精华内容
下载资源
问答
  • https://blog.csdn.net/chengbinbbs/article/details/78640589
    展开全文
  • 主要介绍了C#对称加密与非对称加密实例,详细分析了对称加密与非对称加密原理与具体实现方法,具有一定的实用价值,需要的朋友可以参考下
  • 浙江邮电工程建设有限公司大数据研究院 ——段兴才 众所周知数据对于一个公司来说,非常重要,一旦数据泄露... 对称加密是指加密和解密使用相同密钥的加密算法,常见的对称加密算法有DES,DES3,AES加密算法。对称加密...

    f50c9aba61e23b391959b1e429e53c13.png

    浙江邮电工程建设有限公司大数据研究院 ——段兴才

    众所周知数据对于一个公司来说,非常重要,一旦数据泄露,公司将面临非常大的威胁,数据加密非常重要。

    对称加密是指加密和解密使用相同密钥的加密算法,常见的对称加密算法有DES,DES3,AES加密算法。对称加密由于其加解密速度快,常被用于大量的数据加密场景,还有对传输效率要求高的场景如VPN之间的传输,但是由于其密匙不方便保存,所以适合于内部系统。

    1 DES加密算法

    DES加密算法是一种分组加密算法,通过将输入的明文按64位一组,进行分组加,加密过程分为初始置换明文,分组明文,生成子密匙,密匙与明文加密,经过S盒替(如表1.14所示),P盒替换(如图1.16所示),置换后的密文与原32位明文加密。具体流程图如下图1.1 DES加密流程图

    af3c8fcb82e1bf24f4d85883d21ea430.png

    图1.1 DES流程图

    初始置换:初始置换是只将输入的64位明文,按照一个置换表进行置换位置,具体置换规则:初始数据里面的64是1号位,置换表的1则到了第40这个位置,那么64置换之后就到了第40这个位置、63是原来的2号位,在置换表里面是第8号位,所以63经过置换表则到了第8位,其他的位置执行同样的操作,具体操作如表1.1,表1.2,表1.3:

    表1.1 初始数据表

    13d82a71efd64b124e9f2a1ecdce77ad.png

    表1.2 置换表

    9425314dc4771094f20d6e9a66e59e95.png

    表1.3 置换后数据

    a7f29b3ea20f8aeb3c2babc2e470f63a.png

    拿到置换后的数据后,将明文分组左右两组。将初始置换之后的数据按前32位为左边L0,后32位为右边R0。具体分组如表1.4,1.5.

    表1.4 左边L0

    281f6c511e7c42bb76a335a10ab64ea9.png

    表1.5 右边R0

    c937079a37426890f96fda22e1b7d405.png

    主密匙是用户定义的一个密匙,将一个主密匙生成16个子密匙,每一次操作用一个密匙。用户设置的一个64位key,我们将其忽略第8,16,24,32,40,48,56,64奇偶检验位。得到一个56位key,将其进行移位操作,再进行压缩置换就得到具体加密的KEY。具体操作如表1.6 所示

    表1.6 移位操作是移位表

    79a68954d345d9c14c98d9af08e3da9d.png

    从表中我们可以知道,第一轮是左移一位,第三轮是左移两位,后面一堆位数安按照1.6所示即可。具体移位如表1.7,表1.8

    表1.7 主密匙表

    fb6bd49bf94c70fc6fc3b4fabc5f28de.png

    表1.8 左移一位后的密匙

    fc42b6a1060a55e2ef48eac506b92ab2.png

    移位之后进行压缩置换,将56位的密匙进行48位的置换表置换,得到48位密匙舍去8位,如表1.9,1.10,表1.11所示

    表1.9 密匙

    2c12d40b53acef6192a973c51d9a6519.png

    表1.10 48位置换表

    3f8fed2ed85d36ba2c9a4bb5c922d5a4.png

    表1.11 置换之后得到的数据KEY1

    7d9e5b919b411125d05274b1b0a3d5dd.png

    得到48位密匙后,因为明文分组是32位,所以对明文进行扩充置换成48位,以下操作是对明文进行扩充置换,对于扩充后的明文我们可以发现,他中间四列是原来的明文,并没有修改,增加的第一列是原明文的最后一列从倒数排列,新添加的第后一列,则是第一列的倒数。具体如表1.12,表1.13所示。

    表1.12 左边明文L0

    eb0bbeda7c523bc8f24daca3a030353e.png

    表1.13 扩充之后的明文L0

    bf9fb4e14afe9ce003067840ef9ea90d.png

    现在得到48位密匙和48位数据,就可以进行异或加密操作了。异或操作后面拿到的数据是加密后的数据,我们对此数据进行S盒替换和P盒替换。

    S盒替换是将48位的数,分组8组,一组6位,进入S盒,一个S盒6位输入4位输出,及48位出入,进入8个S盒输出只有32位。具体替换如表1.14。

    表1.14 S0盒:

    b21b2f79d15e36a98aeed8be83828dce.png

    例如:输入为101110 那么他的第一位和最后一位组合10转换位10进制则为2及第2行,中间四为0111转为10进制及为7及第7列,所以第2行,第7列及为2转为2进制及为0010,所以输入101110,输出0010,S盒替换完成。经过S盒换以后就要经过P盒替换了,具体替换过程如下表1.15,1.16,1.17所示

    表1.15 S盒替换后的数据

    f09763264f77c4d4e33068fa0cd11db5.png

    表1.16 P盒

    801f43b7a3840e0d34f21714250484ce.png

    表1.17 P盒置换后的数据

    de0bfea1a3b949b9ac020c487e49b41f.png

    现在我们已经拿到P盒置换后的数据了,再跟我们第一次分组生成的32位左边的数据进行异或操作,这次拿到的数据就是我们第一轮加密后的数据,再进行左右互换,进行同样的加密操作,连续操作16次,加密就算完成了。

    加密完成了,接下来就是解密了,解密和加密是同样的操作,输入64位明文,进行初始置换,将KEY倒着进行加密,密匙移位,加密是向左移,那么解密就是向右移,执行同样的操作就可以解密进行解密操作。

    2 AES加密算法

    AES加密算法是分组加密,每一组是16字节,是目前主流的高级加密算法。他的加密过程主要分为密匙轮询,字节替代,行移动,列混合,密匙加轮…….以上操作重复10次,输出的即是加密的数据,具体流程图如1.2所示

    f74849337353b5ff3db5b6ee7b5e9fed.png

    图2.1 AES加密流程图

    密匙加轮:用密匙与原文进行异或操作,原文是128位,密文也是128位,首先将主密匙与原文进行异或操作,后面再用主密匙生成40位子密匙。密匙生成过程如下所示:

    KEY = 3C A1 0B 21 57 F0 19 16 90 2E 13 80 AC C1 07 BD

    初始密匙:

    W[0]=3C A1 0B 21
    W[1]=57 F0 19 16
    W[2]=90 2E 13 80
    W[3]=AC C1 07 BD

    生成密匙算法:
    1.如果i不是4的倍数,那么第i列用如下公式:
    W[i]=W[i-4] XOR W[i-1] (XOR表示异或的意思,下同)
    2.如果i是4的倍数,那么第i列用如下公式:
    W[i]=W[i-4] XOR T(W[i-1])
    解释一下T()函数:由三部分组成,字循环,字节替代,轮常量代替异或。
    a.字循环:将1个字中的4个字节循环左移1个字节。即将输入字[a0, a1, a2, a3]变换成 [a1,a2,a3,a0]。
    b.字节代换:对字循环的结果使用S盒进行字节代换(具体S盒如图2.2所示)。
    c.轮常量异或:将前两步的结果同轮常量进行异或。具体如表2.1所示

    表2.1 轮询常量表

    21c283e78b7c9385e3c03c50ac147a7e.png

    例如:

    初始密匙

    W[0]=3C A1 0B 21
    W[1]=57 F0 19 16
    W[2]=90 2E 13 80
    W[3]=AC C1 07 BD

    计算W[4],W[5],W[6],W[7]

    求W[4]的时候,因为4是4的倍数,所以,我们先要求T(W[3])

