    困惑了好久,还是写个博客Mark一下,方便以后查询使用

    • 概率密度函数
    • 局部期望

    - 相关分布

    概率密度函数

    对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 Y 是正态分布的随机变量,则exp(Y)是对数正态分布;同样,如果 X 是对数正态分布,则ln(X)为正态分布,如果一个变量可以看成是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。 给定一个 x>0 ,对数正态分布的概率密度函数为:

    f(x;μ;σ)=12πxσe(lnxμ)22σ2

    其中, μ σ 分别是变量对数的平均值和标准差。期望值和方差分别为:
    E(X)=eμ+σ2/2

    var(X)=(eσ21)e2μ+σ2

    给定期望值与方差,也可以用这个关系求 μ σ 的大小
    μ=ln(E(X))12ln(1+var(X)E(X)2)
    σ2=ln(1+var(X)E(X)2)

    求解时,需要将 μ σ 计算出来带入到上面的 f(x;μ;σ) 中使用matlab带有的 logncdflognpdf获取对数正态分布的累积分布函数和密度函数。
    注解:已知变换后的数据的统计特征可以反过来推导出原始数据的统计特征,不存在数据信息的损失(对数转换后变量的均值可以直接由样本数据的均值得到,但不进行变化却需要由样本均值方法两方面去推断得到),参见: 机器学习小组知识点17 也可以发现对数正态分布实际上是对数据进行了对数变化,从而变成了正态分布,方便得到相关的统计学变量。

    局部期望

    随机变量 X 在阈值k上的局部期望定义为:

    g(k)=k(xk)f(x)dx

    其中 f(x) 是概率密度,对于对数正态概率密度,这个定义为:
    g(k)=exp(μ+σ2/2)Φ(ln(k)+μ+σ2σ)kΦ(ln(k)+μσ)

    其中 Φ 是标准正态分布的累积分布函数,对数正态分布的局部期望在经济领域应用广泛。

    相关分布

    这里指的是与高斯分布的关系
    如果 Y=ln(X) X LogN(μ,σ2) ,则 Y N(μ,σ2) 是正态分布.
    如果 Xm=LogN(μ,σ2m),m=1...n¯¯¯¯¯¯¯ 是有同样% μ 参数,而 σ 可能不同的统计独立对数正态分布变量,并且 Y=Nm=1Xm ,则 Y 也是正态分布变量:YLogN(nμ,nm=1σ2m),满足高斯分布求和性质。

    参数的最大似然估计

    为了确定对数正态分布参数 μ σ 最大似然估计,可以采用与正态分布参数最大似然估计同样的方法。

    fL(x;μ,σ)=1xfN(lnx;μ,σ)

    其中用 fL() 表示对数正态分布的概率密度函数,用 fN() 表示正态分布,因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:
    lL(μ,σ|x1,x2,,xn)=klnxk+lN(μ,σ|lnx1,lnx2,,lnxn)=constant+lN(μ,σ|lnx1,lnx2,,lnxn)

    由于第一项相对于 μ sigma 来说是常数,两个对数最大似然函数 lL lN 在同样的 μ σ 处有最大值。因此,根据正态分布最大似然参数估计器的公式以及上面的方程,推导出对数正态分布参数最大似然估计为:
    μ^=klnxkn,σ^2=(lnxkμ^)2n

    展开全文
  • 概率密度函数在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 XX 是正态分布的随机变量,则 exp(X)exp(X) 为对数正态分布;同样,如果Y Y 是对数正态分布,则 ln(Y)ln(Y) 为正态...

    这块儿我是真的没听说过,所以直接抄了维基百科,维基万岁!

    概率密度函数

    在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是正态分布的随机变量,则 exp(X)为对数正态分布;同样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。 对于 x>0 ,对数正态分布的概率密度函数为:

    f(x;μ,σ)=1xσ2πe(lnxμ)2/2σ2

    其中 μ σ 分别是变量对数的平均值与标准差。
    推导过程:概率微分不变性。
    一个正的随机变量 x 是对数正态分布,当且仅当 x 是正态分布。那么:
    N(lnx;μ,σ)=1σ2πexp[(lnxμ)22σ2].

