精华内容
下载资源
问答
  • 对数函数

    万次阅读 2019-11-10 22:27:37
    一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。 对数函数是6类基本初等函数之一。其中对数的定义: 如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为...

    简介

    一般地,对数函数是以真数)为自变量,指数为因变量,底数为常量的函数。

    对数函数是6类基本初等函数之一。其中对数的定义:

    如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数

    一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

    其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

    实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。

    对数函数对数函数

    对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】

    通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:

    当a>0,a≠1时,aX=N

     X=logaN。(N>0)

    指数函数与对数函数的这个关系,可以得到关于对数的如下结论:

    实数范围内,负数没有对数;

      ,log以a为底1的对数为0(a为常数) 恒过点(1,0)。

    有理和无理指数

    如果  是正整数,   表示等于  的

     个因子的加减:

    加减加减

    但是,如果是   不等于1的正实数,这个定义可以扩展到在一个域中的任何实数  (参见)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数   ,有一个对数函数和一个指数函数,它们互为反函数。

    对数可以简化乘法运算为加法,除法为减法幂运算乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

    复对数

    复对数计算公式

    复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。

    产生历史

    编辑

    16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 [1]  。

    德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。

    欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之),可惜史提非并未作进一步探索,没有引入对数的概念。

    纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。在他的1619年发表《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳

    对数的图像对数的图像

    皮尔对数,记为Nap.㏒x,它与自然对数的关系为:

    Nap.㏒x=10㏑(107/x)

    由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。

    瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。

    英国的布里格斯在1624年创造了常用对数。

    1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。

    对数的发明为当时社会的发展起了重要的影响,简化了行星轨道运算问题。正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。 又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。

    最早传入我国的对数著作是《比例对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫真数,0.3010叫做假数,真数与假数对列成表,故称对数表。后来改用假数对数」。

    我国清代的数学家戴煦(1805-1860)发展了多种求对数的捷法,著有《对数》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905)看到这些著作后,大为叹服。

    当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和21世纪的教科书中的提法一致。

    函数性质

    编辑

    定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1

    和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}

    值域实数集R,显然对数函数无界;

    定点对数函数的函数图像恒过定点(1,0);

    单调性a>1时,在定义域上为单调增函数;

    0<a<1时,在定义域上为单调减函数;

    奇偶性非奇非偶函数

    周期性不是周期函数

    对称性:无

    最值:无

    零点:x=1

    注意:负数和0没有对数

    两句经典话:底真同对数正,底真异对数负。解释如下:

    也就是说:若y=logab (其中a>0,a≠1,b>0)

    当0<a<1, 0<b<1时,y=logab>0;

    当a>1, b>1时,y=logab>0;

    当0<a<1, b>1时,y=logab<0;

    当a>1, 0<b<1时,y=logab<0。

    公式推导

    编辑

    e的定义:

    设a>0,a≠1

    方法一: 

    指数函数指数函数

    特殊地,当   时,

        。

    方法二:

      ,两边取对数ln y=xln a

     

    两边对x求导:y'/y=ln a,y'=yln a=a^xln a

    特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。

    eº=1

    运算性质

    编辑

    性质

    一般地,如果a(a>0,且a≠1)的b次等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数

    底数则要>0且≠1 真数>0

    并且,在比较两个函数值时:

    如果底数一样,真数越大,函数值越大。(a>1时)

    如果底数一样,真数越小,函数值越大。(0<a<1时)

    当a>0且a≠1时,M>0,N>0,那么:

    对数函数化简问题对数函数化简问题

    和差

    和差和差

    换底公式

    换底公式换底公式

    推导:设

    换底公式换底公式

    所以

    换底公式换底公式

    两边取对数,则有

    换底公式换底公式

    换底公式换底公式

    又因为

    换底公式换底公式

    所以

    换底公式换底公式

    指系

    指系指系

    互换

    互换互换

    倒数

    倒数倒数

    链式

    链式链式 [2]

    表达方式

    编辑

    (1)常用对数:lg(b)=log10b(10为底数)。

    (2)自然对数:ln(b)=logeb(e为底数)。

    e为无限不循环小数,通常情况下只取e=2.71828。

    与指数的关系

    编辑

    同底的对数函数与指数函数互为反函数。

    当a>0且a≠1时,ax=N

     x=㏒aN。

    关于y=x对称

    对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。

    可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为

    展开全文
  • 指数函数,幂函数,对数函数

    千次阅读 2019-09-14 15:19:25
    指数函数,幂函数,对数函数为高等数学中的初等函数 指数函数 指数函数公式为,其函数增长性如下: 指数函数的单调性是递增的,当x=0时,不管a为任何值,其值为...对数函数表达式为:,其函数图像为如下: 当...