    W[3]= AC C1 07 BD

    左移一位 得到 C1 07 BD AC

    进入S和字节替换

    进S盒替换时,例如替换C1,C则是行,1则是列,找到第C行第1列即可以找到替换的数字(16进制的数),S盒具体如图1.3所示

    94549be86b041a6fb09f178ad664735d.png

    图2.2 S盒

    C1在S盒中对应78,

    07在S盒中对应C5

    BD在S盒中对应7A

    AC在S盒中对应 91

    所以经过第二步S盒替换变成了78,C5,7A,91

    (3).将78 C5 7A 91 XOR 01 00 00 00 = 79 C5 7A 91

    所以计算密匙如下:

    W[4]= W[0] XOR T(W[3] ) = 3C A1 0B 21 XOR 79 C5 7A 91 = 45 64 71 B0
    W[5]= W[1] XOR W[4] = 57 F0 19 16 XOR 45 64 71 B0 = 12 94 68 A6
    W[6]= W[2] XOR W[5] = 90 2E 13 80 XOR 12 94 68 A6 = 82 BA 7B 26
    W[7]= W[3] XOR W[6] = AC C1 07 BD XOR 82 BA 7B 26 = 2E 7B 7C 9B

    同样的方法计算其他密匙。

    有了密匙,将明文与密匙异或运算,接下来进行字节替代。例如,假设我们明文与密匙加轮得到的数据是abcdefghijklmnop具体如表2.2,2.3,2.4所示

    表2.2 轮询后的数据

    d8e8f134e82bd47e22f1aa3dd378285b.png

    表2.3 转化为16进制

    b1c714597d08715a5b00191010ecde9c.png

    表2.4S盒替代之后的数据

    945cb972f3469a404e7b224078cb4b8c.png

    S盒如图1.3所示,如果替换后出来本就是16进制的数则不需要转换,如果不是将a转为16进制0x61则在S盒中找到第6行第1个数,这个数就是要替换的数,替换其他数也是同样的操作。

    接下来就是行移动,列混合就是将每一列移动不同的位数,第一列不移动,第二列移动一位,第三列移动两位,第四列移动三位。具体一位如下表2.5,2.6:

    表2.5 移位前的数据

    58cc1b7183c847e1175b19fea0aa1e8b.png

    表2.6 移位后的数据

    25ae9deb307dd556e43f11c40b340199.png

    行移动后就是列混合了,列混合就是将行移动后的矩阵乘一个固定矩阵。具体如下表2.7,2.8所示

    表2.7行移动后的数据

    f7ac9774f8755386b30978a787085bdf.png

    表2.8先转10进制

    9710f2881e1eb74751fd4109721c1f22.png

    转10进制进行与固定矩阵相乘

    a161106e96ba4698cb76df622486a0d5.png

    得到结果矩阵后,将其转为16进制,到此第一轮加密结束,后续只需将结果矩阵当成第2个KEY进行执行同样的加密操作。

    解密操作和加密操作一样,用最后一组密匙对密文进行密匙轮询,再用逆S盒进行字节替代,行移动是向右移动,列混合是乘固定矩阵的逆矩阵,后面操作与前面操作一样,轮询10次即可解密回来。

    AES加密的代码实现,由于代码过多,只列出主要加密,解密代码,具体代码如图2.3,2.4,2.5,2.6所示

    AES加密代码

    e624eb0c85d517f4cda2b4942cf0d00c.png

    图2.3 AES加密代码

    AES解密代码

    1edc61887f9dc9f41ae154871e62df00.png

    图2.4 AES解密代码

    AES输出代码

    39db639aff25fd03b51d44eb8947bae8.png

    图2.5 AES输出代码

    c7b839bfde33b855da4576a60fbe3e4f.png

    图2.6 AES加密输出,解密回来结果

    展开全文
  • 对称加密和非对称加密原理

    千次阅读 2019-02-22 19:14:47
    对称加密和不对称加密原理 **私钥加密(对称加密 symmetric cryptography):**私钥加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保护密钥不被未经授权的代理...

    对称加密和非对称加密原理

    私钥加密(对称加密 symmetric cryptography):私钥加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保护密钥不被未经授权的代理得到。私钥加密又称为对称加密 ,因为同一密钥既用于加密又用于解密。私钥加密算法非常快(与公钥算法相比),特别适用于对较大的数据流执行加密转换。Well-known secret key cryptographic algorithms include the Data Encryption Standard (DES), triple-strength DES (3DES), Rivest Cipher 2 (RC2), and Rivest Cipher 4 (RC4).

    通常,私钥算法(称为块密码)用于一次加密一个数据块。块密码(如 RC2、DES、TripleDES 和 Rijndael)通过加密将 n 字节的输入块转换为加密字节的输出块。如果要加密或解密字节序列,必须逐块进行。由于 n 很小(对于 RC2、DES 和 TripleDES,n = 8 字节;n = 16 [默认值];n = 24;对于 Rijndael,n = 32),因此必须对大于 n 的数据值一次加密一个块。
    基类库中提供的块密码类使用称作密码块链 (CBC) 的链模式,它使用一个密钥和一个初始化向量 (IV) 对数据执行加密转换。对于给定的私钥k,一个不使用初始化向量的简单块密码将把相同的明文输入块加密为同样的密文输出块。如果在明文流中有重复的块,那么在密文流中将存在重复的块。如果未经授权的用户知道有关明文块的结构的任何信息,就可以使用这些信息解密已知的密文块并有可能发现您的密钥。若要克服这个问题,可将上一个块中的信息混合到加密下一个块的过程中。这样,两个相同的明文块的输出就会不同。由于该技术使用上一个块加密下一个块,因此使用了一个 IV 来加密数据的第一个块。使用该系统,未经授权的用户有可能知道的公共消息标头将无法用于对密钥进行反向工程。

    可以危及用此类型密码加密的数据的一个方法是,对每个可能的密钥执行穷举搜索。根据用于执行加密的密钥大小,即使使用最快的计算机执行这种搜索,也极其耗时,因此难以实施。使用较大的密钥大小将使解密更加困难。虽然从理论上说加密不会使对手无法检索加密的数据,但这确实极大增加了这样做的成本。如果执行彻底搜索来检索只在几天内有意义的数据需要花费三个月的时间,那么穷举搜索的方法是不实用的。
    私钥加密的缺点是它假定双方已就密钥和 IV 达成协议,并且互相传达了密钥和 IV 的值。并且,密钥必须对未经授权的用户保密。由于存在这些问题,私钥加密通常与公钥加密一起使用,来秘密地传达密钥和 IV 的值。

    最早、最著名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)/DESede是由IBM公司在70年代发展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute,ANSI)承认。DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。

    .NET 提供以下实现类以提供对称的密钥加密算法:
    • DESCryptoServiceProvider

    • RC2CryptoServiceProvider

    • RijndaelManaged

    • TripleDESCryptoServiceProvider

    公钥加密(不对称加密, RSA, DSA, DH asymmetric cryptography ):公钥加密使用一个必须对未经授权的用户保密的私钥和一个可以对任何人公开的公钥。公钥和私钥都在数学上相关联;用公钥加密的数据只能用私钥解密,而用私钥签名的数据只能用公钥验证。公钥可以提供给任何人;公钥用于对要发送到私钥持有者的数据进行加密。两个密钥对于通信会话都是唯一的。公钥加密算法也称为不对称算法,原因是需要用一个密钥加密数据而需要用另一个密钥来解密数据。对称算法的根本原理就是单向函数,f(a)=b,但是用b很难得到a。
    公钥加密算法使用固定的缓冲区大小,而私钥加密算法使用长度可变的缓冲区。公钥算法无法像私钥算法那样将数据链接起来成为流,原因是它只可以加密少量数据。因此,不对称操作不使用与对称操作相同的流模型。

    双方(小红和小明)可以按照下列方式使用公钥加密。首先,小红生成一个公钥/私钥对。如果小明想要给小红发送一条加密的消息,他将向她索要她的公钥。小红通过不安全的网络将她的公钥发送给小明,小明接着使用该密钥加密消息。(如果小明在不安全的信道如公共网络上收到小红的密钥,则小明必须同小红验证他具有她的公钥的正确副本。)小明将加密的消息发送给小红,而小红使用她的私钥解密该消息。
    但是,在传输小红的公钥期间,未经授权的代理可能截获该密钥。而且,同一代理可能截获来自小明的加密消息。但是,该代理无法用公钥解密该消息。该消息只能用小红的私钥解密,而该私钥没有被传输。小红不使用她的私钥加密给小明的答复消息,原因是任何具有公钥的人都可以解密该消息。如果小红想要将消息发送回小明,她将向小明索要他的公钥并使用该公钥加密她的消息。然后,小明使用与他相关联的私钥来解密该消息。