    利用概率微分不变性,有
    N(lnx)dlnx=N(lnx)dlnxdxdx=N(lnx)dxx=lnN(x)dx,
    ,
    其中,
    lnN(x;μ,σ)=1xσ2πexp[(lnxμ)22σ2],  x>0

    是对数正态分布函数。

    期望和方差:

    期望为

    E(X)=eμ+σ2/2

    方差为
    var(X)=(eσ21)e2μ+σ2.

    给定期望值与方差,也可以用这个关系求 μ σ :
    μ=ln(E(X))12ln(1+var(X)E(X)2),

    σ2=ln(1+var(X)E(X)2).

    注意:已知变换后的数据的统计特征可以反过来推导出原始数据的统计特征,不存在数据信息的损失(可以看到对数转换后变量的均值可以直接由样本数据的均值得到,但不进行变化却需要由样本均值方差两方面去推断得到),也可以发现对数正态分布实际上是对数据进行了对数变化,从而变成了正态分布,这样更加方便的得到了相关的统计学变量。

    局部期望

    随机变量 X 在阈值 k 上的局部期望定义为

    g(k)=k(xk)f(x)dx

    其中 f(x) 是概率密度。对于对数正态概率密度,这个定义可以表示为
    g(k)=exp(μ+σ2/2)Φ(ln(k)+μ+σ2σ)kΦ(ln(k)+μσ)

    其中 Φ 是标准正态部分的累积分布函数。对数正态分布的局部期望在保险业及经济领域都有应用,著名的Black-Scholes期权定价公式便可由此推导出。

    相关分布(与高斯分布的关系)

    如果 Y=ln(X)Y=ln(X) XLog-N(μ,σ2) ,则 YN(μ,σ2) 是正态分布。
    如果 XmLog-N(μ,σ2m), m=1...n¯¯¯¯¯¯¯ 是有同样 μ 参数、而 σ 可能不同的统计独立对数正态分布变量 ,并且 Y=m=1nXm ,则 Y 也是对数正态分布变量: YLog-N(nμ,m=1nσ2m)

    这是因为在高斯分布求和的分布性质。

    在股票中的应用

    对数正态分布一般被用来描述增长率。比如股票指数,假设今天标普从2000点涨到了2020,相比于n年前的某一天它从100点涨到101点,虽然今天上涨了20点,远高于另一天上涨的1点,但这两天的上涨率是相同的(1%)。
    至于为什么要取对数log(x2/x1),而不是直接用x2/x1,看一眼对数曲线就明白了。(x1,x2分别表示第一天和第二天的股指)。
    它有几个很好的性质:
    1.假如增长率不变,那么log(1)=0,位于正态分布的中央
    2.log(1/a) = -log(a),也就是说股票在一段时间内涨到两倍和跌一半的概率是一样的
    3.x为正(股指永远不会为负值),y值能取正无穷到负无穷。

    展开全文
  • 正态分布(高斯分布)

    万次阅读 多人点赞 2018-11-09 15:54:21
    正态分布 概要 历史 正态分布的定义 概率密度函数 累积分布函数 生成函数 性质 动差或矩(moment) 中心极限定理 无限可分性 稳定性 标准偏差 相关分布 参量估计 参数的极大似然估计 计量误差 参考...

    Table of Contents

    正态分布

    概要

    历史

    正态分布的定义

    概率密度函数

    累积分布函数

    生成函数

    性质

    动差或矩(moment)

    中心极限定理

    无限可分性

    稳定性

    标准偏差

    相关分布

    参量估计

    参数的极大似然估计

    计量误差

    参考文献


    正态分布


    正态分布(英语:normal distribution)又名高斯分布(英语:Gaussian distribution),是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然社会科学来代表一个不明的随机变量。

                            X \sim N(\mu,\sigma^2),

    则其概率密度函数

                       f(x) = {1 \over \sigma\sqrt{2\pi} }\,e^{- {​{(x-\mu )^2 \over 2\sigma^2}}}

    正态分布的数学期望值或期望值\mu等于位置参数,决定了分布的位置;其方差\sigma^2的开平方或标准差\sigma等于尺度参数,决定了分布的幅度。

    正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线(类似于寺庙里的大钟,因此得名)。我们通常所说的标准正态分布是位置参数\mu =0,尺度参数\sigma^2 = 1的正态分布。