    指数函数,幂函数,对数函数为高等数学中的初等函数

    指数函数

    指数函数公式为y=a^{x},其函数增长性如下:

     指数函数的单调性是递增的,当x=0时,不管a为任何值,其值为1。当a大于1时,随着a越大,其函数值增长越快 

    在x>0部分,a>b其y值也是随着f_{a}(x)>f_{b}(x)

    在x<0部分 当a>b是,其f_{a}(x)<f_{b}(x)<1

    对数函数

    对数函数表达式为:y=log_{a}x,其函数图像为如下:

    当x等于1时 y为0,

    当x<1时,其y值小于0

    当x >1时,其值大于0

    对数函数为单调递增的,当a>1时,随着地鼠a越小,其函数增长值越快

    当x> 1时, a<b,f_{a}(x)>f_{b}(x)

    当x<1时, a<b ,f_{a}(x)<f_{b}(x)

     幂函数

    幂函数表达式为y=x^{n},其图像如图:

    对数函数为单调递增的,当n大于1时且x大于1时, n越大其函数值越大

    比较三个函数y=2^{x},y=x^{2},y=log_{2}x增长快慢

     

     y=log_{2}x增长最慢,幂函数y=x^{2}和指数函数y=2^{x}快慢交替进行

    在x(0.2)区间,幂函数比指函数增长较快

    在(4,+\propto)指数函数比幂函数增长较快

    展开全文
  • 对数函数及运算

    千次阅读 2018-01-29 18:36:58
    一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。 对数函数是6类基本初等函数之一。其中对数的定义: 如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为...
    一般地,对数函数以 真数)为 自变量,指数为 因变量,底数为 常量的函数。
    对数函数是6类 基本初等函数之一。其中 对数的定义:
    如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log aN,读作以a为底N的 对数,其中a叫做对数的 底数,N叫做 真数
    一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以 真数)为 自变量,指数为 因变量,底数为 常量的函数,叫对数函数。
    其中x是自变量,函数的 定义域是(0,+∞),即x>0。它实际上就是 指数函数反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
    log”是 拉丁文logarithm(对数)的缩写。

    实际应用
    实数 域中,真数式子没 根号 那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数), 底数 则要大于0且不为1。
    对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义: log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切 实数(比如log 11也可以等于2,3,4,5,等等)】
    通常我们将以10为底的对数叫 常用对数(common logarithm),并把log 10N记为lgN。另外,在科学计数中常使用以 无理数e=2.71828···为底数的对数,以e为底的 对数称为 自然对数 (natural logarithm),并且把 logeN 记为 In N。根据对数的定义,可以得到对数与 指数间的关系:
    当a>0,a≠1时,a X=N
       
    X= logaN。(N>0)
    指数函数与对数函数的这个关系,可以得到关于对数的如下结论:
    实数范围内, 负数没有对数;
     