    在一个实际方案中,小红和小明使用公钥(不对称)加密来传输私(对称)钥,而对他们的会话的其余部分使用私钥加密(由于对称加密快捷,用于实际的数据加密,而利用不对称加密的方式解决对称加密中私钥传递的不安全性,此为对称和不对称加密结合的加密方式)。
    公钥加密具有更大的密钥空间(或密钥的可能值范围),因此不大容易受到对每个可能密钥都进行尝试的穷举攻击。由于不必保护公钥,因此它易于分发。公钥算法可用于创建数字签名以验证数据发送方的身份。但是,公钥算法非常慢(与私钥算法相比),不适合用来加密大量数据。公钥算法仅对传输很少量的数据有用。公钥加密通常用于加密一个私钥算法将要使用的密钥和 IV。传输密钥和 IV 后,会话的其余部分将使用私钥加密。

    RSA系统是诸多此类算法中最著名、最多使用的一种。RSA公开密钥密码系统是由R.Rivest、A.Shamir和L.Adleman俊教授于1977年提出的。RSA的取名就是来自于这三位发明者的姓的第一个字母RSA(Rivest-Shamir-Adleman)算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblic key) ,另一个不告诉任何人,称为"私钥”(Private key)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。

    公钥的传输:要启动安全通讯,通信两端必须首先得到相同的共享密钥(主密钥),但共享密钥不能通过网络相互发送,因为这种做法极易泄密。Diffie-Hellman算法是用于密钥交换的最早最安全的算法之一。

    RSA算法:RSA算法是基于大数难于分解的原理。不但可以用于认证,也可以用于密钥传输,例子可以参考RSAUtil.java文件。那么用户A和B如何利用RSA算法来传输密钥呢?

    1:A产生一个密钥K,用B的公钥加密K,然后将得到的密文发送给B。

    2:B用自己的私钥解密收到的密钥,就可以得到密钥。

    DH算法:DH算法的出现就是用来进行密钥传输的。DH算法是基于离散对数实现的。DH算法的基本工作原理是:通信双方公开或半公开交换一些准备用来生成密钥的"材料数据",在彼此交换过密钥生成"材料"后,两端可以各自生成出完全一样的共享密钥。在任何时候,双方都绝不交换真正的密钥。通信双方交换的密钥生成"材料",长度不等,"材料"长度越长,所生成的密钥强度也就越高,密钥破译就越困难。除进行密钥交换外,IPSec还使用DH算法生成所有其他加密密钥。

    在通信前,用户A和B双方约定2个大整数n和g,其中1<g<n,这两个整数可以公开

    1. A随机产生一个大整数a,然后计算Ka=ga mod n(a需要保密)

    2. B随机产生一个大整数b,然后计算Kb=gb mod n(b需要保密)

    3. A把Ka发送给B,B把Kb发送给A

    4. A计算K=Kba mod n

    5. B计算K=Kab mod n

    由于Kba mod n= (gb mod n)a mod n= (ga mod n)b mod n,因此可以保证双方得到的K是相同的,K即是共享的密钥。可以参考JCE文档中的DH 3 party的例子。

    实际的一个用DH算法传递DES私钥的JAVA例子参看“JAVA上加密算法的实现用例”一文中的末一个例子,过程如下:假设A和B通信(JCE中只支持DH算法作为传递私钥的算法)

    A利用KeyPairGenerator类生成一个钥对类KeyPair并可通过generatePublic方法产生公钥PublicKey(puA)和getPrivate方法私钥PrivateKey(prA)。A把puA发给B。B用类X509EncodedKeySpec解码,然后利用KeyFactory类生成puA,转换成DHPublicKey类利用其getParams方法取得参数类DHParameterSpec,B再利用此参数类,通过KeyPairGenerator类的initialize方法生成KeyPairGenerator实例从而用generateKeyPair方法生成B的KeyPair。进而B生成puB和prB,B把puB发给A。A利用puB和prA作为参数,分别调用KeyAgreement类的init和doPhase方法初始化,然后用generateSecret方法生成各自的DES的密钥SecretKey,此密钥是相同的,即可用Cipher类进行加解密了。

    .NET 通过抽象基类 (System.Security.Crytography.AsymmetricAlgorithm) 提供下列非对称(公钥/私钥)加密算法:
    • DSACryptoServiceProvider

    • RSACryptoServiceProvider

    数字签名
    公钥算法还可用于构成数字签名。数字签名验证发送方的身份(如果您信任发送方的公钥)并帮助保护数据的完整性。

    为了使用公钥加密对消息进行数字签名,小红首先将哈希算法应用于该消息以创建消息摘要。该消息摘要是数据的紧凑且唯一的表示形式。然后,小红用她的私钥加密该消息摘要以创建她的个人签名。在收到消息和签名时,小明使用小红的公钥解密签名以恢复消息摘要,并使用与小红所使用的相同的哈希算法来散列消息。如果小明计算的消息摘要与从小红那里收到的消息摘要完全一致,小明就可以确定该消息来自私钥的持有人,并且数据未被修改过。如果小明相信小红是私钥的持有人,则他知道该消息来自小红。

    请注意,由于发送方的公钥为大家所周知,并且它通常包含在数字签名格式中,因此任何人都可以验证签名。此方法不保守消息的机密;若要使消息保密,还必须对消息进行加密。

    .NET Framework 提供以下实现数字签名算法的类:

    DSACryptoServiceProvider
    RSACryptoServiceProvider

    CA证书 Public Key Certificates(参考这里)

    A public key certificate provides a safe way for an entity to pass on its public key to be used in asymmetric cryptography. The public key certificate avoids the following situation: if Charlie creates his own public key and private key, he can claim that he is Alice and send his public key to Bob. Bob will be able to communicate with Charlie, but Bob will think that he is sending his data to Alice.

    A public key certificate can be thought of as the digital equivalent of a passport. It is issued by a trusted organization and provides identification for the bearer. A trusted organization that issues public key certificates is known as a certificate authority (CA). The CA can be likened to a notary public. To obtain a certificate from a CA, one must provide proof of identity. Once the CA is confident that the applicant represents the organization it says it represents, the CA signs the certificate attesting to the validity of the information contained within the certificate.

    A public key certificate contains several fields, including:

    Issuer - The issuer is the CA that issued the certificate. If a user trusts the CA that issues a certificate, and if the certificate is valid, the user can trust the certificate.

    Period of validity - A certificate has an expiration date, and this date is one piece of information that should be checked when verifying the validity of a certificate.

    Subject - The subject field includes information about the entity that the certificate represents.

    Subject’s public key - The primary piece of information that the certificate provides is the subject’s public key. All the other fields are provided to ensure the validity of this key.

    Signature - The certificate is digitally signed by the CA that issued the certificate. The signature is created using the CA’s private key and ensures the validity of the certificate. Because only the certificate is signed, not the data sent in the SSL transaction, SSL does not provide for non-repudiation.
    If Bob only accepts Alice’s public key as valid when she sends it in a public key certificate, Bob will not be fooled into sending secret information to Charlie when Charlie masquerades as Alice.

    Multiple certificates may be linked in a certificate chain. When a certificate chain is used, the first certificate is always that of the sender. The next is the certificate of the entity that issued the sender’s certificate. If there are more certificates in the chain, each is that of the authority that issued the previous certificate. The final certificate in the chain is the certificate for a root CA. A root CA is a public certificate authority that is widely trusted. Information for several root CAs is typically stored in the client’s Internet browser. This information includes the CA’s public key. Well-known CAs include VeriSign, Entrust, and GTE CyberTrust.

    哈希值
    哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希计算都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的。

    消息身份验证代码 (MAC) 哈希函数通常与数字签名一起用于对数据进行签名,而消息检测代码 (MDC) 哈希函数则用于数据完整性。

    双方(小红和小明)可按下面的方式使用哈希函数来确保数据的完整性。如果小红对小明编写一条消息并创建该消息的哈希,则小明可以在稍后散列该消息并将他的哈希与原始哈希进行比较。如果两个哈希值相同,则该消息没有被更改;如果值不相同,则该消息在小红编写它之后已被更改。为了使此系统发挥作用,小红必须对除小明外的所有人保密原始的哈希值。

    When sending encrypted data, SSL typically uses a cryptographic hash function to ensure data integrity. The hash function prevents Charlie from tampering with data that Alice sends to Bob.

