精华内容
下载资源
问答
  • 主要介绍了使用Pandas对数据进行筛选排序的实现,文中通过示例代码介绍的非常详细,大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  • 今天小编就为大家分享一篇使用python多个txt文件中的数据进行筛选的方法,具有很好的参考价值,希望大家有所帮助。一起跟随小编过来看看吧
  • 主要介绍了pandas数据处理基础之筛选指定行或者指定列的数据的相关资料,需要的朋友可以参考下
  • * 第6章 数据的排序与筛选 本章知识点 Excel数据库表格样式与特点...6.1 EXCEL数据库表格及其功能说明 6.2数据的排序 6.3数据排序操作的应用技巧 6.4数据的筛选 小结 习题 6.1 数据库表格及其功能 所谓数据库就是与特定
  • react-data-components, 对数据进行排序筛选和分页的响应组件 react-data-components DataTable: 现场演示和源代码管理。SelectableTable: 现场演示和源代码管理。正在启动npm install react-data-components -
  • 对于批量数据,用excel按某个值进行筛选后,将筛选出来的行进行排序,并且恢复选区排序数值保留在对应行的操作 数据和工具 需要进行操作的数据 excel 方方格子工具http://www.ffcell.com/ 具体操作 1.打开数据: ...

    excel按某个值进行筛选后

    需求

    对于批量数据,用excel按某个值进行筛选后,将筛选出来的行进行排序,并且恢复选区排序数值保留在对应行的操作

    数据和工具

    1. 需要进行操作的数据
    2. excel
    3. 方方格子工具http://www.ffcell.com/

    具体操作

    1.打开数据:

    在这里插入图片描述
    2.对数据进行筛选
    此处我们需要对新增数据进行筛选,但是由于未来采集速度的原因,我们新增的数据中坐标和坐标前面的数据都是1,筛选结果如下图所示
    在这里插入图片描述
    3.对坐标列,和坐标前一列进行操作
    点击C3框选中,输入=SUBTOTAL(103,$D$13:D13),公式,此处我简单解释下公式的意思,SUBTOTAL函数是指从当前指定的 $D$13位置开始,到D13单元格开始有几个单元格,此处就只有一个,所以计算结果等于1

    SUBTOTAL函数参数含义在这里插入图片描述用此公式计算出来的结果在这里插入图片描述
    然后是大家熟悉的操作,点击选中单元格的填充柄(右下角小方点),下拉
    在这里插入图片描述
    可以看到此处已经完成了数据排序。但是这是有公式的数字,当我们恢复筛选的时候它又会变回去。如下图
    在这里插入图片描述
    4.去掉排好序的数值的公式,只保留数值
    关键问题来了,那么我怎样取消筛选后仍然保留我刚刚所需要的数字呢?此时我们就需要去掉公式,只保留数值。我们需要用到的一个Excel插件,就是工具里面提到的方方格子官网下载后安装。
    安装后界面在这里插入图片描述
    然后选中我们所需要的数字,1-10
    在这里插入图片描述
    注意:此处一定要注意,选中后按alt+;使定位条件变为可见单元格如下图
    在这里插入图片描述
    点击方方格子,点击只保留数值
     + Shift + C
    再取消筛选,至此我们发现,所需要的数据保留下来了
    在这里插入图片描述

    结束语

    LY,LZ为你够费心了啊,其他有正好用到的小伙伴尽可能去试一下哈,顺便可以拿坐标那列去练练手

    展开全文
  • 但为确保表格最终统计分析结果的准确性,需要快速筛选出重复的数据,进行删除标记等多重处理。人工手动校对数据即浪费时间,准确率也不高,所以下面这几种高效筛选重复数据的技巧,你应该要知道。 一、高级筛选 ...