    ,log以a为底1的对数为0(a为常数) 恒过点(1,0)。
    有理和无理指数
    如果
       
    是正整数,
       
    表示等于
       
       
    个因子的加减:
    但是,如果是
       
    不等于1的正实数,这个定义可以扩展到在一个域中的任何实数
       
    (参见 )。类似的,对数函数可以定义于任何 正实数。对于不等于1的每个正 底数
       
    ,有一个对数函数和一个 指数函数,它们互为反函数。
    对数可以简化 乘法运算为 加法,除法为 减法幂运算乘法,根运算为 除法。所以,在发明 电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。
    复对数
    复对数计算公式
    复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。
    历史
    16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 [1]   。
    德国的史蒂非(1487-1567)在1544年所著的《 整数算术》中,写出了两个 数列,左边是 等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。
    欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之 ),可惜史提非并未作进一步探索,没有引入对数的概念。
    纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」, 化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求 球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。在他的1619年发表《奇妙的 对数表的描述》中阐明了对数原理,后人称为 纳
    对数的图像 对数的图像
    皮尔对数,记为Nap.㏒x,它与自然对数的关系为:
    Nap.㏒x=10㏑(107/x)
    由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。
    瑞士的彪奇(1552-1632)也独立地发现了 对数,可能比纳皮尔较早,但发表较迟(1620)。
    英国的 布里格斯在1624年创造了常用对数。
    1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。
    对数的发明为当时社会的发展起了重要的影响,简化了行星轨道运算问题。正如科学家 伽利略(1564-1642)说:「给我时间, 空间和对数,我可以创造出一个宇宙」。 又如十八世纪数学家 拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。
    最早传入我国的对数著作是《比例 对数》,它是由波兰的 穆尼斯(1611-1656)和我国的 薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫 真数,0.3010叫做 假数,真数与假数对列成表,故称对数表。后来改用 假数对数」。
    当今中学数学教科书是先讲「 指数」,后以 反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年,J.威廉(1675-1749)在给G.威廉的《 对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《 无穷小分析寻论》(1748)中明确提出对数函数是 指数函数的逆函数,和21世纪的教科书中的提法一致。

    函数性质

    编辑
    定义域 求解:对数函数y=log ax 的定义域是{x 丨x>0},但如果遇到对数型 复合函数的定义域的求解,除了要注意大于0以外,还应注意 底数大于0且不等于1,如求函数y=log x(2x-1)的定义域,需同时满足x>0且x≠1
    和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
    值域 实数集R,显然对数函数无界;
    定点 对数函数的函数图像恒过定点(1,0);
    单调性 a>1时,在定义域上为单调增函数;
    0<a<1时,在 定义域上为单调减函数;
    对称性:无
    最值:无
    零点:x=1
    注意: 负数和0没有对数
    两句经典话: 底真同对数正,底真异对数负。解释如下:
    也就是说:若y=log ab (其中a>0,a≠1,b>0)
    当0<a<1, 0<b<1时,y=log ab>0;
    当a>1, b>1时,y=log ab>0;
    当0<a<1, b>1时,y=log ab<0;
    当a>1, 0<b<1时,y=log ab<0。

    公式推导

    编辑
    e的定义:
    设a>0,a≠1
    方法一:
    指数函数 指数函数
    特殊地,当
       
    时,
       
    方法二:
       
    ,两边取对数ln y=xln a
    两边对x求导:y'/y=ln a,y'=yln a=a^xln a
    特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。
    eº=1

    运算性质

    编辑
    一般地,如果a(a>0
    对数函数化简问题 对数函数化简问题
    ,且a≠1)的b次 等于N,那么数b叫做以a为底N的对数,记作log aN=b,其中a叫做对数的 底数,N叫做 真数
    底数则要>0且≠1 真数>0
    并且,在比较两个函数值时:
    如果 底数一样, 真数越大, 函数值越大。(a>1时)
    如果底数一样,真数越小,函数值越大。(0<a<1时)
    当a>0且a≠1时,M>0,N>0,那么:

    和差

    换底公式

    推导:设
    所以
    两边取对数,则有
    又因为
    所以

    指系

    还原

    互换

    倒数

    链式

    表达方式

    编辑
    (1)常用对数:lg(b)=log 10b(10为底数)
    (2)自然对数:ln(b)=log eb(e为底数)
    e为 无限不循环小数,通常情况下只取e=2.71828

    与指数的关系

    编辑
    同底的对数函数与 指数函数互为反函数。
    当a>0且a≠1时,a x=N
       
    x=㏒ aN。
    关于y=x 对称
    对数函数的一般形式为 y=㏒ ax,它实际上就是指数函数的 反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a y。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
    可以看到,对数函数的图形只不过是指数函数的图形的关于 直线y=x的 对称图形,因为它们互为 反函数
    词条图册 更多图册
    词条图片


