精华内容
下载资源
问答
  • 首先,我们介绍这两种传统的存储类型。通常来讲,所有磁盘阵列都是基于Block块的模式(DAS),而所有的NAS产品都是文件级存储 1、块存储   以下列出的两种存储方式都是块存储类型:  1) DAS(Direct Attach ...

         首先,我们介绍这两种传统的存储类型。通常来讲,所有磁盘阵列都是基于Block块的模式(DAS),而所有的NAS产品都是文件级存储

    1、块存储       

            以下列出的两种存储方式都是块存储类型:
           1) DAS(Direct Attach STorage):是直接连接于主机服务器的一种储存方式,每一台主机服务器有独立的储存设备,每台主机服务器的储存设备无法互通,需要跨主机存取资料时,必须经过相对复杂的设定,若主机服务器分属不同的操作系统,要存取彼此的资料,更是复杂,有些系统甚至不能存取。通常用在单一网络环境下且数据交换量不大,性能要求不高的环境下,可以说是一种应用较为早的技术实现。
           2)SAN(Storage Area Network):是一种用高速(光纤)网络联接专业主机服务器的一种储存方式,此系统会位于主机群的后端,它使用高速I/O 联结方式, 如 SCSI, ESCON 及 Fibre- Channels。一般而言,SAN应用在对网络速度要求高、对数据的可靠性和安全性要求高、对数据共享的性能要求高的应用环境中,特点是代价高,性能好。例如电信、银行的大数据量关键应用。它采用SCSI 块I/O的命令集,通过在磁盘或FC(Fiber Channel)级的数据访问提供高性能的随机I/O和数据吞吐率,它具有高带宽、低延迟的优势,在高性能计算中占有一席之地,但是由于SAN系统的价格较高,且可扩展性较差,已不能满足成千上万个CPU规模的系统。

    2、文件存储

            通常,NAS产品都是文件级存储。  NAS(Network Attached Storage):是一套网络储存设备,通常是直接连在网络上并提供资料存取服务,一套 NAS 储存设备就如同一个提供数据文件服务的系统,特点是性价比高。例如教育、政府、企业等数据存储应用。
           它采用NFS或CIFS命令集访问数据,以文件为传输协议,通过TCP/IP实现网络化存储,可扩展性好、价格便宜、用户易管理,如目前在集群计算中应用较多的NFS文件系统,但由于NAS的协议开销高、带宽低、延迟大,不利于在高性能集群中应用。
          下面,我们对DAS、NAS、SAN三种技术进行比较和分析:

    表格 1 三种技术的比较



            针对Linux集群对存储系统高性能和数据共享的需求,国际上已开始研究全新的存储架构和新型文件系统,希望能有效结合SAN和NAS系统的优点,支持直接访问磁盘以提高性能,通过共享的文件和元数据以简化管理,目前对象存储系统已成为Linux集群系统高性能存储系统的研究热点,如Panasas公司的Object Base Storage Cluster System系统和Cluster File Systems公司的Lustre等。下面将详细介绍对象存储系统。

    3、对象存储

            总体上来讲,对象存储同兼具SAN高速直接访问磁盘特点及NAS的分布式共享特点(扩展性)
            核心是将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备(Object-based Storage Device,OSD)构建存储系统。每个对象存储设备具有一定的智能,能够自动管理其上的数据分布。

    对象存储架构

            对象存储结构组成部分(对象、对象存储设备、元数据服务器、对象存储系统的客户端):

           3.1、对象

            对象是系统中数据存储的基本单位,一个对象实际上就是文件的数据和一组属性信息(Meta Data)的组合,这些属性信息可以定义基于文件的RAID参数、数据分布和服务质量等,而传统的存储系统中用文件或块作为基本的存储单位,在块存储系统中还需要始终追踪系统中每个块的属性,对象通过与存储系统通信维护自己的属性。在存储设备中,所有对象都有一个对象标识,通过对象标识OSD命令访问该对象。通常有多种类型的对象,存储设备上的根对象标识存储设备和该设备的各种属性,组对象是存储设备上共享资源管理策略的对象集合等。 

    传统块存储与对象存储



    对象的组成


    传统的访问层次和虚拟数据访问模型

           3.2、对象存储设备

            对象存储设备具有一定的智能,它有自己的CPU、内存、网络和磁盘系统,OSD同块设备的不同不在于存储介质,而在于两者提供的访问接口。OSD的主要功能包括数据存储和安全访问。目前国际上通常采用刀片式结构实现对象存储设备。OSD提供三个主要功能:
          (1) 数据存储。OSD管理对象数据,并将它们放置在标准的磁盘系统上,OSD不提供块接口访问方式,Client请求数据时用对象ID、偏移进行数据读写。
          (2) 智能分布。OSD用其自身的CPU和内存优化数据分布,并支持数据的预取。由于OSD可以智能地支持对象的预取,从而可以优化磁盘的性能。
          (3) 每个对象元数据的管理。OSD管理存储在其上对象的元数据,该元数据与传统的inode元数据相似,通常包括对象的数据块和对象的长度。而在传统的NAS系统中,这些元数据是由文件服务器维护的,对象存储架构将系统中主要的元数据管理工作由OSD来完成,降低了Client的开销。

    传统模型 VS OSD模型

            3.3、元数据服务器(Metadata Server,MDS)

              MDS控制Client与OSD对象的交互,主要提供以下几个功能:
          (1) 对象存储访问。
            MDS构造、管理描述每个文件分布的视图,允许Client直接访问对象。MDS为Client提供访问该文件所含对象的能力,OSD在接收到每个请求时将先验证该能力,然后才可以访问。
          (2) 文件和目录访问管理。
            MDS在存储系统上构建一个文件结构,包括限额控制、目录和文件的创建和删除、访问控制等。
         (3) Client Cache一致性。
            为了提高Client性能,在对象存储系统设计时通常支持Client方的Cache。由于引入Client方的Cache,带来了Cache一致性问题,MDS支持基于Client的文件Cache,当Cache的文件发生改变时,将通知Client刷新Cache,从而防止Cache不一致引发的问题。
            3.4、对象存储系统的客户端Client
              为了有效支持Client支持访问OSD上的对象,需要在计算节点实现对象存储系统的Client。现有的应用对数据的访问大部分都是通过POSIX文件方式进行的,对象存储系统提供给用户的也是标准的POSIX文件访问接口。接口具有和通用文件系统相同的访问方式,同时为了提高性能,也具有对数据的Cache功能和文件的条带功能。同时,文件系统必须维护不同客户端上Cache的一致性,保证文件系统的数据一致。文件系统读访问流程:
    1)客户端应用发出读请求; 
    2)文件系统向元数据服务器发送请求,获取要读取的数据所在的OSD; 
    3)然后直接向每个OSD发送数据读取请求; 
    4)OSD得到请求以后,判断要读取的Object,并根据此Object要求的认证方式,对客户端进行认证,如果此客户端得到授权,则将Object的数据返回给客户端;
    5)文件系统收到OSD返回的数据以后,读操作完成。

    对象存储文件系统的关键技术

    1、分布元数据 传统的存储结构元数据服务器通常提供两个主要功能。
    (1)为计算结点提供一个存储数据的逻辑视图(Virtual File System,VFS层),文件名列表及目录结构。
    (2)组织物理存储介质的数据分布(inode层)。对象存储结构将存储数据的逻辑视图与物理视图分开,并将负载分布,避免元数据服务器引起的瓶颈(如NAS系统)。元数据的VFS部分通常是元数据服务器的10%的负载,剩下的90%工作(inode部分)是在存储介质块的数据物理分布上完成的。在对象存储结构,inode工作分布到每个智能化的OSD,每个OSD负责管理数据分布和检索,这样90%的元数据管理工作分布到智能的存储设备,从而提高了系统元数据管理的性能。另外,分布的元数据管理,在增加更多的OSD到系统中时,可以同时增加元数据的性能和系统存储容量。

    2、并发数据访问 对象存储体系结构定义了一个新的、更加智能化的磁盘接口OSD。OSD是与网络连接的设备,它自身包含存储介质,如磁盘或磁带,并具有足够的智能可以管理本地存储的数据。计算结点直接与OSD通信,访问它存储的数据,由于OSD具有智能,因此不需要文件服务器的介入。如果将文件系统的数据分布在多个OSD上,则聚合I/O速率和数据吞吐率将线性增长,对绝大多数Linux集群应用来说,持续的I/O聚合带宽和吞吐率对较多数目的计算结点是非常重要的。对象存储结构提供的性能是目前其它存储结构难以达到的,如ActiveScale对象存储文件系统的带宽可以达到10GB/s。
     