    80adf45cd3e92a8f383f8c701ec80f81.png

        在使用Excel表格时,当Excel表格数据在数量庞大的情况下,输入重复数据在所难免。但为确保表格最终统计分析结果的准确性,需要快速筛选出重复的数据,进行删除标记等多重处理。人工手动校对数据即浪费时间,准确率也不高,所以下面这几种高效筛选重复数据的技巧,你应该要知道。

        一、高级筛选
        Excel自带的高级筛选功能,可以快速将数据列中的重复数据删除,并筛选保留不重复的数据项,十分的便利实用。
    步骤:选中需要进行筛选的目标数据列,点击【数据】菜单栏,点击【高级筛选】,选中【在原有区域显示筛选结果】,勾选【选择不重复的记录】,单击【确定】即可。

    bc80aed349e85dff66f76a953a3c0163.gif

        二、自动筛选
        自动筛选功能与高级筛选类似,只是筛选出的结果需要一个个手动勾选,方能显示是否存在重复结果。
    步骤:选中需要进行筛选的目标数据列,点击【数据】菜单栏,点击【自动筛选】,取消【全选】,勾选【张三三】,即可看出该数据项是否存在重复,重复数量多少。

    f7699ea204c621f9ffcc0e23172ca3da.gif

        三、条件格式
        Excel的条件格式功能,也可以快速筛选出重复值,具体操作如下。
    步骤:选中目标数据区域,点击【条件格式】,选择【突出显示单元格规则】,选择【重复值】,设置重复单元格格式,单击【确定】即可。

    04996f34851159c779479031cb731cb1.gif

        四、公式法
        简单的说就是可以通过使用函数公式,来筛选出表格中的重复数据。
        1、countif函数
    步骤:点击目标单元格,输入公式【=COUNTIF(A$2:A$10,A2)】,下拉填充,可统计出数据项的重复次数。

    e9a4fbf97aabf53fd962f92b8df8685e.gif

        2、if函数
    步骤:点击目标单元格,输入公式【=IF(COUNTIF(A$2:A$10,A2)>1,"重复","")】,下拉填充,对于存在重复的数据会显示重复二字。

    8f40073b81f13d79fa12ceefb99b665d.gif

    5edc1b6c03e3772aaea379517083999a.png

    展开全文
  • 主要为大家详细介绍了vuejs通过filterBy、orderBy实现搜索筛选、降序排序数据实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  • 使用Pandas对数据进行筛选排序

    千次阅读 2017-07-02 17:07:09
    转载:“蓝鲸网站分析博客”... 首选导入需要使用的Pandas库和numpy库,读取并创建数据表,将数据表命名为lc。 import pandas as pd import numpy as np lc=pd.DataFrame(pd.read_csv('Lo


    转载:蓝鲸网站分析博客”http://bluewhale.cc/2016-08-06/use-pandas-filter-and-sort.html


    首选导入需要使用的Pandas库和numpy库,读取并创建数据表,将数据表命名为lc。

    import pandas as pd
    import numpy as np
    lc=pd.DataFrame(pd.read_csv('LoanStats3a.csv',header=1))
    

    创建数据表后,开始使用Pandas的.sort函数对数据表进行排序操作,下面是Pandas官方对.sort函数语法和使用方法的说明。.sort函数主要包含6个参数,columns为要进行排序的列名称, ascending为排序的方式true为升序,False为降序,默认为true。axis为排序的轴,0表示index,1表示columns,当对数据列进行排序时,axis必须设置为0。inplace默认为False,表示对数据 表进行排序,不创建新实例。Kind可选择排序的方式,如快速排序等。na_position对NaN值的处理方式,可以选择first和last两种方式,默认为last,也就是将NaN值放在排序的结尾。

    sort官方说明

    在了解了.sort函数的语法和使用方法后,我们开始使用这个函数对数据进行排序操作,数据源来自Lending Club 2017-2011年的公开数据。首先对单列数据进行排序。

    对单列数据进行排序

    升序
    单列数据的排序的方法很简单,按照.sort函数中的介绍,写清楚要排序的数据表名称,以及要进行排序的列名称即可。具体的代码和排序结果如下所示,其中lc是前面我们读取并创建的数据表名称,loan_amnt是要进行排序的列名称。这里我们对lc数据表按loan_amnt列进行升序排列。这里需要说明的是ascending参数的默认值是True,也就是升序。因此下面的两种写法效果是一样的 。

    lc.sort(["loan_amnt"])
    lc.sort(["loan_amnt"],ascending=True)
    

