精华内容
下载资源
问答
  • 交流伺服电机结构
    千次阅读
    2020-12-19 03:01:52

    摘要:交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

    关键词:伺服电动机 单相异步电动机 性能比较

    交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

    二、永磁交流伺服电动机

    20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。

    1、永磁交流伺服电动机同直流伺服电动机比较,主要优点有:

    ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。

    ⑵定子绕组散热比较方便。

    ⑶惯量小,易于提高系统的快速性。

    ⑷适应于高速大力矩工作状态。

    ⑸同功率下有较小的体积和重量。

    2、伺服电动机与单相异步电动机比较

    交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:

    (1)起动转矩大

    由于转子电阻大,与普通异步电动机的转矩特性曲线相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

    (2)运行范围较广

    (3)无自转现象

    正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)

    交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。

    性能比较

    三、伺服电机与步进电机的性能比较

    步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

    1、控制精度不同

    两相混合式步进电机步距角一般为1.8°、0.9°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如三洋公司生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

    交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以三洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

    2、低频特性不同

    步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

    交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。

    3、矩频特性不同

    步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

    4、过载能力不同

    步进电机一般不具有过载能力,交流伺服电机具有较强的过载能力。以三洋交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

    5、运行性能不同

    步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

    综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

    (作者单位:石家庄铁路运输学校)

    更多相关内容
  • 文章主要介绍了交流伺服电机结构和控制原理
  • 交流伺服电机结构、工作原理及运行特点
  • 本主要介绍的是直流伺服电机种类。
  • 机器人永磁交流伺服电机滑模变结构控制.pdf
  • 伺服电机内部结构及其工作原理zip,伺服电机内部结构及其工作原理: 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf...
  •  现代交流伺服系统原理 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩...
  • PMSM的结构介绍,PMSM的磁场定向,及PWM控制,驱动器的介绍与应用
  • 一、交流伺服电动机  交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。...
  • 2、电机的材料、结构和加工工艺,交流伺服电机要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机)。就是说当伺服驱动器输出电流、电压、频率变化很快时,伺服电机能产生响应的动作变化,...
  • 步进电机控制通常采用双向驱动电流,其电机步进由按顺序切换绕组来实现。通常这种步进电机有3个驱动顺序: 1.单相全步进驱动: 在这种模式中,其绕组按如下顺序加电,AB/CD/BA/DC(BA表示绕组AB的加电是反方向进行的。这一...

    步进电机控制通常采用双向驱动电流,其电机步进由按顺序切换绕组来实现。通常这种步进电机有3个驱动顺序:
    1.单相全步进驱动:
    在这种模式中,其绕组按如下顺序加电,AB/CD/BA/DC(BA表示绕组AB的加电是反方向进行的。这一顺序被称为单相全步进模式,或者波驱动模式。在任何一个时间,只有一相加电。
    2.双相全步进驱动:
    在这种模式中,双相一起加电,因此,转子总是在两个极之间。此模式被称为双相全步进,这一模式是两极电机的常态驱动顺序,可输出的扭矩最大。
    3.半步进模式:
    这种模式将单相步进和双相步进结合在一起加电:单泪加电,然后双相加电,然后单相加电.。。因此,电机以半步进增量运转。这一模式被称为半步进模式,其电机每个励磁的有效步距角减少了一半,其输出的扭矩也较低。
    以上3种模式均可用于反方向转动(逆时针方向),如果顺序相反则不行。
    通常,步进电机具有多极,以便减小步距角,但是,绕组的数量和驱动顺序是不变的。