     4、GlusterFS 和对象存储
           GlusterFS是目前做得最好的分布式存储系统之一,而且已经开始商业化运行。但是,目前GlusterFS3.2.5版本还不支持对象存储。如果要实现海量存储,那么GlusterFS需要用对象存储。值得高兴的是,GlusterFS最近宣布要支持对象存储。它使用openstack的对象存储系统swift的上层PUT、GET等接口,支持对象存储。

        20世纪电子与信息技术迅速发展,机器计算迅速普及,冯·诺依曼在1945年6月30日,提出了存储程序逻辑架构,即现有的计算机都遵循的“冯·诺依曼体系架构”,具体如下图:

      我们可以看出,冯诺依曼体系结构与人脑(生物)计算模型匹配度相当准确。我们通常把运算器和控制器合并成中央处理器(CPU),内部小容量的存储提供快速的访问,外部存储器提供大容量的存储空间。在不同的计算机时代,我们可以按照不同的角度来理解冯诺依曼体系结构。在单机计算时代(包括大型机小型机、微机)内部存储器可理解为内存(即Memory),外部存储器可理解为物理硬盘(包括本地硬盘和通过网络映射的逻辑卷)。在本地硬盘空间不足,可靠性无法满足业务需求的情况下,SAN存储出现了,通过网络映射的逻辑卷(即SAN存储提供的LUN)成为增强版的硬盘。为了解决数据共享的问题,NAS存储随之诞生。
         但冯诺依曼体系架构没有考虑并行计算和数据共享情形,在如今的网络时代,大量计算设备通过网络形成一个庞大、相互独立但又逻辑统一的计算系统,因此我们可以总结出一个数据存储的通用模型,这个模型包括两级存储,其存储容量差距约1000倍:

      如果将上图中每一个计算模块理解为一个计算内核,那么高速存储单元则是CPU内的缓存(单位为KB~MB),海量存储单元则是内存(单位为GB);如果把每一个计算模块理解为一个CPU,那么高速存储单元则是内存(单位为GB~TB),海量存储是物理硬盘或通过网络映射给服务器的逻辑卷(或网络文件系统,单位为TB~PB);如果把计算模块理解为针对某一项任务或某一组任务提供计算能力的服务器集群,把SAN或NAS等拥有TB~PB级存储规模的网络存储设备理解为高速存储单元,那么具备PB~EB级存储容量的海量存储单元将基于什么技术和产品构建呢?

      SAN和NAS技术已经出现了数十年,目前单台SAN或NAS设备最大容量已经达到PB级别,但在应对EB级数据挑战时,还是显得有些力不从心。这主要由于其架构和服务接口决定的。
           SAN使用SCSI协议作为底层协议,SCSI协议管理的粒度非常小,通常以字节(byte)或千字节(KB)为单位;同时SCSI协议没有提供读写锁机制以确保不同应用并发读写时的数据一致性,因此难以实现EB级存储资源管理和多个服务器/服务器集群之间数据共享。
           NAS使用文件协议访问数据,通过文件协议存储设备能够准确识别数据内容,并提供了非常丰富的文件访问接口,包括复杂的目录/文件的读写锁。文件和目录采用树形结构管理,每个节点使用一种叫做inode的结构进行管理,每一个目录和文件都对应一个iNode。目录深度或同一目录下的子节点数随着整体文件数量的增加而快速增加,通常文件数量超过亿级时,文件系统复杂的锁机制及频繁的元数据访问将极大降低系统的整体性能。
         传统的RAID技术和Scale-up架构也阻止了传统的SAN和NAS成为EB级高可用,高性能的海量存储单元。传统的RAID基于硬盘,通常一个RAID组最多包含20+块硬盘,即使PB级规模的SAN或NAS也将被分割成多个存储孤岛,增加了EB级规模应用场景下的管理复杂度;同时Scale-up架构决定了即使SAN和NAS存储容量达到EB级,性能也将成为木桶的短板。
         那么如何才能应对信息爆炸时代的数据洪流呢?我们设想能否有一种“超级数据图书馆”,它提供海量的、可共享的存储空间给很多用户(服务器/服务器集群)使用,提供超大的存储容量,其存储容量规模千倍于当前的高速存储单元(SAN和NAS),用户或应用访问数据时无需知道图书馆对这些书如何摆放和管理(布局管理),只需要提供唯一编号(ID)就可以获取到这本书的内容(数据)。如果某一本书变得老旧残破,系统自动地将即将失效或已经失效的书页(存储介质)上的数据抄写(恢复/重构)到新的纸张(存储介质)上,并重新装订这本书,数据使用者无需关注这一过程,只是根据需要去获取数据资源。这种“超级数据图书馆”是否真的存在呢?

      分布式对象存储的诞生

         对象存储技术的出现和大量自动化管理技术的产生,使得“超级数据图书馆”不再是人类遥不可及的梦想。对象存储系统(Object-Based Storage System)改进了SAN和NAS存储的劣势,保留了NAS的数据共享等优势,通过高级的抽象接口替代了SCSI存储块和文件访问接口(不同地区的用户访问不同的POSIX文件系统,不仅浪费时间,而且让运维管理变的更复杂。相对而言,分布式存储系统的优势明显。在分布式存储系统上做应用开发更便利,易维护和扩容,自动负载平衡。以RESTful HTTP接口代替了POSIX接口和QEMU Driver接口),屏蔽了存储底层的实现细节,将NAS垂直的树形结构改变成平等的扁平结构,从而提高了扩展性、增强了可靠性、具备了平台无关性等重要存储特性。(Erasure Code: 是将文件转换成一个碎片集合,每一个碎片很小,碎片被打散分布到一组服务器资源池里。只要存留的碎片数量足够,就可以合成为原本的文件。这可以在保持原本的数据健壮性的基础上大大减少需要的存储空间。不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务(不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务))
      SNIA(网络存储工业协会)定义的对象存储设备是这样的:
    Ø 对象是自完备的,包含元数据、数据和属性
         n 存储设备可以自行决定对象的具体存储位置和数据的分布
         n 存储设备可以对不同的对象提供不同的QoS
    Ø 对象存储设备相对于块设备有更高的“智能”,上层通过对象ID来访问对象,而无需了解对象的具体空间分布情况
         换句话说对象存储是智能化、封装得更好的块,是“文件”或其他应用级逻辑结构的组成部分,文件与对象的对应关系由上层直接控制,对象存储设备本身也可能是个分布式的系统——这就是分布式对象存储系统了。
      用对象替代传统的块的好处在于对象的内容本身来自应用,其具有内在的联系,具有“原子性”,因此可以做到:
    Ø 在存储层进行更智能的空间管理
    Ø 内容相关的数据预取和缓存
    Ø 可靠的多用户共享访问
    Ø 对象级别的安全性
         同时,对象存储架构还具有更好的可伸缩性。一个对象除了ID和用户数据外,还包含了属主、时间、大小、位置等源数据信息,权限等预定义属性,乃至很多自定义属性。
         具备EB级规模扩展性的分布式对象存储,通过对应用提供统一的命名空间,构建EB级统一、可共享数据的存储资源池,有效地填补上述通用计算模型中“网络计算”场景海量存储单元空白,通过高层次的数据模型抽象,可以简化应用对数据访问,同时使得海量存储更加智能。
        对象是数据和自描述信息的集合,是在磁盘上存储的基本单元。对象存储通过简化数据的组织形式(如将树形的“目录”和“文件”替换为扁平化的“ID”与“对象”)、降低协议与接口的复杂度(如简化复杂的锁机制,确保最终一致性),从而提高系统的扩展性以应对信息爆炸时代海量数据的挑战。同时对象的智能自管理功能也能有效降低系统维护复杂度,帮助用户降低整体拥有成本(TCO)。
    展开全文
  • 存储和文件存储是我们比较熟悉的两种主流的存储类型,而对象存储(Object-based Storage)是一种新的网络存储架构,基于对象存储技术的设备就是对象存储设备(Object-based Storage Device)简称OSD。  首先,...
    块存储和文件存储是我们比较熟悉的两种主流的存储类型,而对象存储(Object-based Storage)是一种新的网络存储架构,基于对象存储技术的设备就是对象存储设备(Object-based Storage Device)简称OSD。
         首先,我们介绍这两种传统的存储类型。通常来讲,所有磁盘阵列都是基于Block块的模式(DAS),而所有的NAS产品都是文件级存储