    对数据排序_升序

    降序
    将ascending参数的值改为False就完成对数据表的降序排列工作。与升序排列的数据表相比可以发现升序排列将loan_amnt列的最小值放在了前面,因此我们可以判断loan_amnt的最小金额为500,与之相反,降序排列将最大值放在了前面,因此loan_amnt的最大金额应该为35000。这里我们没有设置na_position参数的值,因此按默认情况loan_amnt列的NaN值在排序的结尾显示。以下显示了降序排列的代码和结果。

    lc.sort(["loan_amnt"],ascending=False)
    

    对数据排序_降序

    对多列数据进行排序

    除了对单列数据进行排序以外,.sort函数还可以对多列数据进行排序操作。下面我们分别对loan_amnt和int_rate字段进行降序排列,以下是具体的代码和排序结果,与单列数据排序的代码相比,这里只增加了一个新的列名称int_rate。

    lc.sort(["loan_amnt","int_rate"],ascending=False)
    

    对多列数据进行排序1

    我们将需要排序的两个列名称互换位置,再次执行降序排列操作。观察两次的排序结果可以发现,这次的结果与之前的结果有一些差异。Loan_amnt字段的排序结果有些混乱,有些较小的值排在了较大值的前面。这是因为第一次排序时loan_amnt是第一排序字段,int_rate是第二排序字段。两个字段交换位置第二次排序后,int_rate变成了第一排序字段,loan_amnt变成了第二排序字段 。

    lc.sort(["int_rate","loan_amnt"],ascending=False)
    

    对多列数据进行排序2
    获取金额最小前10项

    在完成了对数据表排序的操作后,我们可以对数据表进行简单的筛选,例如获取loan_amnt金额最小的前10名数据。具体的方法是先对lc数据表按loan_amnt升序排列,然后取前10名的数据。NaN值默认在排序结果的结尾显示。以下是具体代码和结果。与前面单列升序排列的代码相比只在结尾增加了.head()函数。

    lc.sort(["loan_amnt"],ascending=True).head(10)
    

    筛选最小前10项

    获取金额最大前10项

    获取金额最大前10项的代码与获取金额最小前10项略有差异,本来我们只需要复制前面的代码,然后将.head()函数改为tail()函数即可,但由于NaN值在排序的尾部,因此,我们将lc数据表按loan_amnt按降序排列,并取排名前10的数据。当然这并不是唯一的方法,我们还可以通过放弃NaN值的排序或者将NaN值在排序前部显示来解决这个问题。以下是具体的代码和执行结果。

    lc.sort(["loan_amnt"],ascending=False).head(10)
    

    筛选最大前10项
    介绍完排序功能后再来看下筛选,在筛选功能上Pandas使用的是.loc函数。以下是Pandas官方对.loc函数的语法和使用方法的说明。

    loc官方说明

    单列数据筛选并排序

    我们使用.loc对lc数据表中grade列为B值的数据条目进行了筛选操作,具体的代码和筛选结果如下。在代码中lc.loc[]是.loc函数的语法,lc[“grade”] == “B”是具体的筛选条件。由于数据表较大,因此在最后使用了head()函数只显示前5行筛选结果。从筛选结果来看grade列的值都为B。

    lc.loc[lc["grade"] == "B"].head()
    

    单列数据筛选_包含

    筛选条件除了”等于”(==)以外,还可以使用”不等于”(!=)来排除列中特定的值。我们使用”不等于”来筛选grade列中不是B值的数据条目。以下是具体的代码和筛选结果,可以看到筛选结果中的grade列里已经不包含B值了。

    lc.loc[lc["grade"] != "B"].head()
    

    单列数据筛选_排除

    很多时候我们只关注数据表中某几列的数据,这时可以在前面筛选代码的基础上增加要显示的列名称和显示顺序。下面是具体的代码和筛选结果。代码部分与之前相比增加了要显示的列名称 [“member_id”, “loan_amnt”, “grade”]。其余部分均没有改变。在筛选结果的数据表中可以看到仅显示了我们在代码中列出的三列。

    lc.loc[lc["grade"] == "B", ["member_id", "loan_amnt", "grade"]].head()
    