    直流伺服电机:
    输入或输出为直流电能的旋转电机。它的模拟调速系统一般是由2个闭环构成的,既速度闭环和电流闭环,为使二者能够相互协调、发挥作用,在系统中设置了2个调节器,分别调节转速和电流。2个反馈闭环在结构上采用一环套一环的嵌套结构,这就是所谓的双闭环调速系统,它具有动态响应快、抗干扰能力强等优点,因而得到广泛地应用。通常是由模拟运放构成PI或pid电路;信号调理主要是对反馈信号进行滤波、放大。考虑到直流电机的数学模型,模拟调速系统动态传递函数关系在模拟调速系统的调试过程中,因电机的参数或负载的机械特性与理论值有较大差异,往往需要频繁更换R,C等元件来改变电路参数,以获得预期的动态性能指标,这样做起来非常麻烦,如果采用可编程模拟器件构成调节器电路,系统参数如增益、带宽甚至电路结构都可以通过软件进行修改,调试起来就非常方便了。
    直流伺服电机分为有刷和无刷电机,有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),会产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境。
    直流伺服电机可应用在火花机,机器手,精确的机器等,同时可加配减速箱,令机器设备带来可靠的准确性及高扭力。
    交流伺服电机
    交流伺服电机分为同步电机和异步电机两大类,本实验用电机为永磁同步交流伺服电机。电机主要由定子.转子和检测元件组成。定子具有齿槽,内有三相绕组,形状与普通交流电动机的定子相同,但其外形呈多边形,且无外壳,利于散热转子由多块永久磁铁和冲片组成。
    定子三相绕组接上交流电源后,就会产生一个旋转磁场,以同步转速.旋转。定子旋转磁场与转子的永久磁铁磁极相互吸引,并带着转子一起旋转。使转子也以同步转速n旋转。当转子加上负载转矩之后,将造成定子磁场轴线与转子磁极轴线不重合,其夹角为日。若负载发生变化,0角也跟着变化,但只要不超过一定的限度,转子始终跟着定子的旋转磁场以恒定的同步转速n.旋转。
    交流伺服电机和直流伺服电机的区别
    交流电机的特性是比较软,当达到额定力矩后,如果负载力矩增加,就很容易造成突然的失速。但是直流电动机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能。 交流电机虽然没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。
    直流伺服电机,它包括定子、转子铁芯、电机转轴、伺服电机绕组换向器、伺服电机绕组、测速电机绕组、测速电机换向器,所述的转子铁芯由矽钢冲片叠压固定在电机转轴上构成。直流电机有着良好精确的速度控制特征不说,还有可以再整个速度区内实现平滑控制,几乎没有任何振荡,高效率,不发热。
    QY-DQJ02控制微电机综合实验装置
    QY-DQJ02控制微电机综合实验装置适用于高校现有《电机学》、《控制电机》、《自动控制元件》、《微特电机》等课程实验,装置采用了工业现场的各种控制电机,并结合实验教学的实际情况,可对各种控制电机的特性进行研究。
    实验项目
    1永磁式直流测速发电机实验
    (1)永磁直流测速发电机空载输出特性
    (2) 永磁直流测速发电机负载输出特性
    2旋转编码器实验
    (1) 波形观察及方向的判断
    (2)测量转速及频率的关系
    3力矩式自整角机实验
    (1)测定力矩式自整角机发送机的零位误差
    (2)测定力矩式自整角机静态整步转矩与失调角的关系曲线
    (3)测定力矩式自整角机比整步转矩(又称比力矩)及阻尼时间
    (4)测定力矩式自整角机的静态误差
    4控制式自整角机实验
    (1)测自整角变压器输出电压与失调角的关系U2=F(θ)
    (2)测定比电压Uθ和零位电压U0
    5 正、余弦旋转变压器实验
    (1)测定正余弦旋转变压器空载时的输出特性
    (2)测定负载对输出特性的影响
    (3)二次侧补偿后负载的输出特性
    (4)一次侧补偿后负载的输出特性
    (5)正余弦旋转变压器作线性应用时的接线图
    6直流伺服电机实验
    (1)测直流伺服电动机的电枢绕组
    (2)测直流伺服电动机的机械特性T=f(n)
    (3)测直流伺服电动机的调节特性n=f(Ua)
    (4)测定空载始动电压和检查空载转速的不稳定性
    (5)测直流伺服电动机的机电时间常数
    7步进电动机实验
    (1)单步运行状态
    (2)角位移和脉冲数的关系
    (3)空载突跳频率的测定
    (4)空载最高连续工作频率的测定
    (5)转子振荡状态的观察
    (6)定子绕组中电流和频率的关系
    (7)平均转速和脉冲频率的关系
    (8)矩形特性的测定及最大静力矩特性的测定
    8 交流伺服电机实验
    (1)用实验方法测堵转圆形磁场
    (2)测交流伺服电动机幅值控制时的机械特性和调节特性
    (3)测交流伺服电动机幅值—相位控制时的机械特性
    (4)观察自转现象