    A cryptographic hash function is similar to a checksum. The main difference is that while a checksum is designed to detect accidental alterations in data, a cryptographic hash function is designed to detect deliberate alterations. When data is processed by a cryptographic hash function, a small string of bits, known as a hash, is generated. The slightest change to the message typically makes a large change in the resulting hash. A cryptographic hash function does not require a cryptographic key. Two hash functions often used with SSL are Message Digest 5 (MD5) and Secure Hash Algorithm (SHA). SHA was proposed by the US National Institute of Science and Technology (NIST).

    Message Authentication Code: A message authentication code (MAC) is similar to a cryptographic hash, except that it is based on a secret key. When secret key information is included with the data that is processed by a cryptographic hash function, the resulting hash is known as an HMAC.
    If Alice wants to be sure that Charlie does not tamper with her message to Bob, she can calculate an HMAC for her message and append the HMAC to her original message. She can then encrypt the message plus the HMAC using a secret key she shares with Bob. When Bob decrypts the message and calculates the HMAC, he will be able to tell if the message was modified in transit. With SSL, an HMAC is used with the transmission of secure data.

    .NET Framework 提供以下实现数字签名算法的类:

    HMACSHA1
    MACTripleDES
    MD5CryptoServiceProvider
    SHA1Managed
    SHA256Managed
    SHA384Managed
    SHA512Managed

    摘要函数(MD2、MD4和MD5,还有SHA1等算法(产生一个20字节的二进制数组))
    摘要是一种防止改动的方法,其中用到的函数叫摘要函数。这些函数的输入可以是任意大小的消息,而输出是一个固定长度的摘要。摘要有这样一个性质,如果改变了输入消息中的任何东西,甚至只有一位,输出的摘要将会发生不可预测的改变,也就是说输入消息的每一位对输出摘要都有影响。总之,摘要算法从给定的文本块中产生一个数字签名(fingerprint或message digest),数字签名可以用于防止有人从一个签名上获取文本信息或改变文本信息内容。摘要算法的数字签名原理在很多加密算法中都被使用,如S/KEY和PGP(pretty good privacy)。

    现在流行的摘要函数有MD4和MD5。MD2摘要算法的设计是出于下面的考虑:利用32位RISC结构来最大其吞吐量,而不需要大量的替换表(substitution table)。MD4算法将消息的给予对长度作为输入,产生一个128位的"指纹"或"消息化"。要产生两个具有相同消息化的文字块或者产生任何具有预先给定"指纹"的消息,都被认为在计算上是不可能的。MD5摘要算法是个数据认证标准。MD5的设计思想是要找出速度更快但更不安全的MD4中潜在的不安全,MD5的设计者通过使MD5在计算上慢下来,以及对这些计算做了一些基础性的改动来解决这个问题。MD5在RFC1321中给出文档描述,是MD4算法的一个扩展。美国国家标准技术研究所的SHA1和麻省理工学院Ronald Rivest提出的MD5是为代表。HMAC-MD5算法(消息摘要5)基于RFC1321。MD5对MD4做了改进,计算速度比MD4稍慢,但安全性能得到了进一步改善。MD5在计算中使用了64个32位常数,最终生成一个128位的完整性检查和。

    HMAC-SHA算法:安全Hash算法定义在NIST FIPS 180-1,其算法以MD5为原型。SHA在计算中使用了79个32位常数,最终产生一个160位完整性检查和。SHA检查和长度比MD5更长,因此安全性也更高。

    随机数生成
    随机数生成是许多加密操作不可分割的组成部分。例如,加密密钥需要尽可能地随机,以便使生成的密钥很难再现。加密随机数生成器必须生成无法以计算方法推算出(低于 p < .05 的概率)的输出;即,任何推算下一个输出位的方法不得比随机猜测具有更高的成功概率。.NET Framework 中的类使用随机数生成器生成加密密钥。

    在商务领域的应用

    许多人都知道NETSCAPE公司是Internet商业中领先技术的提供者,该公司提供了一种基于RSA和保密密钥的应用于因特网的技术,被称为安全插座层(Secure Sockets Layer,SSL)。

    也许很多人知道Socket,它是一个编程界面,并不提供任何安全措施,而SSL不但提供编程界面,而且向上提供一种安全的服务,SSL3.0现在已经应用到了服务器和浏览器上,SSL2.0则只能应用于服务器端。

    SSL3.0用一种电子证书(electric certificate)来实行身份进行验证后,双方就可以用保密密钥进行安全的会话了。它同时使用“对称”和“非对称”加密方法,在客户与电子商务的服务器进行沟通的过程中,客户会产生一个Session Key,然后客户用服务器端的公钥将Session Key进行加密,再传给服务器端,在双方都知道Session Key后,传输的数据都是以Session Key进行加密与解密的,但服务器端发给用户的公钥必需先向有关发证机关申请,以得到公证。

    基于SSL3.0提供的安全保障,用户就可以自由订购商品并且给出信用卡号了,也可以在网上和合作伙伴交流商业信息并且让供应商把订单和收货单从网上发过来,这样可以节省大量的纸张,为公司节省大量的电话、传真费用。在过去,电子信息交换(Electric Data Interchange,EDI)、信息交易(information transaction)和金融交易(financial transaction)都是在专用网络上完成的,使用专用网的费用大大高于互联网。正是这样巨大的诱惑,才使人们开始发展因特网上的电子商务,但不要忘记数据加密。

    SSL(Secure Sockets Layer) or TSL (Transport Layer Security)

    Secure Sockets Layer (SSL) is the most widely used protocol for implementing cryptography on the Web. SSL uses a combination of cryptographic processes to provide secure communication over a network. This section provides an introduction to SSL and the cryptographic processes it uses.

    SSL provides a secure enhancement to the standard TCP/IP sockets protocol used for Internet communications. As shown in the “TCP/IP Protocol Stack With SSL” figure below, the secure sockets layer is added between the transport layer and the application layer in the standard TCP/IP protocol stack. The application most commonly used with SSL is Hypertext Transfer Protocol (HTTP), the protocol for Internet Web pages.

    SSL was developed by Netscape in 1994, and with input from the Internet community, has evolved to become a standard. It is now under the control of the international standards organization, the Internet Engineering Task Force (IETF). The IETF has renamed SSL to Transport Layer Security (TLS), and released the first specification, version 1.0, in January 1999. TLS 1.0 is a modest upgrade to the most recent version of SSL, version 3.0. The differences between SSL 3.0 and TLS 1.0 are minor.

    One of the reasons SSL is effective is that it uses several different cryptographic processes. SSL uses public key cryptography to provide authentication, and secret key cryptography and digital signatures to provide for privacy and data integrity. Before you can understand SSL, it is helpful to understand these cryptographic processes.

    常用算法比较

    数据加密标准(DES)是一个古老的对称密钥加密算法,目前已经不再使用。它不是一个很安全的算法。

    三重DES(Triple-DES)仍然是很安全的,但是也只是在别无他法的情况下的一个较好的选择。显然高级加密标准(AES)是一个更好的加密算法,NIST用AES代替Triple-DES作为他们的标准(下面有更详细的讨论)。其他较好的算法包括另外两个AES的变种算法Twofish和Serpent-也称为CAST-128,它是效率和安全的完美结合。这几个算法不仅比DES更安全,而且也比DES的速度更快。为什么要使用一些又慢又不安全的算法呢

    SHA1是一个哈希函数,而不是一个加密函数。作为一个哈希函数,SHA1还是相当优秀的,但是还需要几年的发展才能用作加密算法。如果你正在设计一个新系统,那么谨记你可能会在若干年后用SHA1代替目前的算法。我再重复一遍:只是可能。

    RSA是一个公开密钥加密算法。RSA的密钥长度一般为2048-4096位。如果你现在的系统使用的是1024位的公开密钥,也没有必要担心,但是你可以加长密钥长度来达到更好的加密效果。

    高级加密标准(AES)是一个用来代替数据加密标准(DES)的算法。目前使用的一般为128,196和256位密钥,这三种密钥都是相当安全的。而且美国政府也是这样认为的。他们批准将128位密钥的AES算法用于一般数据加密,196位和256位密钥的AES算法用于秘密数据和绝密数据的加密。