    单列数据筛选_包含并限定列

    若要对筛选结果进行排序可以联合使用.loc函数和.sort函数。下面的代码中首先对数据表的grade列进行筛选,选择所有值为B的数据,并限定了结果中要显示的三列的名称。最后对筛选出的结果按loan_amnt的金额进行升序排序。

    lc.loc[lc["grade"] == "B", ["member_id", "loan_amnt", "grade"]].sort(["loan_amnt"])
    

    单列数据筛选_包含并限定列升序

    在代码后面增加ascending参数,并将值设置为False就可实现对筛选结果的降序排列。以下为具体的代码和筛选及排序结果。

    lc.loc[lc["grade"] != "B", ["member_id", "loan_amnt", "grade"]].sort(["loan_amnt"],ascending=False)
    

    单列数据筛选_排除并限定列降序

    多列数据筛选并排序

    Pandas的.loc参数还可以同时对多列数据进行筛选,并且支持不同筛选条件逻辑组合。常用的筛选条件包括”等于”(==)”,不等于”(!),”大于”(>)”,小于”(<)”,大于等于”(>=)” ,小于等于”(<=)等等。逻辑组合包括”与”()和”或”()。下面我们将通过3条多列数据筛选代码逐一进行介绍。

    第一条代码使用”与”逻辑,筛选出了grade等于B,并且loan_amnt金额大于5000的数据。并限定了显示的列名称。从筛选结果中可以看出grade列的值都是B,loan_amnt的金额均大于5000。

    lc.loc[(lc["grade"] == "B") & (lc["loan_amnt"]>5000), ["member_id", "term" , "loan_amnt", "grade","sub_grade", "int_rate"]].head()
    

    多列数据筛选_与

    第二条代码也使用”与”逻辑,筛选出了grade不等于B,并且loan_status不等于Charged Off的数据,同时也限定了显示的列名称。从筛选结果中看grade列不包含B值,并且loan_status列不包含Charged Off值。

    lc.loc[(lc["grade"] != "B") & (lc["loan_status"] != "Charged Off"),["member_id", "term" , "loan_amnt", "grade", "sub_grade", "loan_status"]].head()
    

    多列数据筛选_与1

    第三条代码使用了”或”逻辑,筛选出了grade列值为B,或loan_amnt列金额大于5000的数据,同时也限定了显示的列名称。从筛选结果来看,grade列除了B值以外还保留了其他的值,而这些值在loan_amnt列的金额均大于5000。换句话说,一条数据只要grade列或loan_amnt列任意之一符合筛选条件,这条数据就会被显示。

    lc.loc[(lc["grade"] == "B") | (lc["loan_amnt"] > 5000), ["member_id", "term" , "loan_amnt", "grade","sub_grade", "int_rate"]].head()
    

    多列数据筛选_或

    多列筛选也可以进行排序,方法与单列筛选后排序基本一样,下面的代码对多列筛选后的结果按loan_amnt列进行升序排序。由于筛选条件中限定了loan_amnt列的值要大于5000,因此排序的结果从5020开始。

    lc.loc[(lc["grade"] == "B") & (lc["loan_amnt"] > 5000), ["member_id", "term" , "loan_amnt", "grade","sub_grade", "int_rate"]].sort(["loan_amnt"])
    

    多列数据筛选_或

    对多列筛选结果进行降序排序只需在前面升序排序代码的基础上增加ascending参数,并将值设定为False即可。下面是多列筛选后降序排序的代码和结果。

    lc.loc[(lc["grade"] == "B") & (lc["loan_amnt"] > 5000), ["member_id", "term" , "loan_amnt", "grade","sub_grade", "int_rate"]].sort(["loan_amnt"],ascending=False)
    

    多列数据筛选_与降序

    无论是”与”条件,还是”或”条件都可以在筛选后使用排序。下面代码是对使用了“或”逻辑条件的筛选结果进行降序排序的代码和结果。

    lc.loc[(lc["grade"] == "B") | (lc["loan_amnt"] > 5000), ["member_id", "term" , "loan_amnt", "grade","sub_grade", "int_rate"]].sort(["loan_amnt"],ascending=False)
    