    展开全文
  • 交流伺服电机特点.pdf

    2019-09-05 18:13:35
    交流伺服电机特点
  • 1、交流永磁同步电机结构和工作原理 2、交流永磁同步电机磁场定向控制技术 3、交流永磁同步电机PWM控制 4、交流永磁同步电机驱动器
  • 本论文研制了一种常规芯片系列组成的运动控制器,采用单稳态多谐振荡器和数 据选择器的四倍频辨向电路。该系统硬件结构是基于单片机而开发,其功能集12位 DAC转换、定时中断、脉冲接收、...的伺服电动机位置控制要求。
  • 交流感应电机因其结构牢固、运行稳健可靠、成本低廉和高效率等而被广泛使用。但是交流电机的可控制性不如直流电机,而在很多应用中有精确定位、转距控制、速度控制等要求。为了实现此功能并提高控制精度,需要采用...
  • 工业机器人有4大组成部分,分别为本体、伺服、减速器和控制器。  工业机器人电动伺服系统的...一般情况下,对于交流伺服驱动器,可通过对其内部功能参数进行人工设定而实现位置控制、速度控制、转矩控制等多种功能。
  • 伺服系统(servomechanism)指经由闭环控制方式达到对一个机械系统的位置、速度和加速度的控制。一个伺服系统的构成包括被控对象、执行器和控制器。伺服系统既可以是开环控制方式,也可以是闭环控制方式。本文按后者...

    本文将永久处于维护序列,如您对文章内容有所疑问,还请提出,共同探讨。 -2021.8.25

    参考文献
    [1] 向晓汉, 宋昕. 变频器与步进/伺服驱动技术完全精通教程[M]. 第1版. 北京:化学工业出版社, 2015b.
    [2] 梁森, 欧阳三泰, 王侃夫. 自动检测技术及应用[M]. 第3版. 北京:机械工业出版社
    此外还参考了一些伺服品牌的使用手册。

    原名:伺服系统组成:伺服电机及伺服驱动器概述与控制原理(三环控制)

    ——
    注意:伺服系统既可以是开环控制方式,也可以是闭环控制方式。本文按后者叙述

    1伺服系统简述

    “伺服(Servo)”——词源于希腊语“奴隶”,意即“伺候”和“服从”。人们想把“伺服机构”当成一个得心应手的驯服工具,服从控制信号的要求而动作:在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名——伺服系统(servomechanism)。

    伺服系统指经由闭环控制方式达到对一个机械系统的位置、速度和加速度的控制。

    一个伺服系统的构成包括被控对象、执行器和控制器(负载、伺服电动机和功率放大器、控制器和反馈装置)。

    1. 执行器的功能在于提供被控对象的动力,其构成主要包括伺服电动机和功率放大器,伺服电动机包括反馈装置如光电编码器、旋转编码器或光栅等(位置传感器)。
    2. 控制器的功能在于提供整个伺服系统的闭环控制如转矩控制、速度控制、位置控制等,伺服驱动器通常包括控制器和功率放大器。
      反馈装置除了位置传感器,可能还需要电压、电流和速度传感器。

    下图为一般工业用伺服系统的组成框图,其中红色为伺服驱动器组成部分,黄色为伺服电机组成部分
    在这里插入图片描述

    运动控制(Motion Control,MC)起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。

    2伺服电机

    从基本理论上讲,微特电机与普通电机没有本质区别,其主要作用是完成控制信号的传递和转换,注重高精度和快速响应。微特电机分为驱动微电机和控制电机,驱动微电机在电力拖动系统中作为执行机构使用,伺服电机即为驱动微电机。

    2.1伺服电机的反馈装置

    交流伺服电动机的运行需要角度位置传感器,以确定各个时刻转子磁极相对于定子绕组转过的角度,从而控制电动机的运行。
    伺服系统常用的检测元件以光电编码器最为常见。光电编码器在交流伺服电动机控制中起了三个方面的作用:

    1. 提供电动机定、转子之间相互位置的数据
    2. 通过角编码器测速,提供速度反馈信号
    3. 提供传动系统角位移信号,作为位置反馈信号

    在这里插入图片描述

    增量式编码器与绝对式编码器

    编码器(encoder)的转轴与被测旋转轴连接,随被测轴一起转动,能够将被测轴的角位移转成二进制编码或一串脉冲,对应于绝对式编码器和增量式编码器。
    增量式: 每转过单位的角度就发出一个脉冲信号;
    绝对式: 对应一圈,运动部件的每一运动位置都有一个对应的编码,常以多位二进制码来表示,通过外部记圈器件可以进行多个位置的记录和测量。
    需要注意的是,绝对式编码器有单圈式和多圈式之分:

    1. 单圈绝对式编码器其光电码盘转动超过360°时,编码器回到原点,因此只能用于旋转范围360°以内的测量;
    2. 多圈绝对式编码器旋转圈数可由靠锂电池驱动的寄存器保存,也可采用类似钟表的齿轮结构来记忆圈数,前者被称作“假绝对”,后者则被称之为“真绝对”。

    绝对式编码器最重要的特点在于具备掉电保持功能,即使断电之后再重新上电,也能读出当前位置的绝对编码数据。
    单圈绝对式编码器断电后电机移动超过半圈后会导致位置丢失;多式绝对值编码器断电后电机移动超过2048圈后会导致位置丢失。
    从这一角度来说,若搭载单圈绝对式编码器的伺服电机所驱动的机构其行程若超过一圈,则实质效果同增量式编码器无异(都记不住位置)。

    编码器和电流环没有任何联系,它的采样来自于电机的转动。

    编码器相关名词

    1. 编码器线数
      增量式码盘刻线数,其值等于编码器一转所发出的脉冲数,例如2500线表示转一圈需要发送2500个脉冲。这说明伺服电机转一圈所需脉冲数是固定的,且与电机自带编码器参数相关。
      严格来讲,伺服电机一转所需上位机发送脉冲数与编码器线数和电子齿轮比有关。
    2. 编码器位数
      其概念来源于绝对式编码器,例如17位(17B)、20位(20B)等,其数值含义见下:
      在这里插入图片描述
      摘自台达PPT,千万注意160000p/r和2^17之间的区别,依据型号不同,一圈所需脉冲数可能为前者,也可能是后者。

    p/s or pps : pluse per second 秒脉冲
    p/r or ppr : pulse per revolution 每转所需脉冲数

    1. 编码器的ABZ相
      A相、B相、Z相旋转输出脉冲电压,三相脉冲各自独立,A相和B相脉冲量相等,但是A相和B相之间存在一个90°(电气角的一周期为360°)的电气角相位差,可以根据这个相位差来判断编码器旋转的方向是正转还是反转,正转时,A相超前B相90°先进行相位输出,反转时,B相超前A相90°先进行相位输出。Z相为一圈一个脉冲电压。
    2. 编码器线制
      是与编码器线数完全不同的概念,指编码器接线数,如下图为5线制编码器接线图:
      在这里插入图片描述

    2.2倍频

    注意: 只有增量式编码器具备倍频功能。绝对式码盘在任意位置都可给出与位置相对应的数字转角输出量,不存在四倍频的问题。

    方波输出有两种,单相编码器输出一相脉冲,正交编码器输出两相相位相差90度的脉冲(在0度、90度、180度、270度相位角,这四个位置有上升沿和下降沿)。
    编码器计数的时候可以只记上升沿(无倍频),单相脉冲记上升沿和下降沿(2倍频);正交脉冲记所有上升沿就是2倍频,记所有上升和下降沿就是4倍频(方波最多只能做到4倍频)。
    以正交编码器为例,4倍频的意义在于在1/4T方波周期就可以有方向变化的判断,这样1/4的T周期就是最小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取位移的变化,这就是方波的四倍频。这种判断,也可以用逻辑来做,0代表低,1代表高,A/B两相在一个周期内变化是0 0,0 1,1 1,1 0 。这种判断不仅可以4倍频,还可以判断移动方向。
    从经济性来讲,采用倍频电路可以有效提高分辨率,而不增加旋转编码器的光栅数,从而减少旋转编码器的制作难度和成本。
    在这里插入图片描述