     

    概要

    正态分布是自然科学行为科学中的定量现象的一个方便模型。各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的,理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一种简单的证明)。正态分布出现在许多区域统计:例如,采样分布均值是近似地正态的,即使被采样的样本的原始群体分布并不服从正态分布。另外,正态分布信息熵在所有的已知均值及方差的分布中最大,这使得它作为一种均值以及方差已知的分布的自然选择。正态分布是在统计以及许多统计测试中最广泛应用的一类分布。在概率论,正态分布是几种连续以及离散分布的极限分布

    历史

    正态分布最早是棣莫弗在1718年著作的书籍的(Doctrine of Change),及1734年发表的一篇关于二项分布文章中提出的,当二项随机变量的位置参数n很大及形状参数p为1/2时,则所推导出二项分布的近似分布函数就是正态分布。拉普拉斯在1812年发表的《分析概率论》(Theorie Analytique des Probabilites)中对棣莫佛的结论作了扩展到二项分布的位置参数为n及形状参数为1>p>0时。现在这一结论通常被称为棣莫佛-拉普拉斯定理

    拉普拉斯在误差分析试验中使用了正态分布。勒让德于1805年引入最小二乘法这一重要方法;而高斯则宣称他早在1794年就使用了该方法,并通过假设误差服从正态分布给出了严格的证明。

    “钟形曲线”这个名字可以追溯到Jouffret他在1872年首次提出这个术语"钟形曲面",用来指代二元正态分布bivariate normal)。正态分布这个名字还被Charles S. PeirceFrancis GaltonWilhelm Lexis在1875分别独立地使用。这个术语是不幸的,因为它反映和鼓励了一种谬误,即很多概率分布都是正态的。(请参考下面的“实例”)

    这个分布被称为“正态”或者“高斯”正好是Stigler名字由来法则的一个例子,这个法则说“没有科学发现是以它最初的发现者命名的”。

    正态分布的定义

    有几种不同的方法用来说明一个随机变量。最直观的方法是概率密度函数,这种方法能够表示随机变量每个取值有多大的可能性。累积分布函数是一种概率上更加清楚的方法,请看下边的例子。还有一些其他的等价方法,例如cumulant、特征函数动差生成函数以及cumulant-生成函数。这些方法中有一些对于理论工作非常有用,但是不够直观。请参考关于概率分布的讨论。

    概率密度函数

                                               四个不同参数集的概率密度函数(红色线代表标准正态分布)

    正态分布概率密度函数均值为\mu 方差\sigma^2 (或标准差\sigma)是高斯函数的一个实例:

    f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \, \exp \left( -\frac{(x- \mu)^2}{2\sigma^2} \right)

    如果一个随机变量X服从这个分布,我们写作X ~ N(\mu, \sigma^2). 如果\mu =0并且\sigma =1,这个分布被称为标准正态分布,这个分布能够简化为

    f(x) = \frac{1}{\sqrt{2\pi}} \, \exp\left(-\frac{x^2}{2} \right)

     

    正态分布中一些值得注意的量:

    • 密度函数关于平均值对称
    • 平均值与它的众数(statistical mode)以及中位数(median)同一数值。
    • 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
    • 95.449974%的面积在平均数左右两个标准差2 \sigma的范围内。
    • 99.730020%的面积在平均数左右三个标准差3 \sigma的范围内。
    • 99.993666%的面积在平均数左右四个标准差4 \sigma的范围内。
    • 函数曲线的拐点(inflection point)为离平均数一个标准差距离的位置。

    累积分布函数

                                                                        上图所示的概率密度函数的累积分布函数

    累积分布函数是指随机变量X小于或等于x的概率,用概率密度函数表示为:

    F(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x  \exp  \left( -\frac{(t - \mu)^2}{2\sigma^2} \ \right)\, dt.