    1、块存储       
            以下列出的两种存储方式都是块存储类型:
           1) DAS(Direct Attach STorage):是直接连接于主机服务器的一种储存方式,每一台主机服务器有独立的储存设备,每台主机服务器的储存设备无法互通,需要跨主机存取资料时,必须经过相对复杂的设定,若主机服务器分属不同的操作系统,要存取彼此的资料,更是复杂,有些系统甚至不能存取。通常用在单一网络环境下且数据交换量不大,性能要求不高的环境下,可以说是一种应用较为早的技术实现。
           2)SAN(Storage Area Network):是一种用高速(光纤)网络联接专业主机服务器的一种储存方式,此系统会位于主机群的后端,它使用高速I/O 联结方式, 如 SCSI, ESCON 及 Fibre- Channels。一般而言,SAN应用在对网络速度要求高、对数据的可靠性和安全性要求高、对数据共享的性能要求高的应用环境中,特点是代价高,性能好。例如电信、银行的大数据量关键应用。它采用SCSI 块I/O的命令集,通过在磁盘或FC(Fiber Channel)级的数据访问提供高性能的随机I/O和数据吞吐率,它具有高带宽、低延迟的优势,在高性能计算中占有一席之地,但是由于SAN系统的价格较高,且可扩展性较差 ,已不能满足成千上万个CPU规模的系统。

    2、文件存储
            通常,NAS产品都是文件级存储。  NAS(Network Attached Storage):是一套网络储存设备,通常是直接连在网络上并提供资料存取服务,一套 NAS 储存设备就如同一个提供数据文件服务的系统,特点是性价比高。例如教育、政府、企业等数据存储应用。
           它采用NFS或CIFS命令集访问数据,以文件为传输协议,通过TCP/IP实现网络化存储,可扩展性好、价格便宜、用户易管理,如目前在集群计算中应用较多的NFS文件系统,但由于NAS的协议开销高、带宽低、延迟大,不利于在高性能集群中应用。
          下面,我们对DAS、NAS、SAN三种技术进行比较和分析:

    表格 1 三种技术的比较



            针对Linux集群对存储系统高性能和数据共享的需求,国际上已开始研究全新的存储架构和新型文件系统,希望能有效结合SAN和NAS系统的优点,支持直接访问磁盘以提高性能,通过共享的文件和元数据以简化管理,目前对象存储系统已成为Linux集群系统高性能存储系统的研究热点如Panasas公司的Object Base Storage Cluster System系统和Cluster File Systems公司的Lustre等。下面将详细介绍对象存储系统。

    3、对象存储
            总体上来讲,对象存储同兼具SAN高速直接访问磁盘特点及NAS的分布式共享特点(扩展性)
            核心是将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备(Object-based Storage Device,OSD)构建存储系统。每个对象存储设备具有一定的智能,能够自动管理其上的数据分布。

    对象存储架构

            对象存储结构组成部分(对象、对象存储设备、元数据服务器、对象存储系统的客户端):
           3.1、对象
            对象是系统中数据存储的基本单位,一个对象实际上就是文件的数据和一组属性信息(Meta Data)的组合,这些属性信息可以定义基于文件的RAID参数、数据分布和服务质量等,而传统的存储系统中用文件或块作为基本的存储单位,在块存储系统中还需要始终追踪系统中每个块的属性,对象通过与存储系统通信维护自己的属性。在存储设备中,所有对象都有一个对象标识,通过对象标识OSD命令访问该对象。通常有多种类型的对象,存储设备上的根对象标识存储设备和该设备的各种属性,组对象是存储设备上共享资源管理策略的对象集合等。 

    传统块存储与对象存储



    对象的组成


    传统的访问层次和虚拟数据访问模型
           3.2、对象存储设备
            对象存储设备具有一定的智能,它有自己的CPU、内存、网络和磁盘系统,OSD同块设备的不同不在于存储介质,而在于两者提供的访问接口。OSD的主要功能包括数据存储和安全访问。目前国际上通常采用刀片式结构实现对象存储设备。OSD提供三个主要功能:
          (1) 数据存储。OSD管理对象数据,并将它们放置在标准的磁盘系统上,OSD不提供块接口访问方式,Client请求数据时用对象ID、偏移进行数据读写。
          (2) 智能分布。OSD用其自身的CPU和内存优化数据分布,并支持数据的预取。由于OSD可以智能地支持对象的预取,从而可以优化磁盘的性能。
          (3) 每个对象元数据的管理。OSD管理存储在其上对象的元数据,该元数据与传统的inode元数据相似,通常包括对象的数据块和对象的长度。而在传统的NAS系统中,这些元数据是由文件服务器维护的,对象存储架构将系统中主要的元数据管理工作由OSD来完成,降低了Client的开销。

    传统模型 VS OSD模型

            3.3、元数据服务器(Metadata Server,MDS)
              MDS控制Client与OSD对象的交互,主要提供以下几个功能:
          (1) 对象存储访问。
            MDS构造、管理描述每个文件分布的视图,允许Client直接访问对象。MDS为Client提供访问该文件所含对象的能力,OSD在接收到每个请求时将先验证该能力,然后才可以访问。
          (2) 文件和目录访问管理。
            MDS在存储系统上构建一个文件结构,包括限额控制、目录和文件的创建和删除、访问控制等。
         (3) Client Cache一致性。
            为了提高Client性能,在对象存储系统设计时通常支持Client方的Cache。由于引入Client方的Cache,带来了Cache一致性问题,MDS支持基于Client的文件Cache,当Cache的文件发生改变时,将通知Client刷新Cache,从而防止Cache不一致引发的问题。
            3.4、对象存储系统的客户端Client
               为了有效支持Client支持访问OSD上的对象,需要在计算节点实现对象存储系统的Client。现有的应用对数据的访问大部分都是通过POSIX文件方式进行的,对象存储系统提供给用户的也是标准的POSIX文件访问接口。接口具有和通用文件系统相同的访问方式,同时为了提高性能,也具有对数据的Cache功能和文件的条带功能。同时,文件系统必须维护不同客户端上Cache的一致性,保证文件系统的数据一致。文件系统读访问流程:
    1)客户端应用发出读请求; 
    2)文件系统向元数据服务器发送请求,获取要读取的数据所在的OSD; 
    3)然后直接向每个OSD发送数据读取请求; 
    4)OSD得到请求以后,判断要读取的Object,并根据此Object要求的认证方式,对客户端进行认证,如果此客户端得到授权,则将Object的数据返回给客户端;
    5)文件系统收到OSD返回的数据以后,读操作完成。

    对象存储文件系统的关键技术
    1、分布元数据 传统的存储结构元数据服务器通常提供两个主要功能。
    (1)为计算结点提供一个存储数据的逻辑视图(Virtual File System,VFS层),文件名列表及目录结构。
    (2)组织物理存储介质的数据分布(inode层)。对象存储结构将存储数据的逻辑视图与物理视图分开,并将负载分布,避免元数据服务器引起的瓶颈(如NAS系统)。元数据的VFS部分通常是元数据服务器的10%的负载,剩下的90%工作(inode部分)是在存储介质块的数据物理分布上完成的。在对象存储结构,inode工作分布到每个智能化的OSD,每个OSD负责管理数据分布和检索,这样90%的元数据管理工作分布到智能的存储设备,从而提高了系统元数据管理的性能。另外,分布的元数据管理,在增加更多的OSD到系统中时,可以同时增加元数据的性能和系统存储容量。

    2、并发数据访问 对象存储体系结构定义了一个新的、更加智能化的磁盘接口OSD。OSD是与网络连接的设备,它自身包含存储介质,如磁盘或磁带,并具有足够的智能可以管理本地存储的数据。计算结点直接与OSD通信,访问它存储的数据,由于OSD具有智能,因此不需要文件服务器的介入。如果将文件系统的数据分布在多个OSD上,则聚合I/O速率和数据吞吐率将线性增长,对绝大多数Linux集群应用来说,持续的I/O聚合带宽和吞吐率对较多数目的计算结点是非常重要的。对象存储结构提供的性能是目前其它存储结构难以达到的,如ActiveScale对象存储文件系统的带宽可以达到10GB/s。
     

     4、GlusterFS 和对象存储
           GlusterFS是目前做得最好的分布式存储系统之一,而且已经开始商业化运行。但是,目前GlusterFS3.2.5版本还不支持对象存储。如果要实现海量存储,那么GlusterFS需要用对象存储。值得高兴的是,GlusterFS最近宣布要支持对象存储。它使用openstack的对象存储系统swift的上层PUT、GET等接口,支持对象存储。