    举例:如果电机装了一个2500线编码器,则在不倍频的情况下,电机每转一圈可输出2500个脉冲;如果经过4倍频电路处理,则可以得到一圈10000个脉冲的输出,电机一圈为360°,所以每个脉冲代表的位置为360°/10000,相比360°/2500, 分辨率提高4倍。
    需要注意的是,四倍频2500线增量式编码器转一圈同样需要输入10000个脉冲。
    在这里插入图片描述

    2.3电机刚性与负载惯量比

    电机刚性

    电机刚性(与柔性相对)就是电机轴抗外界力矩干扰的能力,即电机转子的自锁能力。在伺服设置中,可以设定刚性等级,通常根据惯量比以及传动连接方式大致估测。
    刚性与响应速度有关,一般情况下,刚性高的机械可通过提高伺服增益来提高响应性能:刚性越强,对应的速度环增益越大,其响应速度也越高,但是过高容易让电机产生机械共振,无法提高响应性能:在定位命令结束后,即使电机本身已经接近静止,机械传动端仍会出现持续摆动。因此有高响应需求的场合需要刚性较高的机械以避免机械共振。注意这里的机械刚性指机械的动态刚性,即机床抵抗受迫振动的能力大小。

    在伺服应用中,用联轴器来连接电机和负载,就是刚性连接;而用同步带或者皮带来连接电机和负载,就是柔性连接

    响应时间
    电气系统的响应时间,即给定一个位置、速度、转矩指令,到电机运行至该位置、速度、转矩的时间。
    对响应速度和刚性关系的具体解释
    在位置模式下,用力让电机偏转,如果伺服系统的响应速度够快,当伺服系统刚刚检测到偏差就立即输出一个较大的反向力,则电机偏转角度较小,说明伺服系统刚性较强。

    转动惯量与转矩的关系

    计算负载惯量的目的就是为计算加/减速转矩。
    任何旋转物体均有惯量存在,惯量大小直接反应旋转时加/减速所需转矩大小及时间长短。因此选用电机时必须计算出电机的负载惯量,才能据此选择所需电机的规格。如若选定的电机无法在希望的加速时间到达预定转速,必定是电机输出转矩不符合负载的需求,须加大电机的输出转矩。

    关于力矩、转矩和扭矩

    1. 力矩:力对刚体转动的影响,不仅与力的大小和方向有关,还与力相对于转矩的位置有关,为了描述力对刚体转动的作用,需要引入力对转轴的力矩这一新的物理量。
    2. 转矩:转矩即转动力矩,一般指旋转的物体所受到的力矩。
    3. 扭矩:任何元件在转矩的作用下,必定产生某种程度的扭转变形,因此习惯上又常把转动力矩叫扭转力矩,简称扭矩。

    负载惯量比

    电机惯量指的是转子本身的惯量(即转动惯量,只跟转动半径和物体质量有关),分为大、中、小惯量,从响应角度来讲,电机的转子惯量应小为好;从负载角度来看,电机的转子惯量越大越好。
    负载惯量由工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成(即机械负载总惯量).适用负载惯量通常小于伺服电机惯量的 5 倍,一般负载惯量超过电机转子惯量的10倍,可以认为惯量较大。

    负载惯量比 = 负载惯量 / 电机自身转动惯量

    电机刚性与负载惯量比之间的关系

    负载的转动惯量对伺服电机传动系统的刚性影响很大,负载惯量比越大,伺服允许的刚性等级越低。固定增益下,伺服刚性相对转动惯量比过高时,易引起机械共振;反之则电机响应速度迟钝。为此需要做到惯量匹配,即设置合适的负载惯量比。一般是要调控制器增益改变系统响应,进而达到惯量匹配;也可以选用刚性较高的机台以避免机械共振(机台具有的容许响应频率)。