    正态分布的累积分布函数能够由一个叫做误差函数特殊函数表示:

    \Phi (z)={\frac  12}\left[1+\operatorname {erf}\left({\frac  {z-\mu }{\sigma {\sqrt  2}}}\right)\right].

    标准正态分布的累积分布函数习惯上记为\Phi,它仅仅是指\mu=0\sigma=1的值,

    \Phi(x) =F(x;0,1)= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{t^2}{2}\right) \, dt.

    将一般正态分布用误差函数表示的公式简化,可得:

    \Phi(z) = \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{z}{\sqrt{2}} \right) \right] .

    它的反函数被称为反误差函数,为:

    \Phi^{-1}(p) = \sqrt2 \; \operatorname{erf}^{-1} \left(2p - 1 \right) .

    该分位数函数有时也被称为probit函数。probit函数已被证明没有初等原函数。

    正态分布的分布函数\Phi(x)没有解析表达式,它的值可以通过数值积分泰勒级数或者渐进序列近似得到。


    生成函数

    矩母函数

    动差生成函数或矩生成函数或动差产生函数被定义为\exp(tX)的期望值。

    正态分布的动差产生函数如下:

     

    M_X(t)\,= \mathrm{E} \left(  e^{tX} \right)
     = \int_{-\infty}^{\infty}  \frac  {1}  {\sigma \sqrt{2\pi} }  e^{\left( -\frac{(x - \mu)^2}{2 \sigma^2} \right)}  e^{tx} \, dx
     = e^{ \left(  \mu t + \frac{\sigma^2 t^2}{2} \right)}

    可以通过在指数函数内配平方得到。

    特征函数

    特征函数被定义为\exp (i t X)期望值,其中i是虚数单位. 对于一个常态分布来讲,特征函数是:

    \phi_X(t;\mu,\sigma)\!= \mathrm{E} \left[  \exp(i t X) \right]
     = \int_{-\infty}^{\infty}  \frac{1}{\sigma \sqrt{2\pi}}  \exp  \left(- \frac{(x - \mu)^2}{2\sigma^2}  \right)  \exp(i t x) \, dx
     = \exp \left(  i \mu t - \frac{\sigma^2 t^2}{2} \right) .

    把矩生成函数中的t换成i t就能得到特征函数。

    性质

    正态分布的一些性质:

    1. 如果X \sim N(\mu, \sigma^2) \,ab实数,那么a X + b \sim N(a \mu + b, (a \sigma)^2) 
    2. 如果X \sim N(\mu_X, \sigma^2_X)Y \sim N(\mu_Y, \sigma^2_Y)统计独立的正态随机变量,那么:
      • 它们的和也满足正态分布U = X + Y \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y) 
      • 它们的差也满足正态分布V = X - Y \sim N(\mu_X - \mu_Y, \sigma^2_X + \sigma^2_Y).
      • UV两者是相互独立的。(要求X与Y的方差相等)
    3. 如果X \sim N(0, \sigma^2_X)Y \sim N(0, \sigma^2_Y)是独立正态随机变量,那么:
      • 它们的积X Y服从概率密度函数为p的分布

        p(z) = \frac{1}{\pi\,\sigma_X\,\sigma_Y} \; K_0\left(\frac{|z|}{\sigma_X\,\sigma_Y}\right),其中K_0是修正贝塞尔函数(modified Bessel function)

      • 它们的比符合柯西分布,满足X/Y \sim \mathrm{Cauchy}(0, \sigma_X/\sigma_Y).
    4. 如果X_1, \cdots, X_n为独立标准正态随机变量,那么X_1^2 + \cdots + X_n^2服从自由度为n卡方分布


    动差或矩(moment)

    一些正态分布的一阶动差如下:

    阶数原点矩中心矩累积量
    010 
    1\mu0\mu
    2\mu^2 + \sigma^2\sigma^2\sigma^2
    3\mu^3 + 3\mu\sigma^200
    4\mu^4 + 6 \mu^2 \sigma^2 + 3 \sigma^43 \sigma^40

    标准正态的所有二阶以上的累积量为零。


    中心极限定理

     

                正态分布的概率密度函数,参数为μ = 12,σ = 3,趋近于n = 48、p = 1/4的二项分布的概率质量函数。

    正态分布有一个非常重要的性质:在特定条件下,大量统计独立的随机变量的平均值的分布趋于正态分布,这就是中心极限定理。中心极限定理的重要意义在于,根据这一定理的结论,其他概率分布可以用正态分布作为近似。

    • 参数为np二项分布,在n相当大而且p接近0.5时近似于正态分布(有的参考书建议仅在n pn(1 - p)至少为5时才能使用这一近似)。

    近似正态分布平均数为\mu = n p且方差为\sigma^2 = n p (1 - p).