        20世纪电子与信息技术迅速发展,机器计算迅速普及,冯·诺依曼在1945年6月30日,提出了存储程序逻辑架构,即现有的计算机都遵循的“冯·诺依曼体系架构”,具体如下图:

      我们可以看出,冯诺依曼体系结构与人脑(生物)计算模型匹配度相当准确。我们通常把运算器和控制器合并成中央 处理器(CPU),内部小容量的存储提供快速的访问,外部存储器提供大容量的存储空间。在不同的计算机时代,我们可以按照不同的角度来理解冯诺依曼体系结构。在单机计算时代(包括 大型机小型机、微机)内部存储器可理解为内存(即Memory),外部存储器可理解为物理硬盘(包括本地硬盘和通过网络映射的逻辑卷)。 在本地硬盘空间不足,可靠性无法满足业务需求的情况下,SAN存储出现了,通过网络映射的逻辑卷(即SAN存储提供的LUN)成为增强版的硬盘。为了解决数据共享的问题,NAS存储随之诞生。
          但冯诺依曼体系架构没有考虑并行计算和数据共享情形,在如今的网络时代,大量计算设备通过网络形成一个庞大、相互独立但又逻辑统一的计算系统,因此我们可以总结出一个数据存储的通用模型,这个模型包括两级存储,其存储容量差距约1000倍:

      如果将上图中每一个计算模块理解为一个计算内核,那么高速存储单元则是CPU内的缓存(单位为KB~MB),海量存储单元则是内存(单位为GB);如果把每一个计算模块理解为一个CPU,那么高速存储单元则是内存(单位为GB~TB),海量存储是物理硬盘或通过网络映射给服务器的逻辑卷(或网络文件系统,单位为TB~PB);如果把计算模块理解为针对某一项任务或某一组任务提供计算能力的服务器集群,把SAN或NAS等拥有TB~PB级存储规模的网络存储设备理解为高速存储单元,那么具备PB~EB级存储容量的海量存储单元将基于什么技术和产品构建呢?

      SAN和NAS技术已经出现了数十年,目前单台SAN或NAS设备最大容量已经达到PB级别,但在应对EB级数据挑战时,还是显得有些力不从心。这主要由于其架构和服务接口决定的。
            SAN使用SCSI协议作为底层协议,SCSI协议管理的粒度非常小,通常以字节(byte)或千字节(KB)为单位;同时SCSI协议没有提供读写锁机制以确保不同应用并发读写时的数据一致性,因此难以实现EB级存储资源管理和多个服务器/服务器集群之间数据共享。
            NAS使用文件协议访问数据,通过文件协议存储设备能够准确识别数据内容,并提供了非常丰富的文件访问接口,包括复杂的目录/文件的读写锁。文件和目录采用树形结构管理,每个节点使用一种叫做inode的结构进行管理,每一个目录和文件都对应一个iNode。目录深度或同一目录下的子节点数随着整体文件数量的增加而快速增加,通常文件数量超过亿级时,文件系统复杂的锁机制及频繁的元数据访问将极大降低系统的整体性能。
         传统的 RAID技术和Scale-up架构也阻止了传统的SAN和NAS成为EB级高可用,高性能的海量存储单元。传统的RAID基于硬盘,通常一个RAID组最多包含20+块硬盘,即使PB级规模的SAN或NAS也将被分割成多个存储孤岛,增加了EB级规模应用场景下的管理复杂度;同时Scale-up架构决定了即使SAN和NAS存储容量达到EB级,性能也将成为木桶的短板。
         那么如何才能应对信息爆炸时代的数据洪流呢? 我们设想能否有一种“超级数据图书馆”,它提供海量的、可共享的存储空间给很多用户(服务器/服务器集群)使用,提供超大的存储容量,其存储容量规模千倍于当前的高速存储单元(SAN和NAS),用户或应用访问数据时无需知道图书馆对这些书如何摆放和管理(布局管理),只需要提供唯一编号(ID)就可以获取到这本书的内容(数据)。如果某一本书变得老旧残破,系统自动地将即将失效或已经失效的书页( 存储介质)上的数据抄写(恢复/重构)到新的纸张(存储介质)上,并重新装订这本书,数据使用者无需关注这一过程,只是根据需要去获取数据资源。这种“超级数据图书馆”是否真的存在呢?
      分布式对象存储的诞生
         对象存储技术的出现和大量自动化管理技术的产生,使得“超级数据图书馆”不再是人类遥不可及的梦想。对象存储系统(Object-Based Storage System)改进了SAN和NAS存储的劣势,保留了NAS的数据共享等优势,通过高级的抽象接口替代了SCSI存储块和文件访问接口(不同地区的用户访问不同的POSIX文件系统,不仅浪费时间,而且让运维管理变的更复杂。相对而言,分布式存储系统的优势明显。在分布式存储系统上做应用开发更便利,易维护和扩容,自动负载平衡。以RESTful HTTP接口代替了POSIX接口和 QEMU Driver 接口 ),屏蔽了存储底层的实现细节,将NAS垂直的树形结构改变成平等的扁平结构,从而提高了扩展性、增强了可靠性、具备了平台无关性等重要存储特性。(Erasure Code: 是将文件转换成一个碎片集合,每一个碎片很小,碎片被打散分布到一组服务器资源池里。只要存留的碎片数量足够,就可以合成为原本的文件。这可以在保持原本的数据健壮性的基础上大大减少需要的存储空间。不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务(不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务))
      SNIA(网络存储工业协会)定义的对象存储设备是这样的:
    Ø 对象是自完备的,包含元数据、数据和属性
          n 存储设备可以自行决定对象的具体存储位置和数据的分布
         n 存储设备可以对不同的对象提供不同的QoS
    Ø 对象存储设备相对于块设备有更高的“智能”,上层通过对象ID来访问对象,而无需了解对象的具体空间分布情况
          换句话说对象存储是智能化、封装得更好的块,是“文件”或其他应用级逻辑结构的组成部分,文件与对象的对应关系由上层直接控制,对象存储设备本身也可能是个分布式的系统——这就是分布式对象存储系统了。
      用对象替代传统的块的好处在于对象的内容本身来自应用,其具有内在的联系,具有“原子性”,因此可以做到:
    Ø 在存储层进行更智能的空间管理
    Ø 内容相关的数据预取和缓存
    Ø 可靠的多用户共享访问
    Ø 对象级别的安全性
         同时,对象存储架构还具有更好的可伸缩性。一个对象除了ID和用户数据外,还包含了属主、时间、大小、位置等源数据信息,权限等预定义属性,乃至很多自定义属性
         具备EB级规模扩展性的分布式对象存储,通过对应用提供统一的命名空间,构建EB级统一、可共享数据的存储资源池,有效地填补上述通用计算模型中“网络计算”场景海量存储单元空白,通过高层次的数据模型抽象,可以简化应用对数据访问,同时使得海量存储更加智能。
        对象是数据和自描述信息的集合,是在磁盘上存储的基本单元。对象存储通过简化数据的组织形式(如将树形的“目录”和“文件”替换为扁平化的“ID”与“对象”)、降低协议与接口的复杂度(如简化复杂的锁机制,确保最终一致性),从而提高系统的扩展性以应对信息爆炸时代海量数据的挑战。同时对象的智能自管理功能也能有效降低系统维护复杂度,帮助用户降低整体拥有成本(TCO)。
    转载:http://blog.csdn.net/sinat_27186785/article/details/52032431
    展开全文
  • 计算机存储的发展(块存储,文件存储,对象存储

    万次阅读 多人点赞 2018-09-15 15:04:08
    存储和文件存储异同: 对象存储 1、对象 2、对象存储设备 3、元数据服务器(Metadata Server,MDS) 4、对象存储系统的客户端Client 三者之间异同比较 参考文献 如果要实现一个计算机,那么这个计算机一定...