    在伺服设定时,用户可自行选择刚性等级,伺服驱动器将自动产生一组匹配的增益参数,满足快速性与稳定性的需要,其前置条件为已正确获得负载惯量比。

    如何理解伺服电机的刚性和惯量?
    浅谈刚性、惯量、响应时间及伺服增益调整之间的关系

    2.4电子齿轮

    基本概念

    电子齿轮:简单地说就是用电气控制技术代替机械传动机构。一般来说,电机与驱动机构是直连的,机械结构固定后,传动比也就固定了;利用电子齿轮可以增加传动系统的柔性,提高传动精度。
    电子齿轮比电机编码器接收脉冲与上位机发送脉冲之比,可在驱动器或者控制器上设置。由此可知:
    在这里插入图片描述

    例:车床用 10mm 丝杠,电机转动一圈机械移动 10mm,每移动 0.001mm 就需要电机旋转 1/10000 圈(0.001/10),而如果连接 5mm 丝杠(即电机转动一圈机械移动 5mm),且直径编程的话,每 0.001 的位移量就需要 1/5000 转,这时可以用电子齿轮设置,就可以保持脉冲当量不变。

    详见:电子齿轮比计算方法

    脉冲当量

    脉冲当量是指控制器输出一个定位控制脉冲时,所产生的定位控制移动的位移。即单位脉冲的位移。线性运动是指距离,圆周运动是指角度。脉冲当量越小,定位控制的分辨率越高,加工精度也越高。所有的定位控制位移量以脉冲量为单位计算脉冲数。

    3伺服系统控制原理

    3.1三环控制

    运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环和位置环。电流环反应速度最快,速度环的反应速度必须高于位置环,否则将会造成电机运转的震动或反映不良。伺服驱动器的设计可尽量确保电流环具备良好的反应性能,故用户只需调整位置环、速度环的增益即可。

    伺服的控制方式有3种,分别是位置控制、速度控制和转矩控制。

    1、转矩控制(电流环/单环 控制):转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。主要应用于需要严格控制转矩的场合,在转矩模式下驱动器的运算最小,动态响应最快。
    单环控制难以满足伺服系统的动态要求,一般不采用。

    2、速度控制(速度环、电流环/双环 控制):通过模拟量的输入或脉冲的频率都可以进行转动速度的控制。速度控制包含了速度环和电流环。任何模式都必须使用电流环,电流环是控制的跟本。
      
    3、位置控制(三环控制):伺服中最常用的控制。位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度(类似步进电机),也有些伺服可以通过通讯方式直接对速度和位移进行赋值(外部模拟量的输入)。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
    位置控制模式下系统进行了所有 3 个环的运算,此时的系统运算量最大,动态响应速度也最慢。

    转矩控制:是指伺服驱动器仅对电机的转矩进行控制
    速度控制:是指驱动器仅对电机的转速和转矩进行控制
    位置控制:是指驱动器对电机的转速、转角和转矩进行控制

    在这里插入图片描述
    APR——位置调节器; ASR——速度调节器; ACR——电流调节器

    http://www.elecfans.com/kongzhijishu/sifuyukongzhi/522696.html 伺服驱动器的工作原理及其控制方式

    三环就是3个闭环负反馈PID调节系统。

    第一环为电流环,最内环,此环完全在伺服驱动器内部进行,其PID常数已被设定,无需更改。电流环的输入是速度环PID调节后的输出,电流环的输出就是电机的每相的相电流。**电流环的功能为对输入值和电流环反馈值的差值进行PD/PID调节。**电流环的反馈来自于驱动器内部每相的霍尔元件。电流闭环控制可以抑制起、制动电流,加速电流的响应过程。

    第二环为速度环,中环。速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值。**电流环的功能为对输入值和速度环反馈值的差值进行PI调节。**速度环的反馈来自于编码器的反馈后的值经过“速度运算器”的计算后得到的。

    第三环为位置环,最外环。位置环的输入就是外部的脉冲。**位置环的功能为对输入值和位置环反馈值的差值进行P调节。**位置环的反馈来自于编码器反馈的脉冲信号经过“偏差计数器”的计算后得到的。位置调节器APR其输出限幅值是电流的最大值,决定着电动机的最高转速。