    多列数据筛选_或降序

    Pandas中的排序和筛选基本介绍完了,在实际的分析工作中,筛选只是分析过程中的一个步骤,很多时候我们还需要对筛选后的结果进行汇总,例如求和,计数,或计算均值等等。也就是Excel中常用的sumifs和countifs函数。

    按筛选条件求和(sumif, sumifs)

    在单列筛选的代码后增加求和条件就相当于Excel中的sumif函数的功能。下面的代码在单列筛选的代码后增加了.loan_amnt.sum()的求和字段,表示对数据表中所有grade列值为B的loan_amnt金额求和。

    lc.loc[lc["grade"] == "B",].loan_amnt.sum()
    

    按筛选条件求和_等于
    除了包含条件外,也可以对排除某一条件的数据求和。下面的代码与之前的正好相反,对数据表中所有grade列值不为B的loan_amnt金额求和。

    lc.loc[lc["grade"] != "B",].loan_amnt.sum()
    

    按筛选条件求和__不等于

    增加一个筛选条件就变成了Excel中的sumifs函数的功能。下面的代码中分别使用了两个条件对数据表进行筛选,并对最后的loan_amnt金额进行求和。

    lc.loc[(lc["grade"] == "B") & (lc["loan_amnt"] > 5000)].loan_amnt.sum()
    

    按筛选条件求和_多条件

    按筛选条件计数(countif, countifs)

    将前面的.sum()函数换为.count()函数就变成了Excel中的countif函数的功能,下面的代码对数据表中grade列值为B的loan_amnt笔数进行计数。

    lc.loc[lc["grade"] == "B"].loan_amnt.count()
    

    按筛选条件计数_等于

    与前面代码相反,下面的代码对数据表中grade列值不为B的所有loan_amnt笔数进行计数。

    lc.loc[lc["grade"] != "B"].loan_amnt.count()
    

    按筛选条件计数_不等于

    增加筛选条件,变成了Excel中的countifs函数的功能,下面的代码对数据表中grade列值为B,并且loan_amnt金额额大于5000的loan_amnt笔数进行计数。

    lc.loc[(lc["grade"] == "B") & (lc["loan_amnt"] > 5000)].loan_amnt.count()
    

    按筛选条件计数_多条件

    按筛选条件计算均值(averageif, averageifs)

    有了sumifs和countifs,当然也少不了averageifs,在Pandas中.mean()是用来计算均值的函数,将.sum()和.count()替换为.mean()。就是pandas版的averageif和averageifs。下面的代码中计算了数据表中grade列值为B的loan_amnt金额均值。相当于Excel中的averageif函数的功能。

    lc.loc[lc["grade"] == "B"].loan_amnt.mean()
    

    按筛选条件计算均值_等于

    与前面的代码证号相反,下面的代码计算了数据表中所有grade列值不为B的loan_amnt金额均值。

    lc.loc[lc["grade"] != "B"].loan_amnt.mean()
    

    按筛选条件计算均值_不等于

    增加一个筛选条件变成了Excel中的averageifs,不过这里好像又有一些不同,Excel中的sumifs,countifs和averageifs的计算逻辑是满足满足所有指定条件时,才对这些单元格进行求和或计数。而在下面的代码中我们使用了或条件,就是说只要满足两个条件中的任意一个都会进行计算。

    lc.loc[(lc["grade"] == "B") | (lc["loan_amnt"] > 5000)].loan_amnt.mean()
    

    按筛选条件计算均值_多条件或

    按筛选条件获取最大值和最小值

    最后两个是Excel中没有的函数功能,就是对筛选后的数据表计算最大值和最小值。方法很简单,将之前的sum()和count()换成max()和min()函数即可。下面是具体的代码和结果。

    这条代码是计算数据表中grade列值为B的loan_amnt最大金额。

    lc.loc[lc["grade"] == "B"].loan_amnt.max()
    

    按筛选条件计算最大值

    这条代码是计算数据表中grade列值不为B的loan_amnt最小金额。

    lc.loc[lc["grade"] != "B"].loan_amnt.min()
    