    DESX是DES的一个改进版本。DESX的原理是利用一个随机的二进制数与加密前的数据以及解密后的数据异或。虽然也有人批评这种算法,但是与DES相比DESX确实更安全,不过DESX在许多情况下并不适用。我曾经处理过一个硬件支持DES的系统,由于有些环节不能容忍三重DES的慢速,我们在这些地方使用了DESX来代替DES。然而,这是一个非常特殊的情况。如果你需要使用DESX,理由显而易见(可能和我不得不使用DESX的原因类似)。但我建议你使用AES或者上面我提到的一些算法。

    RC4是一种常用于SSL连接的数据流加密算法。它已经出现很多年了,而且有很多已知和可能的缺陷,因此在一些新的工程中不要使用它。如果你目前正在使用它而且可以轻易的卸载它,那么情况也不是很坏。不过,我怀疑如果你现在正在使用它,你不可能轻易的卸载它。如果不能将它从系统中轻易的卸载,那么你还是考虑今后怎样升级它,但是不要感到很惊慌。我不会拒绝在一个使用RC4算法来加密SSL连接的网站购买东西,但是如果我现在要新建一个系统,那么我会考虑使用其他的算法,例如:AES。

    对于下面两个算法MD5-RSA和SHA1-DSA,他们是用于数字签名的。但是不要使用MD5,因为它有很多缺陷。很多年前大家就知道MD5中存在漏洞,不过直到今年夏天才破解出来。我们可以将SHA1和RSA或DSA配合在一起使用,目前DSA的密钥位数高达1024位,这个密钥位数已经足够长了,因此不需要担心安全问题。然而,如果NIST实现了更长的密钥位数当然更好。

    X.509证书是一个数据结构,常用于规定比特和字节的顺序,它本身不是一个密码系统。它通常包含一个RSA密钥,也可能包含一个DSA密钥。但是X.509证书内部以及证书本身并不是加密技术。对称加密和不对称加密原理
    私钥加密(对称加密 symmetric cryptography):私钥加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保护密钥不被未经授权的代理得到。私钥加密又称为对称加密,因为同一密钥既用于加密又用于解密。私钥加密算法非常快(与公钥算法相比),特别适用于对较大的数据流执行加密转换。Well-known secret key cryptographic algorithms include the Data Encryption Standard (DES), triple-strength DES (3DES), Rivest Cipher 2 (RC2), and Rivest Cipher 4 (RC4).

    通常,私钥算法(称为块密码)用于一次加密一个数据块。块密码(如 RC2、DES、TripleDES 和 Rijndael)通过加密将 n 字节的输入块转换为加密字节的输出块。如果要加密或解密字节序列,必须逐块进行。由于 n 很小(对于 RC2、DES 和 TripleDES,n = 8 字节;n = 16 [默认值];n = 24;对于 Rijndael,n = 32),因此必须对大于 n 的数据值一次加密一个块。
    基类库中提供的块密码类使用称作密码块链 (CBC) 的链模式,它使用一个密钥和一个初始化向量 (IV) 对数据执行加密转换。对于给定的私钥k,一个不使用初始化向量的简单块密码将把相同的明文输入块加密为同样的密文输出块。如果在明文流中有重复的块,那么在密文流中将存在重复的块。如果未经授权的用户知道有关明文块的结构的任何信息,就可以使用这些信息解密已知的密文块并有可能发现您的密钥。若要克服这个问题,可将上一个块中的信息混合到加密下一个块的过程中。这样,两个相同的明文块的输出就会不同。由于该技术使用上一个块加密下一个块,因此使用了一个 IV 来加密数据的第一个块。使用该系统,未经授权的用户有可能知道的公共消息标头将无法用于对密钥进行反向工程。

    可以危及用此类型密码加密的数据的一个方法是,对每个可能的密钥执行穷举搜索。根据用于执行加密的密钥大小,即使使用最快的计算机执行这种搜索,也极其耗时,因此难以实施。使用较大的密钥大小将使解密更加困难。虽然从理论上说加密不会使对手无法检索加密的数据,但这确实极大增加了这样做的成本。如果执行彻底搜索来检索只在几天内有意义的数据需要花费三个月的时间,那么穷举搜索的方法是不实用的。
    私钥加密的缺点是它假定双方已就密钥和 IV 达成协议,并且互相传达了密钥和 IV 的值。并且,密钥必须对未经授权的用户保密。由于存在这些问题,私钥加密通常与公钥加密一起使用,来秘密地传达密钥和 IV 的值。

    最早、最著名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)/DESede是由IBM公司在70年代发展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute,ANSI)承认。DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。

    .NET 提供以下实现类以提供对称的密钥加密算法:
    • DESCryptoServiceProvider

    • RC2CryptoServiceProvider

    • RijndaelManaged

    • TripleDESCryptoServiceProvider

    公钥加密(不对称加密, RSA, DSA, DH asymmetric cryptography ):公钥加密使用一个必须对未经授权的用户保密的私钥和一个可以对任何人公开的公钥。公钥和私钥都在数学上相关联;用公钥加密的数据只能用私钥解密,而用私钥签名的数据只能用公钥验证。公钥可以提供给任何人;公钥用于对要发送到私钥持有者的数据进行加密。两个密钥对于通信会话都是唯一的。公钥加密算法也称为不对称算法,原因是需要用一个密钥加密数据而需要用另一个密钥来解密数据。对称算法的根本原理就是单向函数,f(a)=b,但是用b很难得到a。
    公钥加密算法使用固定的缓冲区大小,而私钥加密算法使用长度可变的缓冲区。公钥算法无法像私钥算法那样将数据链接起来成为流,原因是它只可以加密少量数据。因此,不对称操作不使用与对称操作相同的流模型。

    双方(小红和小明)可以按照下列方式使用公钥加密。首先,小红生成一个公钥/私钥对。如果小明想要给小红发送一条加密的消息,他将向她索要她的公钥。小红通过不安全的网络将她的公钥发送给小明,小明接着使用该密钥加密消息。(如果小明在不安全的信道如公共网络上收到小红的密钥,则小明必须同小红验证他具有她的公钥的正确副本。)小明将加密的消息发送给小红,而小红使用她的私钥解密该消息。
    但是,在传输小红的公钥期间,未经授权的代理可能截获该密钥。而且,同一代理可能截获来自小明的加密消息。但是,该代理无法用公钥解密该消息。该消息只能用小红的私钥解密,而该私钥没有被传输。小红不使用她的私钥加密给小明的答复消息,原因是任何具有公钥的人都可以解密该消息。如果小红想要将消息发送回小明,她将向小明索要他的公钥并使用该公钥加密她的消息。然后,小明使用与他相关联的私钥来解密该消息。

    在一个实际方案中,小红和小明使用公钥(不对称)加密来传输私(对称)钥,而对他们的会话的其余部分使用私钥加密(由于对称加密快捷,用于实际的数据加密,而利用不对称加密的方式解决对称加密中私钥传递的不安全性,此为对称和不对称加密结合的加密方式)。
    公钥加密具有更大的密钥空间(或密钥的可能值范围),因此不大容易受到对每个可能密钥都进行尝试的穷举攻击。由于不必保护公钥,因此它易于分发。公钥算法可用于创建数字签名以验证数据发送方的身份。但是,公钥算法非常慢(与私钥算法相比),不适合用来加密大量数据。公钥算法仅对传输很少量的数据有用。公钥加密通常用于加密一个私钥算法将要使用的密钥和 IV。传输密钥和 IV 后,会话的其余部分将使用私钥加密。

    RSA系统是诸多此类算法中最著名、最多使用的一种。RSA公开密钥密码系统是由R.Rivest、A.Shamir和L.Adleman俊教授于1977年提出的。RSA的取名就是来自于这三位发明者的姓的第一个字母RSA(Rivest-Shamir-Adleman)算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblic key) ,另一个不告诉任何人,称为"私钥”(Private key)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。

    公钥的传输:要启动安全通讯,通信两端必须首先得到相同的共享密钥(主密钥),但共享密钥不能通过网络相互发送,因为这种做法极易泄密。Diffie-Hellman算法是用于密钥交换的最早最安全的算法之一。

    RSA算法:RSA算法是基于大数难于分解的原理。不但可以用于认证,也可以用于密钥传输,例子可以参考RSAUtil.java文件。那么用户A和B如何利用RSA算法来传输密钥呢?