    位置环、速度环的参数调节没有什么固定的数值,由很多因素决定。
    在这里插入图片描述

    多环控制系统调节器的设计方法是从内环到外环,逐个设计各环调节器,使每个控制环都是稳定的,从而保证整个控制系统的稳定性;每个环节都有自己的控制对象,分工明确,易于调整。这种设计的缺点在于对最外环控制作用的响应不会很快。

    https://blog.csdn.net/reasonyuanrobot/article/details/96497025?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1 伺服电机三环(电流环、速度环、位置环)控制原理及参数调节

    https://www.sohu.com/a/159764872_463998 伺服电机三环控制系统调节方法浅谈

    3.2伺服系统的增益参数调整

    按照设备需求选择好合适的控制模式后,需要对伺服增益参数进行合理的调整,使得伺服驱动器能快速、准确的驱动电机,最大限度发挥机械性能。伺服增益通过多个参数进行调整,它们之间会相互影响。

    关于位置或速度响应频率的选择必须由机台的刚性及应用的场合来决定,一般而言,高频度定位的机台或要求精密加工的机台需要设定较高的响应频率,但设定较高的响应频率容易引发机台的共振,因此有高响应需求的场合需要刚性较高的机台以避免机械共振。在未知机台的容许响应频率时,可逐步加大增益设定以提高响应频率直到共振音产生时,再调低增益设定值。

    1. 位置控制增益(KPP)
      本参数决定位置回路的应答性,KPP 值设定越大位置回路响应频率越高,对于位置命
      令的追随性越佳,位置误差量越小,定位整定时间越短,但是过大的设定会造成机台
      产生抖动或定位会有过冲(Overshoot)的现象。

    2. 速度控制增益(KVP)
      本参数决定速度控制回路的应答性,KVP 设越大速度回路响应频率越高,对于速度命
      令的追随性越佳,但是过大的设定容易引发机械共振。
      速度回路的响应频率必须比位置回路的响应频率高 4~6 倍,当位置响应频率比速度响应频率高时,机台会产生抖动
      或定位会有过冲(Overshoot)的现象。

    3. 速度积分补偿(KVI)
      KVI 越大对固定偏差消除能力越佳,过大的设定容易引发机台的抖动。

    4. 共振抑制低通滤波器(NLP)
      负载惯性比越大,速度回路的响应频率会下降,必须加大 KVP 以维持速度的响应频率,
      在加大 KVP 的过程,可能产生机械共振音,请尝试利用本参数将噪音消除。越大的
      设定对高频噪音的改善越明显,但是过大的设定会导致速度回路不稳定及过冲的现象

    5. 外部干扰抵抗增益(DST)
      本参数用来增加对外力的抵抗能力,并降低加减速的过冲现象。

    6. 位置前馈增益(PFG)
      可降低位置误差量并缩短定位的整定时间,但过大的设定容易造成定位过冲的现象。

    另一份资料

    1. 位置比例增益:设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调;
    2. 位置前馈增益:位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡;
    3. 速度比例增益:设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,速度滞后量越小。但数值太大可能会引起振荡或超调;
    4. 速度积分时间常数:设置值越小,积分速度越快。
    5. 速度反馈滤波因子:数值越大,截止频率越低,电机产生的噪音越小;数值越小,截止频率越高,速度反馈响应越快。
    6. 最大输出转矩设置

    4伺服系统的设计

    根据伺服电动机的种类,伺服系统可分为直流和交流两大类。采用电流闭环控制后,二者具有相同的控制对象数学模型。因此可用相同的方法设计交流或直流伺服系统

    对于闭环伺服控制系统,常用串联校正或并联校正方式进行动态性能的调节。校正装置串联配置在前向通道的校正方式称为串联校正,一般把串联校正单元称作调节器,所以又称调节器校正;若校正装置与前向通道并行,称为并联校正

    4.1调节器校正

    常用的调节器有PD调节器、PI调节器和PID调节器。设计中根据实际伺服系统的特征进行选择。

    附录1 伺服电动机与其它电动机的辨析

    伺服电动机与普通电动机的区别

    1. 普通电动机(有刷)多运行于开环控制,伺服电动机运行于闭环控制。
    2. 伺服电动机动态性高
    3. 伺服电动机启动转矩大、调速范围宽
    4. 伺服电动机结构紧凑
    5. 伺服电动机定子散热方便