    按筛选条件计算最小值

    以上这些也同样支持多条筛选后的计算,在此就不逐一列出了。


    展开全文
  • JS给Json数据筛选排序

    千次阅读 2019-08-30 10:46:04
    原Json数据 data={…} 筛选排序 data= JSON.stringify(data, ['选出', '你要的', '字段', '并且', '按照顺序', '排序']); 输出新Json data= $.parseJSON(data);
    原Json数据

    data={…}

    筛选与排序
    data= JSON.stringify(data, ['选出', '你要的', '字段', '并且', '按照顺序', '排序']);
    
    输出新Json
    data= $.parseJSON(data);
    
    展开全文
  • 如何将Excel重复数据筛选出来?简单技巧有三种!Excel表格数据在数量庞大的情况下,输入重复数据在所难免。但为确保表格最终统计分析结果的准确性,需要快速筛选出重复的数据,进行删除标记等多重处理。人工手动校对...
  • 针对中职的计算机应用基础课程所做的教学设计,该教学设计过程详细,师生的课堂行为都有具体描述,可在中职课堂应用。
  • MATLAB筛选数据

    万次阅读 2019-03-29 13:57:51
    MATLAB筛选数据 文章目录MATLAB筛选数据0.前言1.程序代码 0.前言 任务要求如下; 把36万行的代码筛选出来,只剩下1800多行 1.程序代码 %% clear; clc; filename_Old = 'WLTC.XLS'; [~,Sheet,~]=xlsfinfo...
  • 我就废话不多说了,大家还是直接看代码吧~ /** * Created by hao.cheng on 2017/4/15. */ import React from 'react'; import { Table, Button } from 'antd'; const data = [{ key: '1', ... name: '王五',
  • 下面这篇文章主要给大家介绍了关于pythonexcel进行数据剔除操作的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。Python解析Excel时需要安装两个包,分别是xlrd(读excel)和xlwt...
  • PAGE / NUMPAGES 数据排序筛选 教学目标 ?知识技能 1.要求学生学会对数据进行排序 2.初步掌握工作表筛选的两种方式 3.利用EXCEL对数据进行分类汇总,分析数据 过程与方法 1.培养学生利用资源自学的能力,能在学习...
  • #资源达人分享计划#
  • 数据筛选排序.zip

    2020-10-26 15:23:16
    S1课程使用C#开发数据库应用系统 第六章循数据筛选排序的教学演示案例/上机练习参考答案/课后作业参考答案 相关示例提供
  • select * from employees --查询employees表(员工表)的所有列的所有数据(这里没有加where条件,所以是查询所有行,*号表示显示所有的列) select employee_id, first_name, last_name from employees where employee...
  • 主要介绍了C#使用linq对数组进行筛选排序的方法,实例分析了C#实用linq扩展进行数组排序的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
  • 针对 DataGrid 控件,对数据进行分组、排序筛选....
  • 【MySQL基础学习】数据表的筛选以及排序

    千次阅读 热门讨论 2020-03-20 17:51:30
    数据表的筛选以及排序
  • 使用computed 方法来过滤筛选数据;或者使用methods 方式来筛选过滤数据 <body> <div id="app"> <ul> <li v-for="item in list">{{item.id}}</li> </ul> ...
  • 例如:下面的分析视图,我们产品子类别按销售额进行了排序。注意看办公用品类别中“器具”的排名,在所有商品中,它的销售额排第2名(如下图)。 接着,我们想看看办公用品下子类别的具体排名,用右侧筛选器只...
  • 文章目录一、处理Excel文件数据筛选后的数据保存到新的Excel二、校验数据及保存新的Excel文件 一、处理Excel文件数据筛选后的数据保存到新的Excel # -*- coding:utf-8 -*- import pandas as pd from ...
  • 排序工作表中的数据进行重新组织安排的一种方式。Excel可以整个工作表或选定的某个单元格区域进行排序。 在Excel中,可以一列或多列中的数据按文本、数字以及日期和时间进行排序,还可以按自定义序列(如...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 247,430
精华内容 98,972
关键字:

对筛选出来的数据排序