    1:A产生一个密钥K,用B的公钥加密K,然后将得到的密文发送给B。

    2:B用自己的私钥解密收到的密钥,就可以得到密钥。

    DH算法:DH算法的出现就是用来进行密钥传输的。DH算法是基于离散对数实现的。DH算法的基本工作原理是:通信双方公开或半公开交换一些准备用来生成密钥的"材料数据",在彼此交换过密钥生成"材料"后,两端可以各自生成出完全一样的共享密钥。在任何时候,双方都绝不交换真正的密钥。通信双方交换的密钥生成"材料",长度不等,"材料"长度越长,所生成的密钥强度也就越高,密钥破译就越困难。除进行密钥交换外,IPSec还使用DH算法生成所有其他加密密钥。

    在通信前,用户A和B双方约定2个大整数n和g,其中1<g<n,这两个整数可以公开

    1. A随机产生一个大整数a,然后计算Ka=ga mod n(a需要保密)

    2. B随机产生一个大整数b,然后计算Kb=gb mod n(b需要保密)

    3. A把Ka发送给B,B把Kb发送给A

    4. A计算K=Kba mod n

    5. B计算K=Kab mod n

    由于Kba mod n= (gb mod n)a mod n= (ga mod n)b mod n,因此可以保证双方得到的K是相同的,K即是共享的密钥。可以参考JCE文档中的DH 3 party的例子。

    实际的一个用DH算法传递DES私钥的JAVA例子参看“JAVA上加密算法的实现用例”一文中的末一个例子,过程如下:假设A和B通信(JCE中只支持DH算法作为传递私钥的算法)

    A利用KeyPairGenerator类生成一个钥对类KeyPair并可通过generatePublic方法产生公钥PublicKey(puA)和getPrivate方法私钥PrivateKey(prA)。A把puA发给B。B用类X509EncodedKeySpec解码,然后利用KeyFactory类生成puA,转换成DHPublicKey类利用其getParams方法取得参数类DHParameterSpec,B再利用此参数类,通过KeyPairGenerator类的initialize方法生成KeyPairGenerator实例从而用generateKeyPair方法生成B的KeyPair。进而B生成puB和prB,B把puB发给A。A利用puB和prA作为参数,分别调用KeyAgreement类的init和doPhase方法初始化,然后用generateSecret方法生成各自的DES的密钥SecretKey,此密钥是相同的,即可用Cipher类进行加解密了。

    .NET 通过抽象基类 (System.Security.Crytography.AsymmetricAlgorithm) 提供下列非对称(公钥/私钥)加密算法:
    • DSACryptoServiceProvider

    • RSACryptoServiceProvider

    数字签名
    公钥算法还可用于构成数字签名。数字签名验证发送方的身份(如果您信任发送方的公钥)并帮助保护数据的完整性。

    为了使用公钥加密对消息进行数字签名,小红首先将哈希算法应用于该消息以创建消息摘要。该消息摘要是数据的紧凑且唯一的表示形式。然后,小红用她的私钥加密该消息摘要以创建她的个人签名。在收到消息和签名时,小明使用小红的公钥解密签名以恢复消息摘要,并使用与小红所使用的相同的哈希算法来散列消息。如果小明计算的消息摘要与从小红那里收到的消息摘要完全一致,小明就可以确定该消息来自私钥的持有人,并且数据未被修改过。如果小明相信小红是私钥的持有人,则他知道该消息来自小红。

    请注意,由于发送方的公钥为大家所周知,并且它通常包含在数字签名格式中,因此任何人都可以验证签名。此方法不保守消息的机密;若要使消息保密,还必须对消息进行加密。

    .NET Framework 提供以下实现数字签名算法的类:

    DSACryptoServiceProvider
    RSACryptoServiceProvider

    CA证书 Public Key Certificates(参考这里)

    A public key certificate provides a safe way for an entity to pass on its public key to be used in asymmetric cryptography. The public key certificate avoids the following situation: if Charlie creates his own public key and private key, he can claim that he is Alice and send his public key to Bob. Bob will be able to communicate with Charlie, but Bob will think that he is sending his data to Alice.

    A public key certificate can be thought of as the digital equivalent of a passport. It is issued by a trusted organization and provides identification for the bearer. A trusted organization that issues public key certificates is known as a certificate authority (CA). The CA can be likened to a notary public. To obtain a certificate from a CA, one must provide proof of identity. Once the CA is confident that the applicant represents the organization it says it represents, the CA signs the certificate attesting to the validity of the information contained within the certificate.

    A public key certificate contains several fields, including:

    Issuer - The issuer is the CA that issued the certificate. If a user trusts the CA that issues a certificate, and if the certificate is valid, the user can trust the certificate.

    Period of validity - A certificate has an expiration date, and this date is one piece of information that should be checked when verifying the validity of a certificate.

    Subject - The subject field includes information about the entity that the certificate represents.

    Subject’s public key - The primary piece of information that the certificate provides is the subject’s public key. All the other fields are provided to ensure the validity of this key.

    Signature - The certificate is digitally signed by the CA that issued the certificate. The signature is created using the CA’s private key and ensures the validity of the certificate. Because only the certificate is signed, not the data sent in the SSL transaction, SSL does not provide for non-repudiation.
    If Bob only accepts Alice’s public key as valid when she sends it in a public key certificate, Bob will not be fooled into sending secret information to Charlie when Charlie masquerades as Alice.

    Multiple certificates may be linked in a certificate chain. When a certificate chain is used, the first certificate is always that of the sender. The next is the certificate of the entity that issued the sender’s certificate. If there are more certificates in the chain, each is that of the authority that issued the previous certificate. The final certificate in the chain is the certificate for a root CA. A root CA is a public certificate authority that is widely trusted. Information for several root CAs is typically stored in the client’s Internet browser. This information includes the CA’s public key. Well-known CAs include VeriSign, Entrust, and GTE CyberTrust.

    哈希值
    哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希计算都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的。

    消息身份验证代码 (MAC) 哈希函数通常与数字签名一起用于对数据进行签名,而消息检测代码 (MDC) 哈希函数则用于数据完整性。

    双方(小红和小明)可按下面的方式使用哈希函数来确保数据的完整性。如果小红对小明编写一条消息并创建该消息的哈希,则小明可以在稍后散列该消息并将他的哈希与原始哈希进行比较。如果两个哈希值相同,则该消息没有被更改;如果值不相同,则该消息在小红编写它之后已被更改。为了使此系统发挥作用,小红必须对除小明外的所有人保密原始的哈希值。

    When sending encrypted data, SSL typically uses a cryptographic hash function to ensure data integrity. The hash function prevents Charlie from tampering with data that Alice sends to Bob.

    A cryptographic hash function is similar to a checksum. The main difference is that while a checksum is designed to detect accidental alterations in data, a cryptographic hash function is designed to detect deliberate alterations. When data is processed by a cryptographic hash function, a small string of bits, known as a hash, is generated. The slightest change to the message typically makes a large change in the resulting hash. A cryptographic hash function does not require a cryptographic key. Two hash functions often used with SSL are Message Digest 5 (MD5) and Secure Hash Algorithm (SHA). SHA was proposed by the US National Institute of Science and Technology (NIST).

    Message Authentication Code: A message authentication code (MAC) is similar to a cryptographic hash, except that it is based on a secret key. When secret key information is included with the data that is processed by a cryptographic hash function, the resulting hash is known as an HMAC.
    If Alice wants to be sure that Charlie does not tamper with her message to Bob, she can calculate an HMAC for her message and append the HMAC to her original message. She can then encrypt the message plus the HMAC using a secret key she shares with Bob. When Bob decrypts the message and calculates the HMAC, he will be able to tell if the message was modified in transit. With SSL, an HMAC is used with the transmission of secure data.