    如果要实现一个计算机,那么这个计算机一定要有以下的三个部分构成:计算、存储和网络。计算一般指的是CPU和内存的搭配,存储一般就是指硬盘了,网络指的是网卡的管理和配置。

    本篇文章,主要讲解有关块存储、文件存储、对象存储这三者之间的对比。每一种存储都有对应的实现方法。

    块存储

    块存储又有两种常见的形式,DAS和SAN。DAS即直接连接存储(Direct Attached Storage),SAN即存储区域网络(Storage Area Network)。

    DAS

    块存储是我们最常用的一种存储模式。比如个人PC上的硬盘,服务器上的硬盘,外置设备通过SCSI或者FC接口直接连接到电脑上的。

    这种存储方式有一种很大的缺陷,其存储性能瓶颈来自于自家PC电脑或者服务器的卡槽的多少。比如我们的笔记本一般只能装一个硬盘+SSD基本上已经没有位置再做扩展了。也就是DAS的性能瓶颈来自于主板的卡槽数量。很难做scale out扩展(即横向扩展)。

    这里写图片描述

    事实上,这种DAS存储模式,一般在中小型企业汇总应用十分广泛。它更依赖主机的操作系统来实现数据的IO读写、数据管理、数据备份等工作。

    但是这种存储模式也存在一定的缺点。比如可管理性差、弹性扩展能力弱,难以跟上IT发展趋势等问题。举例来讲,一台服务器/电脑只会配备固定容量的DAS存储,那么如果容量不够用,存储空间太小,就很难从内部着手实现弹性扩展(外部扩展容量也存在弊端),如果存储空间太大还会导致资源浪费,这一点在服务器领域尤为明显。

    补充知识点:SCSI接口是什么


    SCSI(Small Computer System Interface)小型计算机系统接口,一种用于计算机和智能设备之间(硬盘、软驱、光驱、打印机、扫描仪等)系统级接口的独立处理器标准。 SCSI是一种智能的通用接口标准。

    SCSI是一种计算机系统接口的标准

    SCSI是一种I/O技术

    SCSI规范了一种并行的I/O总线和相关的协议

    SCSI的数据传输方式是以块的方式进行的

    SAN

    对于用户来说,SAN好比是一块大磁盘,用户可以根据需要随意将SAN格式化成想要的文件系统来使用。SAN在网络中通过iSCSI(IPSAN)协议连接,属block及存储,但可扩展性较差。

    根据SAN的实现形式来看,其实是通过光交换机,将各块硬盘连接起来,然后通过ISCSI协议来传递数据。

    在我看来,其实是通过FC交换机解决了机器主板只有几个卡槽的问题,利用FC交换机,就仿佛实现了这样一种机制,即我们拥有一个无限卡槽的主板,上面都是接口,你可以通过这个接口插上你的硬盘。

    SAN是一个采用网状通道(简称FC)技术,通过FC交换机连接存储阵列和服务器主机,建立专用于数据存储的区域网络。

    我们可以从定义中看出,这是一个专用于企业级应用的存储方式。可以简单理解为一个在高度网络中,提供在计算机与存储系统之间的数据传输。
    这里写图片描述

    从理论上来讲,SAN支持数以百计的磁盘,提供了海量的存储空间,解决了大容量存储问题;从逻辑层面,这个海量空间可以按需要分成不同大小的LUN,再分配给服务器,也解决了只需要小容量存储的问题。

    可以说,SAN的出现,适应了信息化发展的大趋势,它将计算与存储分离,增强了存储扩张的弹性。毕竟如今联网设备越来越多,数据量越来越大,我们对存储需求也越来越强。SAN“拉帮结伙”的特性让存储弹性更大,更方便扩展容量。

    同时,介于独特的存储结构,SAN需要通过光纤交换机连接存储阵列和服务器,建立专用数据存储的网络。

    文件存储

    再说说文件集存储,典型代表–NAS。对于用户来说,NAS好比是一个共享文件夹,文件系统已经存在,用户可以直接将自己的数据存放在NAS上。NAS以文件为传输协议,开销很大,不利于在高性能集群中使用。

    NAS是一种通过网络达成存储目的的设备,NAS传输数据依靠的是TCP/IP网络协议栈,这是NAS存储于上文的DAS和SAN存储最大的不同之处。

    NAS是标准的文件级存储方法,采用网络技术(TCP/IP、ATM、FDDI),通过网络交换机连接存储系统和服务器主机来建立存储私网。其主要特征是把存储设备、网络接口和以太网技术集成在一起,直接通过以太网网络存取数据。能够快速实现部门级存储容量需求与文件传输需求。

    这里写图片描述

    实现文件存储的方式有很多,其中比较常用的有以下的几种,并且经常运用在企业运用中。ftp协议、nfs协议、samba协议等。

    比较下块存储和文件存储的异同,举个例子而言,有三块硬盘,使用光交换机连接之后,把光交换机和服务器进行直接连接,服务器就会单纯的以为自己是有一块儿这么大的硬盘的,要使用的话,需要对这块硬盘进行分区,格式化为某种文件系统,然后就可以使用了;同样是三块硬盘,我分别把这三块硬盘装在主机A,B,C上,分区、格式化为某种文件系统,比如格式化为XFS文件系统,然后我以共享文件夹的形式把主机A的/data目录使用NFS共享给B和C,这就是文件存储。

    块存储和文件存储异同:

    • 数据传输方式不同:块存储依靠SCSI或者ISCSI接口,以块方式交换数据,数据传输速度快;文件存储依靠TCP/IP协议栈进行数据传输,网络带宽是I/O的性能瓶颈。

    • 文件系统的位置:NAS和SAN最本质的区别就是文件管理系统在哪里,如图所示,SAN结构中,文件管理系统(FS)分别在每一个应用服务器上面,而NAS则是每个应用服务器通过网络共享协议,使用同一个文件管理系统。即NAS和SAN存储系统的区别就是NAS有自已的文件管理系统。

    • 使用方式不同:块存储设备使用的时候,还需要进一步进行分区,将设备格式为某种文件系统才可以继续使用;而文件存储就相当于你多了一个共享文件夹,文件存储带着自己本身的文件系统。

    对象存储

    总体上来讲,对象存储同兼具SAN高速直接访问磁盘特点及NAS的分布式共享特点。

    • SAN(Storage Area Network)结构
      采用SCSI 块I/O的命令集,通过在磁盘或FC(Fiber Channel)级的数据访问提供高性能的随机I/O和数据吞吐率,它具有高带宽、低延迟的优势,在高性能计算中占有一席之地,如SGI的CXFS文件系统就是基于SAN实现高性能文件存储的,但是由于SAN系统的价格较高,且可扩展性较差,已不能满足成千上万个CPU规模的系统。
    • NAS(Network Attached Storage)结构
      它采用NFS或CIFS命令集访问数据,以文件为传输协议,通过TCP/IP实现网络化存储,可扩展性好、价格便宜、用户易管理,如目前在集群计算中应用较多的NFS文件系统,但由于NAS的协议开销高、带宽低、延迟大,不利于在高性能集群中应用。

    对象存储结构:

    核心是将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备(Object-based Storage Device,OSD)构建存储系统,每个对象存储设备具有一定的智能,能够自动管理其上的数据分布。

    对象存储结构组成部分(对象、对象存储设备、元数据服务器、对象存储系统的客户端):

    这里写图片描述

    1、对象

    对象是系统中数据存储的基本单位,一个对象实际上就是文件的数据和一组属性信息(Meta Data)的组合,这些属性信息可以定义基于文件的RAID参数、数据分布和服务质量等,而传统的存储系统中用文件或块作为基本的存储单位,在块存储系统中还需要始终追踪系统中每个块的属性,对象通过与存储系统通信维护自己的属性。在存储设备中,所有对象都有一个对象标识,通过对象标识OSD命令访问该对象。通常有多种类型的对象,存储设备上的根对象标识存储设备和该设备的各种属性,组对象是存储设备上共享资源管理策略的对象集合等。

    这里写图片描述

    对象的层次理解:
    这里写图片描述

    2、对象存储设备

    对象存储设备具有一定的智能,它有自己的CPU、内存、网络和磁盘系统,OSD同块设备的不同不在于存储介质,而在于两者提供的访问接口。OSD的主要功能包括数据存储和安全访问。目前国际上通常采用刀片式结构实现对象存储设备。OSD提供三个主要功能:
    (1) 数据存储。OSD管理对象数据,并将它们放置在标准的磁盘系统上,OSD不提供块接口访问方式,Client请求数据时用对象ID、偏移进行数据读写。
    (2) 智能分布。OSD用其自身的CPU和内存优化数据分布,并支持数据的预取。由于OSD可以智能地支持对象的预取,从而可以优化磁盘的性能。
    (3) 每个对象元数据的管理。OSD管理存储在其上对象的元数据,该元数据与传统的inode元数据相似,通常包括对象的数据块和对象的长度。而在传统的NAS系统中,这些元数据是由文件服务器维护的,对象存储架构将系统中主要的元数据管理工作由OSD来完成,降低了Client的开销。