    • 泊松分布带有参数\lambda当取样样本数很大时将近似正态分布\lambda.

    近似正态分布平均数为\mu = \lambda且方差为\sigma^2 = \lambda.

    这些近似值是否完全充分正确取决于使用者的使用需求

    无限可分性

    正态分布是无限可分的概率分布。

    稳定性

    正态分布是严格稳定的概率分布。

    标准偏差

    深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%

    在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”。


    相关分布


    参量估计

    参数的极大似然估计

    多元正态分布协方差矩阵的估计的推导是比较难于理解的。它需要了解谱原理(spectral theorem)以及为什么把一个标量看做一个1×1矩阵(matrix)的迹(trace)而不仅仅是一个标量更合理的原因。


    计量误差

    饮料装填量不足与超量的概率[编辑]

    某饮料公司装瓶流程严谨,每罐饮料装填量符合平均600毫升,标准差3毫升的正态分配法则。随机选取一罐,求(1)容量超过605毫升的概率;(2)容量小于590毫升的概率。

    容量超过605毫升的概率 = p ( X > 605)= p ( ((X-μ) /σ) > ( (605 – 600) / 3) )= p ( Z > 5/3) = p( Z > 1.67) = 1 - 0.9525 = 0.0475

    容量小于590毫升的概率 = p (X < 590) = p ( ((X-μ) /σ) < ( (590 – 600) / 3) )= p ( Z < -10/3) = p( Z < -3.33) = 0.0004

    6-标准差(6-sigma或6-σ)的品质管制标准

    6-标准差(6-sigma或6-σ),是制造业流行的品质管制标准。在这个标准之下,一个标准正态分配的变量值出现在正负三个标准差之外,只有2* 0.0013= 0.0026 (p (Z < -3) = 0.0013以及p(Z > 3) = 0.0013)。也就是说,这种品质管制标准的产品不良率只有万分之二十六。假设例中的饮料公司装瓶流程采用这个标准,而每罐饮料装填量符合平均600毫升,标准差3毫升的正态分配。那么预期装填容量的范围应该多少?

    6-标准差的范围 = p ( -3 < Z < 3)= p ( - 3 < (X-μ) /σ < 3) = p ( -3 < (X- 600) / 3 < 3)= p ( -9 < X – 600 < 9) = p (591 < X < 609) 因此,预期装填容量应该介于591至609毫升之间。


    参考文献

    1.  Normal Distribution, Gale Encyclopedia of Psychology
    2. Casella & Berger (2001, p. 102)
    3. Shaou-Gang Miaou; Jin-Syan Chou. 《Fundamentals of probability and statistics》. 高立图书. 2012: 第147页. ISBN 9789864128990.
    展开全文
  • np.log1p()取对数符合正态分布

    千次阅读 2021-03-13 00:05:21
    机器学习算法中,一些算法要求数据符合正态分布,但是对于一些标签和特征来说,分布不一定符合正态分布, 我们可以用np.log1p(x),即取对数,这样可以使得数据在一定程度上符合正态分布特征。(正态分布(Normal ...
  • 正态分布 高斯分布(数学)

    千次阅读 2020-04-26 20:57:49
    正态分布(Normal distribution),也称高斯分布... 3正态分布的主要特征 4正态分布的应用 5数据正态分布检验 Q-Q图[1] 6参考文献 [编辑] 什么是正态分布  正态分布是一种概率分布...
  • 几张图帮助快速了解内容 ... 特征处理之使数据分布逼近正态分布 在机器学习和深度学习中,我们经常要对输入的数据做归一化或者在隐藏层使用Batch-Normlization...
  • 机器学习系列(二)多元正态分布