    .NET Framework 提供以下实现数字签名算法的类:

    HMACSHA1
    MACTripleDES
    MD5CryptoServiceProvider
    SHA1Managed
    SHA256Managed
    SHA384Managed
    SHA512Managed

    摘要函数(MD2、MD4和MD5,还有SHA1等算法(产生一个20字节的二进制数组))
    摘要是一种防止改动的方法,其中用到的函数叫摘要函数。这些函数的输入可以是任意大小的消息,而输出是一个固定长度的摘要。摘要有这样一个性质,如果改变了输入消息中的任何东西,甚至只有一位,输出的摘要将会发生不可预测的改变,也就是说输入消息的每一位对输出摘要都有影响。总之,摘要算法从给定的文本块中产生一个数字签名(fingerprint或message digest),数字签名可以用于防止有人从一个签名上获取文本信息或改变文本信息内容。摘要算法的数字签名原理在很多加密算法中都被使用,如S/KEY和PGP(pretty good privacy)。

    现在流行的摘要函数有MD4和MD5。MD2摘要算法的设计是出于下面的考虑:利用32位RISC结构来最大其吞吐量,而不需要大量的替换表(substitution table)。MD4算法将消息的给予对长度作为输入,产生一个128位的"指纹"或"消息化"。要产生两个具有相同消息化的文字块或者产生任何具有预先给定"指纹"的消息,都被认为在计算上是不可能的。MD5摘要算法是个数据认证标准。MD5的设计思想是要找出速度更快但更不安全的MD4中潜在的不安全,MD5的设计者通过使MD5在计算上慢下来,以及对这些计算做了一些基础性的改动来解决这个问题。MD5在RFC1321中给出文档描述,是MD4算法的一个扩展。美国国家标准技术研究所的SHA1和麻省理工学院Ronald Rivest提出的MD5是为代表。HMAC-MD5算法(消息摘要5)基于RFC1321。MD5对MD4做了改进,计算速度比MD4稍慢,但安全性能得到了进一步改善。MD5在计算中使用了64个32位常数,最终生成一个128位的完整性检查和。

    HMAC-SHA算法:安全Hash算法定义在NIST FIPS 180-1,其算法以MD5为原型。SHA在计算中使用了79个32位常数,最终产生一个160位完整性检查和。SHA检查和长度比MD5更长,因此安全性也更高。

    随机数生成
    随机数生成是许多加密操作不可分割的组成部分。例如,加密密钥需要尽可能地随机,以便使生成的密钥很难再现。加密随机数生成器必须生成无法以计算方法推算出(低于 p < .05 的概率)的输出;即,任何推算下一个输出位的方法不得比随机猜测具有更高的成功概率。.NET Framework 中的类使用随机数生成器生成加密密钥。

    在商务领域的应用

    许多人都知道NETSCAPE公司是Internet商业中领先技术的提供者,该公司提供了一种基于RSA和保密密钥的应用于因特网的技术,被称为安全插座层(Secure Sockets Layer,SSL)。

    也许很多人知道Socket,它是一个编程界面,并不提供任何安全措施,而SSL不但提供编程界面,而且向上提供一种安全的服务,SSL3.0现在已经应用到了服务器和浏览器上,SSL2.0则只能应用于服务器端。

    SSL3.0用一种电子证书(electric certificate)来实行身份进行验证后,双方就可以用保密密钥进行安全的会话了。它同时使用“对称”和“非对称”加密方法,在客户与电子商务的服务器进行沟通的过程中,客户会产生一个Session Key,然后客户用服务器端的公钥将Session Key进行加密,再传给服务器端,在双方都知道Session Key后,传输的数据都是以Session Key进行加密与解密的,但服务器端发给用户的公钥必需先向有关发证机关申请,以得到公证。

    基于SSL3.0提供的安全保障,用户就可以自由订购商品并且给出信用卡号了,也可以在网上和合作伙伴交流商业信息并且让供应商把订单和收货单从网上发过来,这样可以节省大量的纸张,为公司节省大量的电话、传真费用。在过去,电子信息交换(Electric Data Interchange,EDI)、信息交易(information transaction)和金融交易(financial transaction)都是在专用网络上完成的,使用专用网的费用大大高于互联网。正是这样巨大的诱惑,才使人们开始发展因特网上的电子商务,但不要忘记数据加密。

    SSL(Secure Sockets Layer) or TSL (Transport Layer Security)

    Secure Sockets Layer (SSL) is the most widely used protocol for implementing cryptography on the Web. SSL uses a combination of cryptographic processes to provide secure communication over a network. This section provides an introduction to SSL and the cryptographic processes it uses.

    SSL provides a secure enhancement to the standard TCP/IP sockets protocol used for Internet communications. As shown in the “TCP/IP Protocol Stack With SSL” figure below, the secure sockets layer is added between the transport layer and the application layer in the standard TCP/IP protocol stack. The application most commonly used with SSL is Hypertext Transfer Protocol (HTTP), the protocol for Internet Web pages.

    SSL was developed by Netscape in 1994, and with input from the Internet community, has evolved to become a standard. It is now under the control of the international standards organization, the Internet Engineering Task Force (IETF). The IETF has renamed SSL to Transport Layer Security (TLS), and released the first specification, version 1.0, in January 1999. TLS 1.0 is a modest upgrade to the most recent version of SSL, version 3.0. The differences between SSL 3.0 and TLS 1.0 are minor.

    One of the reasons SSL is effective is that it uses several different cryptographic processes. SSL uses public key cryptography to provide authentication, and secret key cryptography and digital signatures to provide for privacy and data integrity. Before you can understand SSL, it is helpful to understand these cryptographic processes.

    常用算法比较

    数据加密标准(DES)是一个古老的对称密钥加密算法,目前已经不再使用。它不是一个很安全的算法。

    三重DES(Triple-DES)仍然是很安全的,但是也只是在别无他法的情况下的一个较好的选择。显然高级加密标准(AES)是一个更好的加密算法,NIST用AES代替Triple-DES作为他们的标准(下面有更详细的讨论)。其他较好的算法包括另外两个AES的变种算法Twofish和Serpent-也称为CAST-128,它是效率和安全的完美结合。这几个算法不仅比DES更安全,而且也比DES的速度更快。为什么要使用一些又慢又不安全的算法呢

    SHA1是一个哈希函数,而不是一个加密函数。作为一个哈希函数,SHA1还是相当优秀的,但是还需要几年的发展才能用作加密算法。如果你正在设计一个新系统,那么谨记你可能会在若干年后用SHA1代替目前的算法。我再重复一遍:只是可能。

    RSA是一个公开密钥加密算法。RSA的密钥长度一般为2048-4096位。如果你现在的系统使用的是1024位的公开密钥,也没有必要担心,但是你可以加长密钥长度来达到更好的加密效果。

    高级加密标准(AES)是一个用来代替数据加密标准(DES)的算法。目前使用的一般为128,196和256位密钥,这三种密钥都是相当安全的。而且美国政府也是这样认为的。他们批准将128位密钥的AES算法用于一般数据加密,196位和256位密钥的AES算法用于秘密数据和绝密数据的加密。

    DESX是DES的一个改进版本。DESX的原理是利用一个随机的二进制数与加密前的数据以及解密后的数据异或。虽然也有人批评这种算法,但是与DES相比DESX确实更安全,不过DESX在许多情况下并不适用。我曾经处理过一个硬件支持DES的系统,由于有些环节不能容忍三重DES的慢速,我们在这些地方使用了DESX来代替DES。然而,这是一个非常特殊的情况。如果你需要使用DESX,理由显而易见(可能和我不得不使用DESX的原因类似)。但我建议你使用AES或者上面我提到的一些算法。

    RC4是一种常用于SSL连接的数据流加密算法。它已经出现很多年了,而且有很多已知和可能的缺陷,因此在一些新的工程中不要使用它。如果你目前正在使用它而且可以轻易的卸载它,那么情况也不是很坏。不过,我怀疑如果你现在正在使用它,你不可能轻易的卸载它。如果不能将它从系统中轻易的卸载,那么你还是考虑今后怎样升级它,但是不要感到很惊慌。我不会拒绝在一个使用RC4算法来加密SSL连接的网站购买东西,但是如果我现在要新建一个系统,那么我会考虑使用其他的算法,例如:AES。

    对于下面两个算法MD5-RSA和SHA1-DSA,他们是用于数字签名的。但是不要使用MD5,因为它有很多缺陷。很多年前大家就知道MD5中存在漏洞,不过直到今年夏天才破解出来。我们可以将SHA1和RSA或DSA配合在一起使用,目前DSA的密钥位数高达1024位,这个密钥位数已经足够长了,因此不需要担心安全问题。然而,如果NIST实现了更长的密钥位数当然更好。

    X.509证书是一个数据结构,常用于规定比特和字节的顺序,它本身不是一个密码系统。它通常包含一个RSA密钥,也可能包含一个DSA密钥。但是X.509证书内部以及证书本身并不是加密技术。

    转自:https://www.cnblogs.com/lvdongjie/p/4241107.html

    展开全文
  • 数据加密算法主要分为两大类:对称加密和非对称加密 下面我们来看一下他们的区别的各自的作用   下面详细介绍两种加密方式的具体过程 (1)交易加密或者区块加密(对称加密) 为了让区块链中的交易信息或者账本...