    3、元数据服务器(Metadata Server,MDS)

    MDS控制Client与OSD对象的交互,主要提供以下几个功能:

    (1) 对象存储访问。

    MDS构造、管理描述每个文件分布的视图,允许Client直接访问对象。MDS为Client提供访问该文件所含对象的能力,OSD在接收到每个请求时将先验证该能力,然后才可以访问。

    (2) 文件和目录访问管理。

    MDS在存储系统上构建一个文件结构,包括限额控制、目录和文件的创建和删除、访问控制等。

    (3) Client Cache一致性。

    为了提高Client性能,在对象存储系统设计时通常支持Client方的Cache。由于引入Client方的Cache,带来了Cache一致性问题,MDS支持基于Client的文件Cache,当Cache的文件发生改变时,将通知Client刷新Cache,从而防止Cache不一致引发的问题。

    4、对象存储系统的客户端Client

    为了有效支持Client支持访问OSD上的对象,需要在计算节点实现对象存储系统的Client,通常提供POSIX文件系统接口,允许应用程序像执行标准的文件系统操作一样。

    对象存储文件系统的关键技术

    1、分布元数据 传统的存储结构元数据服务器通常提供两个主要功能。

    (1)为计算结点提供一个存储数据的逻辑视图(Virtual File System,VFS层),文件名列表及目录结构。

    (2)组织物理存储介质的数据分布(inode层)。对象存储结构将存储数据的逻辑视图与物理视图分开,并将负载分布,避免元数据服务器引起的瓶颈(如NAS系统)。元数据的VFS部分通常是元数据服务器的10%的负载,剩下的90%工作(inode部分)是在存储介质块的数据物理分布上完成的。在对象存储结构,inode工作分布到每个智能化的OSD,每个OSD负责管理数据分布和检索,这样90%的元数据管理工作分布到智能的存储设备,从而提高了系统元数据管理的性能。另外,分布的元数据管理,在增加更多的OSD到系统中时,可以同时增加元数据的性能和系统存储容量。

    2、并发数据访问 对象存储体系结构定义了一个新的、更加智能化的磁盘接口OSD。OSD是与网络连接的设备,它自身包含存储介质,如磁盘或磁带,并具有足够的智能可以管理本地存储的数据。计算结点直接与OSD通信,访问它存储的数据,由于OSD具有智能,因此不需要文件服务器的介入。如果将文件系统的数据分布在多个OSD上,则聚合I/O速率和数据吞吐率将线性增长,对绝大多数Linux集群应用来说,持续的I/O聚合带宽和吞吐率对较多数目的计算结点是非常重要的。对象存储结构提供的性能是目前其它存储结构难以达到的,如ActiveScale对象存储文件系统的带宽可以达到10GB/s。

    三者之间异同比较

    存储类型数据传输方式适应场景优点
    块存储SCSI/ISCSI接口小型机房速度快
    文件存储NFS/FTP等局域网环境可扩展性高
    对象存储http协议互联网环境,异地存储速度快,且扩展性高,高可用

    对象存储相比块存储、文件存储的一个最本质的区别是无层次结构。我们都知道,一般的存储(比如你自己的PC的文件系统)是有一个目录树概念的,要找到一个文件需要先找到这个文件所属的目录。而对象存储是没有文件目录树这个概念的,所有的数据都在同一个层次中,仅仅通过数据的唯一地址标识来识别并查找数据。

    块存储: 是和主机打交道的, 如插一块硬盘
    文件存储: NAS, 网络存储, 用于多主机共享数据
    对象存储: 跟你自己开发的应用程序打交道, 如网盘

    参考文献

    NFS深入了解
    SI/iSCSI及SAS、NAS、SAN的基本介绍
    NAS网络存储与SAN、DAS的区别
    NFS工作原理
    什么是对象存储

    展开全文
  • 存储和文件存储是我们比较熟悉的两种主流的存储类型,而对象存储(Object-based Storage)是一种新的网络存储架构,基于对象存储技术的设备就是对象存储设备(Object-based Storage Device)简称OSD。 首先,...

         块存储和文件存储是我们比较熟悉的两种主流的存储类型,而对象存储(Object-based Storage)是一种新的网络存储架构,基于对象存储技术的设备就是对象存储设备(Object-based Storage Device)简称OSD。

         首先,我们介绍这两种传统的存储类型。通常来讲,所有磁盘阵列都是基于Block块的模式(DAS),而所有的NAS产品都是文件级存储

     

    1、块存储       

            以下列出的两种存储方式都是块存储类型:

            1) DAS(Direct Attach STorage):是直接连接于主机服务器的一种储存方式,每一台主机服务器有独立的储存设备,每台主机服务器的储存设备无法互通,需要跨主机存取资料时,必须经过相对复杂的设定,若主机服务器分属不同的操作系统,要存取彼此的资料,更是复杂,有些系统甚至不能存取。通常用在单一网络环境下且数据交换量不大,性能要求不高的环境下,可以说是一种应用较为早的技术实现。

            2)SAN(Storage Area Network):是一种用高速(光纤)网络联接专业主机服务器的一种储存方式,此系统会位于主机群的后端,它使用高速I/O 联结方式, 如 SCSI, ESCON 及 Fibre- Channels。一般而言,SAN应用在对网络速度要求高、对数据的可靠性和安全性要求高、对数据共享的性能要求高的应用环境中,特点是代价高,性能好。例如电信、银行的大数据量关键应用。它采用SCSI 块I/O的命令集,通过在磁盘或FC(Fiber Channel)级的数据访问提供高性能的随机I/O和数据吞吐率,它具有高带宽、低延迟的优势,在高性能计算中占有一席之地,但是由于SAN系统的价格较高,且可扩展性较差,已不能满足成千上万个CPU规模的系统。

     

    2、文件存储

            通常,NAS产品都是文件级存储。  NAS(Network Attached Storage):是一套网络储存设备,通常是直接连在网络上并提供资料存取服务,一套 NAS 储存设备就如同一个提供数据文件服务的系统,特点是性价比高。例如教育、政府、企业等数据存储应用。

           它采用NFS或CIFS命令集访问数据,以文件为传输协议,通过TCP/IP实现网络化存储,可扩展性好、价格便宜、用户易管理,如目前在集群计算中应用较多的NFS文件系统,但由于NAS的协议开销高、带宽低、延迟大,不利于在高性能集群中应用。

          下面,我们对DAS、NAS、SAN三种技术进行比较和分析:

    表格 1 三种技术的比较

            针对Linux集群对存储系统高性能和数据共享的需求,国际上已开始研究全新的存储架构和新型文件系统,希望能有效结合SAN和NAS系统的优点,支持直接访问磁盘以提高性能,通过共享的文件和元数据以简化管理,目前对象存储系统已成为Linux集群系统高性能存储系统的研究热点,如Panasas公司的Object Base Storage Cluster System系统和Cluster File Systems公司的Lustre等。下面将详细介绍对象存储系统。

     

    3、对象存储

            总体上来讲,对象存储同兼具SAN高速直接访问磁盘特点及NAS的分布式共享特点(扩展性)

            核心是将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备(Object-based Storage Device,OSD)构建存储系统。每个对象存储设备具有一定的智能,能够自动管理其上的数据分布。

    对象存储架构

     

            对象存储结构组成部分(对象、对象存储设备、元数据服务器、对象存储系统的客户端):

           3.1、对象

            对象是系统中数据存储的基本单位,一个对象实际上就是文件的数据和一组属性信息(Meta Data)的组合,这些属性信息可以定义基于文件的RAID参数、数据分布和服务质量等,而传统的存储系统中用文件或块作为基本的存储单位,在块存储系统中还需要始终追踪系统中每个块的属性,对象通过与存储系统通信维护自己的属性。在存储设备中,所有对象都有一个对象标识,通过对象标识OSD命令访问该对象。通常有多种类型的对象,存储设备上的根对象标识存储设备和该设备的各种属性,组对象是存储设备上共享资源管理策略的对象集合等。 


    传统块存储与对象存储

     

     