    千次阅读 2021-03-07 11:11:14
    ,则其概率密度函数为:整个分布可以仅用均值及方差来刻画如果变量之间不相关,则它们相互独立经典统计检验通常基于正态分布假设正态分布可以模拟大量自然现象多元正态分布多元正态分布密度函数类比于一元情况,...
  • 与离散型随机变量相对,连续...正态分布可能是定量研究工作中应用最广泛的连续概率分布。它在现代投资组合理论和许多风险管理技术中发挥着关键作用。因为它有很多用途,所以是投资专业人士必备知识。正态分布在统...
  • 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量X服从一个数学期望为μ、标准...
  • 前言 在机器学习和深度学习中...然而无论做归一化还是BN处理,虽然将数据的均值变为0,方差变为1,但是数据的整体分布并不一定服从标准的正态分布(实际数据大部分时候都不会是),做归一化和BN时,我们求出来的均值...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技...为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式来介绍正态分布。 在机器学习的世界中...
  • 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量X服从一个数学期望为μ、标准...
  • 概要性介绍正态分布并给出基于python/scikit-learn的代码示例实验
  • -在前面的文章中讲过,很多模型的假设条件都是数据是服从正态分布的。这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。描述统计方法描述统计就是用描述的数字或图表...
  • 连续型变量 如:正态分布 离散型变量 如:二项分布、泊松分布 三者之间的关系 二项分布(Binomial distribution) 二项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布,记作。伯努利试验是...
  • 正态分布(normal distribution)什么是正态分布编辑本段回目录正态分布是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机...
  • java正态分布的运用

    千次阅读 2019-07-19 10:26:29
    1正态分布描述 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre(棣莫弗)于1733年受次提出的,但由于德国数学家Gauss(高斯)率先将其应用于天文学家研究,故正态分布又叫高斯分布...
  • 如何判断数据是否符合正态分布

    千次阅读 2020-12-20 23:14:59
    原标题:如何判断数据是否符合正态分布?在前面的文章中讲过,很多模型的假设条件都是数据是服从正态分布的。这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。描述...
  • 在机器学习的世界中,以概率分布为核心的研究大都聚焦于正态分布。本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在数据科学和机器学习领域,它几乎无处不在。我将会从基础概念出发,解释有关正态...
  • 在统计学上,我们会遇到一些常见的分布,除了正态分布外,,如t检验对应的t分布,检验对应的分布,方差分析对应的F分布等。这些分布是统计学的基础,在假设检验、方差分析等领域都起着至关重要的作用。在此,我们对...
  • 正态分布(normal distribution)[编辑]什么是正态分布正态分布是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差...
  • 1、0-1损失函数(zero-one Loss Function):无法优化 L(y,f(x))={1,y≠f(x)0,y=f(x)L(y, f(x)) = \begin{cases} 1, & {y \neq f(x) } \\ 0, & {y = f(x)} \end{cases}L(y,f(x))={1,0,​y​=f(x)y=f(x)​ ...
  • 对数正态分布 如果 Y  =  e X 并且 X ∼ N (μ,σ2). 与 Lévy skew alpha-stable分布 相关:如果因而. 截断正态分布 .如果, 在 A 以下和 B 以上截取 X  将产生一个平均值这里,φ是一个标准正态随机变量...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技大本营(ID: rgznai100)为什么正态分布如此特殊?为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式...
  • 导读:为什么正态分布如此特殊?为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式来介绍正态分布。在机器学习的世界中,以概率分...
  • 作者 | Farhad Malik译者 | Monanfei责编 | 夕颜出品 | AI科技大本营(ID: rgznai100)为什么正态分布如此特殊?为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式...
  • 概率论:高斯/正态分布

    万次阅读 多人点赞 2015-10-30 20:31:21
    正态分布(高斯分布) 若随机变量X服从一个数学期望为μ、方差为σ...其概率密度函数正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。 正态随机变量概率密度函数 [正态分布- 维基百科] 皮皮blog

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 8,816
精华内容 3,526
热门标签
关键字:

对数正态分布的特征函数