    转自
    https://blog.csdn.net/Booboochen/article/details/82289627
    https://blog.csdn.net/u014066037/article/details/51314820
    非对称加密算法RSA:

    算法描述:

    (1)选择一对不同的、足够大的素数p和q。
    (2)计算n=pq。
    (3)计算f(n)=(p-1)(q-1),同时对p和q严加保密,不让任何人知道。
    (4)找一个与f(n)互质的数e,且1<e<f(n)。
    (5)计算d,使得de≡1mod f(n)。这个公式也可以表达为d≡e-1 mod f(n)

    这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。

    (6)公钥KU=(e,n),私钥KR=(d,n)。
    (7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:C≡Me (mod n)
    (8)解密过程为:M≡Cd (mod n)

    数据加密算法主要分为两大类:对称加密和非对称加密

    下面我们来看一下他们的区别的各自的作用

     

    下面详细介绍两种加密方式的具体过程

    (1)交易加密或者区块加密(对称加密)

    为了让区块链中的交易信息或者账本状态在网络中安全的传输进行的加密处理方式,基本原理如图1-1所示。

    我们使用一个范式表示为:密文=对称加密算法(明文(原始数据)+密钥K)

     

     

    从图中可以看出来,我们在不屑露交易双发真实信息的前提下,在网络中进行信息的传播,所以要进行信息的加密处理,我们使用对称加密密钥K对明文进行加密处理形成密文,密文在p2p网络中,进行传输,接受者使用相同的密钥进行解密得到明文。

    常见的“对称密钥”加密算法主要有DES、3DES(TripleDES)、AES、RC2、RC4、RC5和Blowfish等,具体每个算法的实现我就不再这里说了,感兴趣的自己取查找。

    对于在网络中传输的信息我们怎么确定信息的真实性,没有被篡改过呢,接下来图1-2所示的为使用数字摘要确保信息的真实性,具体的过程我们来看一下

     

    首先hash函数具有的其中的一个特性就是任何对原始数据的微小改变都会得到完全不一样的结果,所以利用数字摘要的比对可以确认数据有没有被修改过,过程是这样的,将明文hash后得到的数字摘要和密文一起传输,当接受者得到密文时使用密钥进行解密得到明文之后再对明文进行hash运算和区块中的数字摘要进行比较,一致则可以认为数据没有被篡改。

    (2)数字信封传递密钥(非对称加密:公匙加密-私匙解密)

    我们在之前在对数据进行加密时使用了相同的密钥K进行加密和解密,那么怎么确保发送者和接受者的密钥是同一个呢,怎么传递的?下面我将演示具体的实现过程,如图2-3所示。

     

    如果你还是不理解,我举个简单的例子来说,就像大家都喜欢成都小甜甜一样,你也喜欢,你就悄咪咪的写了一封情书,你的甜蜜的话语就相当于我们所说的密匙K,为了不让每个人都看到,害羞嘛,你懂的或是防止其他人比如邮差啊什么的,每天那么苦,有甜甜这样好养的女朋友当然

    也不想错过,一看小甜甜收,心想不能让你得逞,于是就私底下悄咪咪的改了你的甜言蜜语,结果是一段胡话,最后你懂的。。。。。。比较形象,当然,你不想发生这样的情况,你就使用对方的公开的密钥进行的一个加密处理,只有小甜甜的私钥才可以看见信封里面的内容,这就是我们的非对称加密,用来传输密钥。

    (3)数字签名防篡改(非对称加密:私匙加密-公匙解密)

    列一个范式:数字签名=加密(hash(明文)+私钥)

     

     

    数字签名说白了,就像你你现实生活中的手工签名一样,一旦某人签署了某份文件,因为每个人的签名是惟一的,我们就会认为你是他本人的行为,表示那个动作是他本人发出的,不允许抵赖,是有法律效应的,我们的数字签名其实和那个也差不多,只是利用一些密码学的算法来实现某人发生了什么行为,而且可以确定某样东西属于谁,因为私钥只有签名的那个人拥有。

    最后补充一个知识点:零知识证明

    •            意思就是验证着不适用提供的任何有用信息的情况下,使验证着相信某个结果是正确的

    展开全文
  • 二对称加密和非对称加密 对称加密 非对称加密 区别 三RSA原理 整数运算 同余运算 当模数为合数n时 当模数为质数p的时候 离散对数问题 RSA原理 一 , 概述 在现代密码学诞生以前,就已经有很多的...
  • 对称加密与非对称加密,以及RSA的原理

    万次阅读 多人点赞 2017-03-10 06:22:32
    例如,最古老的斯巴达加密棒,广泛应用于公元前7世纪的古希腊。16世纪意大利数学家卡尔达诺发明的栅格密码,基于单表代换的凯撒密码、猪圈密码,基于多表代换的维吉尼亚密码,二战中德军广泛使用的恩格玛加密机….但...
  • 双方使用的同一个密钥,既可以加密又可以解密,这种加密方法称为对称加密,也称为单密钥加密。 简单来说就是:加密与解密都是同一个秘钥。 优点:通常在消息发送方需要加密大量数据时使用,算法公开,计算量小,...
  • 三、https原理 通过上面的学习,我们了解对称加密与非对称加密的特点和优缺点,以及数字证书的作用。https没有采用单一的技术去实现,而是根据他们的特点,充分的将这些技术整合进去,以达到性能与安全最大化。这套...
  • 对称加密2、非对称加密与对称加密算法不同,非对称加密需要公钥和私钥,公钥和私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。公钥是公开的,秘钥是自己保存的。3、RSA:非对称加密鼻祖○ RSA ...
  • 接口安全加密传输(对称加密与非对称加密) URL特殊字符转码 对称加密与非对称加密 DES RSA加密原理 移动APP接口安全加密设计 基于令牌方式实现接口参数安全传输 验签 单向加密 URL转码: ...
  • 按照密码体制分类,密码加密主要分为对称加密和非对称加密两大类。接下来,主要讲解这两者的原理与区别。 一、对称加密 1、原理 通信双方使用同一个密钥,使用加密算法配合上密钥来加密,解密时使用加密...
  • 平时在工作中一直有使用到对称加密与非对称加密算法,以前一直是拿来就用,没有仔细想过里面的实现原理。今天突然有兴趣和时间研究下。 1、什么是对称加密算法? 加密和解密都使用相同密钥的算法。 公式:C=E(P,e...
  • 对称加密与非对称加密各种的应用场景 对称加密 在对称加密这样一个场景中:两个想通讯的人,Bob和Alice,他们共同持有同一把秘钥,Bob可以通过这把秘钥把原始文档生成加密文档,Alice可以使用这把秘钥把加密...
  • (非对称加密原理:私钥只能由一方安全保管,不能外泄,而公钥则可以发给任何请求它的人。非对称加密使用这对密钥中的一个进行加密,而解密则需要另一个密钥。比如,你向银行请求公钥,银行将公钥发给你,你使用公钥对...
  • 对称加密 指的就是加、解密使用的同是一串密钥,所以被称做对称加密。对称加密只有一个密钥作为私钥。 常见的对称加密算法:DES,AES等。 DES加密原理 ...对称加密相比非对称加密算法来说,加...
  • 对称与非对称加密

    2018-05-30 15:25:04
    对称与非对称加密的解释,帮助理解原理。。。。。。。。。
  • 1.非对称加密RSA的原理和欺骗 2.CA 浏览器和服务器通过CA系统才能获取对方的public key,这边极大的降低了呗欺骗的可能性。
  • HTTPS原理之对称加密和非对称加密 1.对称加密 A–客户端 B–服务端 A和B实现对称加密的前提条件是A和B必须共享同一个公钥: 1.A使用公钥对信息进行加密 2.A把加密之后的密文发送到B 3.B使用约定好的公钥对密文进行...
  • HTTPS的核心原理实际上是综合了对此和非对称加密技术,让我们一起简单的来看一下,他怎么保证安全的
  • 在现代社会,互联网已经渗透到人们日常生活的方方面面,娱乐、经济、社会关系等都离不开互联网的帮助。...首先我们需要了解一下加密相关的知识,加密可以分为对称加密和非对称加密。两者的主要区别就是...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 753
精华内容 301
关键字:

对称加密与非对称加密原理