    对象的组成

    传统的访问层次和虚拟数据访问模型

           3.2、对象存储设备
            对象存储设备具有一定的智能,它有自己的CPU、内存、网络和磁盘系统,OSD同块设备的不同不在于存储介质,而在于两者提供的访问接口。OSD的主要功能包括数据存储和安全访问。目前国际上通常采用刀片式结构实现对象存储设备。OSD提供三个主要功能:
          (1) 数据存储。OSD管理对象数据,并将它们放置在标准的磁盘系统上,OSD不提供块接口访问方式,Client请求数据时用对象ID、偏移进行数据读写。
          (2) 智能分布。OSD用其自身的CPU和内存优化数据分布,并支持数据的预取。由于OSD可以智能地支持对象的预取,从而可以优化磁盘的性能。

          (3) 每个对象元数据的管理。OSD管理存储在其上对象的元数据,该元数据与传统的inode元数据相似,通常包括对象的数据块和对象的长度。而在传统的NAS系统中,这些元数据是由文件服务器维护的,对象存储架构将系统中主要的元数据管理工作由OSD来完成,降低了Client的开销。

    传统模型 VS OSD模型

     

            3.3、元数据服务器(Metadata Server,MDS)

              MDS控制Client与OSD对象的交互,主要提供以下几个功能:
          (1) 对象存储访问。
            MDS构造、管理描述每个文件分布的视图,允许Client直接访问对象。MDS为Client提供访问该文件所含对象的能力,OSD在接收到每个请求时将先验证该能力,然后才可以访问。
          (2) 文件和目录访问管理。
            MDS在存储系统上构建一个文件结构,包括限额控制、目录和文件的创建和删除、访问控制等。
         (3) Client Cache一致性。
            为了提高Client性能,在对象存储系统设计时通常支持Client方的Cache。由于引入Client方的Cache,带来了Cache一致性问题,MDS支持基于Client的文件Cache,当Cache的文件发生改变时,将通知Client刷新Cache,从而防止Cache不一致引发的问题。

            3.4、对象存储系统的客户端Client

              为了有效支持Client支持访问OSD上的对象,需要在计算节点实现对象存储系统的Client。现有的应用对数据的访问大部分都是通过POSIX文件方式进行的,对象存储系统提供给用户的也是标准的POSIX文件访问接口。接口具有和通用文件系统相同的访问方式,同时为了提高性能,也具有对数据的Cache功能和文件的条带功能。同时,文件系统必须维护不同客户端上Cache的一致性,保证文件系统的数据一致。文件系统读访问流程:

    1)客户端应用发出读请求; 
    2)文件系统向元数据服务器发送请求,获取要读取的数据所在的OSD; 
    3)然后直接向每个OSD发送数据读取请求; 
    4)OSD得到请求以后,判断要读取的Object,并根据此Object要求的认证方式,对客户端进行认证,如果此客户端得到授权,则将Object的数据返回给客户端;
    5)文件系统收到OSD返回的数据以后,读操作完成。
     

    对象存储文件系统的关键技术

    1、分布元数据 传统的存储结构元数据服务器通常提供两个主要功能。

    (1)为计算结点提供一个存储数据的逻辑视图(Virtual File System,VFS层),文件名列表及目录结构。

    (2)组织物理存储介质的数据分布(inode层)。对象存储结构将存储数据的逻辑视图与物理视图分开,并将负载分布,避免元数据服务器引起的瓶颈(如NAS系统)。元数据的VFS部分通常是元数据服务器的10%的负载,剩下的90%工作(inode部分)是在存储介质块的数据物理分布上完成的。在对象存储结构,inode工作分布到每个智能化的OSD,每个OSD负责管理数据分布和检索,这样90%的元数据管理工作分布到智能的存储设备,从而提高了系统元数据管理的性能。另外,分布的元数据管理,在增加更多的OSD到系统中时,可以同时增加元数据的性能和系统存储容量。

     

    2、并发数据访问 对象存储体系结构定义了一个新的、更加智能化的磁盘接口OSD。OSD是与网络连接的设备,它自身包含存储介质,如磁盘或磁带,并具有足够的智能可以管理本地存储的数据。计算结点直接与OSD通信,访问它存储的数据,由于OSD具有智能,因此不需要文件服务器的介入。如果将文件系统的数据分布在多个OSD上,则聚合I/O速率和数据吞吐率将线性增长,对绝大多数Linux集群应用来说,持续的I/O聚合带宽和吞吐率对较多数目的计算结点是非常重要的。对象存储结构提供的性能是目前其它存储结构难以达到的,如ActiveScale对象存储文件系统的带宽可以达到10GB/s。

     

     

     4、GlusterFS 和对象存储

           GlusterFS是目前做得最好的分布式存储系统之一,而且已经开始商业化运行。但是,目前GlusterFS3.2.5版本还不支持对象存储。如果要实现海量存储,那么GlusterFS需要用对象存储。值得高兴的是,GlusterFS最近宣布要支持对象存储。它使用openstack的对象存储系统swift的上层PUT、GET等接口,支持对象存储。

        20世纪电子与信息技术迅速发展,机器计算迅速普及,冯·诺依曼在1945年6月30日,提出了存储程序逻辑架构,即现有的计算机都遵循的“冯·诺依曼体系架构”,具体如下图:

     

      我们可以看出,冯诺依曼体系结构与人脑(生物)计算模型匹配度相当准确。我们通常把运算器和控制器合并成中央处理器(CPU),内部小容量的存储提供快速的访问,外部存储器提供大容量的存储空间。在不同的计算机时代,我们可以按照不同的角度来理解冯诺依曼体系结构。在单机计算时代(包括大型机小型机、微机)内部存储器可理解为内存(即Memory),外部存储器可理解为物理硬盘(包括本地硬盘和通过网络映射的逻辑卷)。在本地硬盘空间不足,可靠性无法满足业务需求的情况下,SAN存储出现了,通过网络映射的逻辑卷(即SAN存储提供的LUN)成为增强版的硬盘。为了解决数据共享的问题,NAS存储随之诞生。

         但冯诺依曼体系架构没有考虑并行计算和数据共享情形,在如今的网络时代,大量计算设备通过网络形成一个庞大、相互独立但又逻辑统一的计算系统,因此我们可以总结出一个数据存储的通用模型,这个模型包括两级存储,其存储容量差距约1000倍:

     

      如果将上图中每一个计算模块理解为一个计算内核,那么高速存储单元则是CPU内的缓存(单位为KB~MB),海量存储单元则是内存(单位为GB);如果把每一个计算模块理解为一个CPU,那么高速存储单元则是内存(单位为GB~TB),海量存储是物理硬盘或通过网络映射给服务器的逻辑卷(或网络文件系统,单位为TB~PB);如果把计算模块理解为针对某一项任务或某一组任务提供计算能力的服务器集群,把SAN或NAS等拥有TB~PB级存储规模的网络存储设备理解为高速存储单元,那么具备PB~EB级存储容量的海量存储单元将基于什么技术和产品构建呢?

     

      SAN和NAS技术已经出现了数十年,目前单台SAN或NAS设备最大容量已经达到PB级别,但在应对EB级数据挑战时,还是显得有些力不从心。这主要由于其架构和服务接口决定的。

           SAN使用SCSI协议作为底层协议,SCSI协议管理的粒度非常小,通常以字节(byte)或千字节(KB)为单位;同时SCSI协议没有提供读写锁机制以确保不同应用并发读写时的数据一致性,因此难以实现EB级存储资源管理和多个服务器/服务器集群之间数据共享。

           NAS使用文件协议访问数据,通过文件协议存储设备能够准确识别数据内容,并提供了非常丰富的文件访问接口,包括复杂的目录/文件的读写锁。文件和目录采用树形结构管理,每个节点使用一种叫做inode的结构进行管理,每一个目录和文件都对应一个iNode。目录深度或同一目录下的子节点数随着整体文件数量的增加而快速增加,通常文件数量超过亿级时,文件系统复杂的锁机制及频繁的元数据访问将极大降低系统的整体性能。

         传统的RAID技术和Scale-up架构也阻止了传统的SAN和NAS成为EB级高可用,高性能的海量存储单元。传统的RAID基于硬盘,通常一个RAID组最多包含20+块硬盘,即使PB级规模的SAN或NAS也将被分割成多个存储孤岛,增加了EB级规模应用场景下的管理复杂度;同时Scale-up架构决定了即使SAN和NAS存储容量达到EB级,性能也将成为木桶的短板。

         那么如何才能应对信息爆炸时代的数据洪流呢?我们设想能否有一种“超级数据图书馆”,它提供海量的、可共享的存储空间给很多用户(服务器/服务器集群)使用,提供超大的存储容量,其存储容量规模千倍于当前的高速存储单元(SAN和NAS),用户或应用访问数据时无需知道图书馆对这些书如何摆放和管理(布局管理),只需要提供唯一编号(ID)就可以获取到这本书的内容(数据)。如果某一本书变得老旧残破,系统自动地将即将失效或已经失效的书页(存储介质)上的数据抄写(恢复/重构)到新的纸张(存储介质)上,并重新装订这本书,数据使用者无需关注这一过程,只是根据需要去获取数据资源。这种“超级数据图书馆”是否真的存在呢?