    展开全文
  • 对数正态lognormal分布图像

    万次阅读 2015-12-15 19:16:04
    在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是服从正态分布的随机变量,则 exp(X) 服从对数正态分布;同样,如果 Y 服从对数正态分布...设ξ服从对数正态分布,其密度函数
    在概率论与统计学中, 对数正态分布是对数为正态分布的任意随机变量的概率分布。如果  X 是服从正态分布的随机变量,则 exp( X) 服从对数正态分布;同样,如果  Y 服从对数正态分布,则 ln( Y) 服从正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
    设ξ服从对数正态分布,其密度函数为:
    对数正态分布的密度函数
    clc,clear,close all
    warning off
    feature jit off
    im = imread('coloredChips.png');
    Z1 = imnoise_lognormal(size(im,1),size(im,2),2,3);
    Z1 = uint8(Z1);   % 类型转换
    figure('color',[1,1,1]),
    im(:,:,1) = im(:,:,1) + Z1;  % R
    im(:,:,2) = im(:,:,2) + Z1;  % G
    im(:,:,3) = im(:,:,3) + Z1;  % B
    subplot(121); imshow(im);title('加对数正态分布噪声图像')
    subplot(122); imhist(Z1); title('加对数正态分布噪声图像直方图')
    

    function R = imnoise_lognormal(M, N, a,b)
    % input:
    %       对数正态lognormal分布,噪声的类型;
    %       M,N:输出噪声图像矩阵的大小
    %       a,b:各种噪声的分布参数
    % output:
    %       R: 输出的噪声图像矩阵,数据类型为double型
    % 设定默认值
       % 产生对数正态分布噪声
       if nargin <= 3
          a = 1; b = 0.25;
       end
       x = log(randn(M, N));
       R = a*exp(b*x);
    end


    展开全文
  • 由电场E-X图像可以得到1、纵轴表示电场强度的大小、方向2、横轴表示距离3、根据图像可以确定电场强度随距离的变化情况,斜率k=0是匀强电场,k≠0是变化的电场4、.你这是什么意思? 是e*x还是e^x(e的x方)在同一平面...
  • Matlab图像处理函数大全(建议收藏)

    千次阅读 多人点赞 2020-12-11 20:32:01
    文章目录第1章: 图像显示与图像文件输入输出函数第2章: 图形绘制第3章: 图像类型和类型转换第4章: 图形用户界面工具第5章: 空间变换和图像配准第6章: 图像分析和统计第7章: 图像代数运算第8章: 图像增强第9...
  • 一、基本初等函数图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与...
  • 数字图像处理,Matlab常用图像处理函数汇总

    万次阅读 多人点赞 2016-03-03 14:39:15
    原文地址:Matlab图像处理函数汇总 作者:mimi 图像的变换  ① fft2:fft2函数用于数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字图像的二维傅立叶反变换,如...
  • matlab图像处理常用函数大全

    万次阅读 多人点赞 2018-07-16 16:03:34
    显示索引图像和灰度图像&gt;&gt; [X,map]=imread('trees.tif');&gt;&gt; gmap=rgb2gray(map);&...利用膨胀函数平移图像I = imread('football.jpg');se = translate(strel(1), [...
  • Matlab 常用图像函数

    千次阅读 2012-05-02 23:38:17
    imread函数用于读入各种图像文件,如:a=imread('e:\w01.tif') 注:计算机E盘上要有w01相应的.tif文件。 2 imwrite imwrite函数用于写入图像文件,如:imwrite(a,'e:\w02.tif',’tif’) 3 imfinfo imfinfo函数...
  • MATLAB图像处理常用函数

    千次阅读 2020-02-28 19:28:03
    MATLAB图像处理常用函数 作者:陈若愚 日期:2020年2月28日 QQ:2389388826 一、基本操作: 1. 显示索引图像和灰度图像 [X,map]=imread('trees.tif'); gmap=rgb2gray(map); figure,imshow(X,map); figure,imshow(X...
  • cvLoadImage:将图像文件加载至内存; cvNamedWindow:在屏幕上创建一个窗口; cvDestroyWindow:销毁显示图像文件的窗口; cvDestroyAllWindows:销毁显示图像文件的所有窗口; cvShowImage:在一个已创建好的窗口...
  • Matlab图像处理函数汇总