      分布式对象存储的诞生

         对象存储技术的出现和大量自动化管理技术的产生,使得“超级数据图书馆”不再是人类遥不可及的梦想。对象存储系统(Object-Based Storage System)改进了SAN和NAS存储的劣势,保留了NAS的数据共享等优势,通过高级的抽象接口替代了SCSI存储块和文件访问接口(不同地区的用户访问不同的POSIX文件系统,不仅浪费时间,而且让运维管理变的更复杂。相对而言,分布式存储系统的优势明显。在分布式存储系统上做应用开发更便利,易维护和扩容,自动负载平衡。以RESTful HTTP接口代替了POSIX接口和QEMU Driver接口),屏蔽了存储底层的实现细节,将NAS垂直的树形结构改变成平等的扁平结构,从而提高了扩展性、增强了可靠性、具备了平台无关性等重要存储特性。(Erasure Code: 是将文件转换成一个碎片集合,每一个碎片很小,碎片被打散分布到一组服务器资源池里。只要存留的碎片数量足够,就可以合成为原本的文件。这可以在保持原本的数据健壮性的基础上大大减少需要的存储空间。 不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务( 不过Erasure Code并非适应所有的场景,尤其不适合网络延迟敏感的业务))

      SNIA(网络存储工业协会)定义的对象存储设备是这样的:

    Ø 对象是自完备的,包含元数据、数据和属性

         n 存储设备可以自行决定对象的具体存储位置和数据的分布

         n 存储设备可以对不同的对象提供不同的QoS

    Ø 对象存储设备相对于块设备有更高的“智能”,上层通过对象ID来访问对象,而无需了解对象的具体空间分布情况

         换句话说对象存储是智能化、封装得更好的块,是“文件”或其他应用级逻辑结构的组成部分,文件与对象的对应关系由上层直接控制,对象存储设备本身也可能是个分布式的系统——这就是分布式对象存储系统了。

      用对象替代传统的块的好处在于对象的内容本身来自应用,其具有内在的联系,具有“原子性”,因此可以做到:

    Ø 在存储层进行更智能的空间管理

    Ø 内容相关的数据预取和缓存

    Ø 可靠的多用户共享访问

    Ø 对象级别的安全性

         同时,对象存储架构还具有更好的可伸缩性。一个对象除了ID和用户数据外,还包含了属主、时间、大小、位置等源数据信息,权限等预定义属性,乃至很多自定义属性

         具备EB级规模扩展性的分布式对象存储,通过对应用提供统一的命名空间,构建EB级统一、可共享数据的存储资源池,有效地填补上述通用计算模型中“网络计算”场景海量存储单元空白,通过高层次的数据模型抽象,可以简化应用对数据访问,同时使得海量存储更加智能。

        对象是数据和自描述信息的集合,是在磁盘上存储的基本单元。对象存储通过简化数据的组织形式(如将树形的“目录”和“文件”替换为扁平化的“ID”与“对象”)、降低协议与接口的复杂度(如简化复杂的锁机制,确保最终一致性),从而提高系统的扩展性以应对信息爆炸时代海量数据的挑战。同时对象的智能自管理功能也能有效降低系统维护复杂度,帮助用户降低整体拥有成本(TCO)。

    展开全文
  • 专业的数据库存储解决方案,线程安全,高性能的模型对象存储Sqlite开源库,实现一行代码的数据库操作,简单的数据库存储 专业的数据库存储解决方案,线程安全,高性能模型对象存储Sqlite开源库,真正实现一行代码...
  • 一、申请对象存储OSS 为了解决海量数据存储与弹性扩容,项目中我们采用云存储的解决方案- 阿里云OSS。 1、开通“对象存储OSS”服务 (1)申请阿里云账号 (2)实名认证 (3)开通“对象存储OSS”服务 (4)进入管理...
  • 具有与平台无关的RESTful API接口,您可以在任何应用、任何时间、任何地点存储和访问任意类型的数据。您可以使用阿里云提供的API、SDK接口或者OSS迁移工具轻松地将海量数据移入或移出阿里云OSS。数据存储到阿里云OSS...
  • 对象存储服务(Object Storage Service,OBS) https://support.huaweicloud.com/obs/index.html...
  • 随着各行各业创新技术的诞生更加细致的监管要求,比如互联网+,4K、8K的高清视频,...二者也束手无策,这时候对象存储挺身而出,以胸纳百川的气概,以动辄上PB级的存储身姿,喊出了"Yes, I can"的新时代承担。...
  • 本文的副标题是:对象存储发展史 & “云大无人区”的时代,非结构化数据存储高耸出海面备注:1、云大无人区,其实就是云计算、大数据、物联网、人工智能、区块链的谐音...
  • 【编者Peter Ye按】十年了,我还是喜欢下面这张图,它表明了存储发展的趋势。在这漫长的发展中,对象存储将随之茁壮成长。还记得第一次见这张图的时候,是我2008年从EM...
  • 本文将利用阿里云容器服务在几分钟内轻松搭建一个基于Docker的ownCloud专属网盘,并使用阿里云提供的OSS(Object Storage Service,对象存储服务)作为高可靠、低成本的云存储后端,需要的朋友可以参考下
  • 周末负责校对了红帽Ceph对象存储的文档,感谢穆艳学老师的翻译。 本文由Ceph中国社区-穆艳学翻译、刘源校稿 英文出处:Red_Hat_Ceph_Storage-2-Ceph_Object_Gateway_for_Production 欢迎加入CCTG Red Hat Ceph...
  • RedHat Ceph存储——《面向生产环境的Ceph 对象网关指南》 Ceph开源社区 ...
  • 是一种网上在线存储的模式,即把数据存放在通常由第三方托管的多台虚拟服务器,而非专属的服务器上。托管(hosting)公司营运大型的数据中心,需要数据存储托管的人,则透过向其购买或租赁存储空间的方式,来满足...
  • 存储的技术原理

    千次阅读 多人点赞 2019-09-26 16:53:23
    存储(Cloud storage)是一种网络在线存储的模式,即把数据存放在通常由第三方托管的多台虚拟服务器,而非专属的服务器上。托管(hosting)公司营运大型的数据中心,需要数据存储托管的人,则透过向其购买或租赁...
  • Android 10适配要点,作用域存储

    万次阅读 多人点赞 2020-04-14 08:42:48
    在Android 10众多的行为变更当中,有一点是非常值得引起我们重视的,那就是作用域存储。这个新功能直接颠覆了长久以来我们一直惯用的外置存储空间的使用方式,因此大量App都将面临着较多代码模块的升级。然而,对于...
  • 摘要:大家平时使用电脑有没有使用过一些云服务之类的软件?...云存储是一种网络在线存储(Online storage)的模式,即把数据存放在通常由第三方托管的多台虚拟服务器,而非专属的服务器上。托管(...
  • 客户端存储

    千次阅读 2012-01-05 20:51:03
    第20章 客户端存储 Web应用允许使用浏览器提供的API实现将数据存储到用户的电脑上。这种客户端存储相当于赋予了Web浏览器记忆功能。比方说,Web应用就可以用这种方式来“记住”用户的配置信息甚至是用户所有的状态...
  • 一、分区存储模式下使用 MediaStore 修改图片、 二、分区存储模式下使用 MediaStore 删除图片、 三、相关文档资料、
  • 第三章 存储

    千次阅读 2019-06-16 08:43:59
    文章目录1、描述一下Android的本地数据存储方式?2、SharedPreferences如何性能优化,可以做进程同步吗?...Android本地存储方式有3种,分别是SharedPreferences存储、文件存储和SQLite存储方式...
  • 存储,调用

    2010-01-21 12:43:00
    7.static面向过程: 变量:存储在全局数据区(程序的数据存储区依次为,代码区,全局数据区,堆区,栈区),生命周期为程序的整个...面向对象: 变量:生命周期同上,其作用域专属于类,不是某个类所特有。可以用类名

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 23,543
精华内容 9,417
关键字:

对象存储和专属对象存储