    千次阅读 2015-05-21 21:20:58
    ① fft2:fft2函数用于数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字图像的二维傅立叶反变换,如:  i=imread('104_8.tif');  j=fft2(i); k=ifft2(j); 2、...
  • OpenCV图像处理和图像识别常用函数

    千次阅读 2014-10-16 10:47:44
    1、cvLoadImage:将图像文件加载至内存 2、cvNamedWindow:在屏幕上创建一个窗口 3、cvShowImage:在一个已创建好的窗口中显示图像 4、cvWaitKey:使程序暂停,等待用户触发一个按键操作 5、...
  • 函数图像是高考的必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了,再去画图像,不是这里错,就是那里有问题,图像也画的...
  • 空间域处理是直接对像素进行操作的方法,这是相对于频率域处理而言的...常用的基本函数有三类:线性函数,对数函数(对数和反对数)和幂律函数(n次幂和n次根) 1、对数变换 对数变换将图像的低灰度值部分扩展,...
  • Intel IPP图像库手册函数概述

    万次阅读 2016-08-08 16:42:27
    本文主要是基于IPP 9.0.3版本的使用手册进行提取编辑,简单介绍了,IPP图像库中的函数,从本文可以了解到IPP图像库中到底都有哪些函数,以及其基本功能。欢迎关注微信公众号“智能算法”!
  • matlab图像处理函数大全

    千次阅读 2014-07-02 16:41:51
    matlab图像处理函数大全 1、图像的变换   ① fft2:fft2函数用于数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字图像的二维傅立...
  • Matlab中图像函数大全

    千次阅读 2014-05-16 15:45:44
    Matlab中图像函数大全2008-04-17 22:40Matlab常用图像操作 一. 读写图像文件 1. imread imread函数用于读入各种图像文件,如:a=imread('e:\w01.tif') 注:计算机E盘上要有w01相应的.tif文件。 2. ...
  • 本文详细介绍了OpenCV-Python图像的加减乘除幂开方对数及位运算相关的函数及语法,并总结了相关函数的作用。OpenCV中图像存储为矩阵,因此图像的运算其实就是矩阵的运算。图像的运算主要包括图像基础算术运算、图像...
  • opencv图像处理常用函数

    千次阅读 2017-02-05 13:45:45
    opencv图像处理常用函数
  • 图像处理和图像识别中常用的OpenCV函数
  • Matlab 常用的图像处理函数

    千次阅读 2012-01-20 11:55:22
    imread函数用于读入各种图像文件,如:a=imread('e:\w01.tif') 注:计算机E盘上要有w01相应的.tif文件。 2. imwrite imwrite函数用于写入图像文件,如:imwrite(a,'e:\w02.tif',’tif’) 3. imfinfo
  • OpenCV_常用图像处理函数与功能注释

    千次阅读 2015-04-10 10:46:19
    1、cvLoadImage:将图像文件加载至内存;  2、cvNamedWindow:在屏幕上创建一个窗口;  3、cvShowImage:在一个已创建好的窗口中显示图像;  4、cvWaitKey:使程序暂停,等待用户触发一个按键操作;  5、...
  • 数字图像处理:对数变换

    千次阅读 2019-05-07 17:04:48
    设置窗口大小函数: namedWindow("窗口名", 0); resizeWindow("窗口名", width, height); #include <iostream> #include <cmath> #include <opencv2/core/core.hpp> #include <opencv2/...
  • Matlab学习-图像处理工具箱函数

    千次阅读 2013-11-28 10:22:29
    下列表格中除了个别函数外,其余函数都是图像处理工具箱提供的关于图像处理的函数,现摘录到此以备查找。 表1 图像显示 函数名 功能说明 函数名 功能说明 colorbar 颜色条显示 montage 按矩形剪辑方式显示多帧...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 16,904
精华内容 6,761
关键字:

对数函数大小比较图像