    伺服电动机与舵机的区别
    舵机相当于简化版的完整的伺服系统。
    伺服电机都是三环控制,即电流环、速度环、位置环;舵机只检测位置环(一般用电位器)。

    伺服电动机与步进电动机的区别

    1. 步进电机多运行于开环控制,伺服电动机运行于闭环控制。(使用步进电机的场合,要么不需要位置反馈,要么在其他设备上进行位置反馈)
    2. 伺服电机控制精度和定位高于步进电机
    3. 伺服电机低频特性好,过载能力大,响应时间短
    4. 伺服电机调速范围大于步进电动机
    5. 步进电机只能接受脉冲信号,二私服电动机可以接受模拟信号、脉冲信号和总线通信信号

    伺服电机和步进电机常被搞混,二者外形相似,区别点在于伺服电机尾部的反馈装置;此外步进电机一般都是一个引出线端,伺服电机由于带编码器所以有2个引线输出端(编码线和动力线)。
    在这里插入图片描述
    推荐阅读
    步进电机、伺服电机、舵机的原理和区别?

    更新记录

    **2021.9.4 ** 对全文结构进行调整,更新了“绝对式编码器”部分、“电机刚性”部分与“负载惯量比”部分。
    本文访问量已突破1W+,感谢各位抬爱。

    本文发布之日其至21年8月以前 零星更新
    在这里插入图片描述

    展开全文
  • 交流伺服系统由交流电动机组成,交流电动机的数字模型不是简单的线性模型,而具有非线性、时变、耦合等特点,用传统的基于对象模型的控制方法难以进行有效的控制。对于交流伺服系统的性能,一方面要求快速跟踪性能好...
  • 如果从原理角度来看,只把最核心的定子转子算作电机,那伺服电机当然是个系统,因为伺服控制电路是在电机之外的;如果从设备分类来看,整个外壳里面都算电机,那伺服电机就是个单独的电机啦。其实在工程上并不像做...

    参考:步进电机、伺服电机、舵机的原理和区别? - Vincross的回答 - 知乎
    地址:https://www.zhihu.com/question/37374664/answer/167299936

    什么是电机

    如何定义电机?

    如果从原理角度来看,只把最核心的定子转子算作电机,那伺服电机当然是个系统,因为伺服控制电路是在电机之外的;如果从设备分类来看,整个外壳里面都算电机,那伺服电机就是个单独的电机啦。其实在工程上并不像做理论研究那样需要特别严格的定义,至少在伺服电机到底是什么东西这点上,大家都是没有分歧的,也不可能有人单独拿一个不带伺服电路的核心电机出来销售吧。

    来说说这三者的主要区别

    • 舵机指的是伺服电机在航模、小型机器人等领域下常用的一个特殊版本,一般来说比较轻量、小型、简化和廉价,并附带减速机构;
    • 步进电机和伺服电机本质上的最大区别在于,一个是开环控制,一个是闭环控制

    步进电机(无反馈)

    步进电机接收的是电脉冲信号,根据信号数量转过相应的步距角。通俗来讲就是你推一下,我动一下。动的角度就是步距角,是步进电机的固有属性。假如步距角是15°,表示每接收一个脉冲电机就转过15°。

    所谓开环,就是只管控制,不管反馈。步进电机接收脉冲后转动,但不保证一定能转到。比如脉冲频率过高或者负载较大,就会造成失步,也就是没转到位。所以说使用步进电机的场合,要么不需要位置反馈,要么在其他设备上进行位置反馈。比如模型小车的车轮、光驱的光头、摄像机云台,以及各种行业机械设备等。步进电机一般长这样:
    在这里插入图片描述
    内部结构则是这样:
    在这里插入图片描述
    步进电机与普通直流交流电机的原理均不同,步进转动靠的是定子线圈绕组不同相位的电流以及定子和转子上齿槽产生的转矩。

    伺服电机(有反馈)

    伺服电机则是闭环控制,即通过传感器实时反馈电机的运行状态,由控制芯片进行实时调节。一般工业用的伺服电机都是三环控制,即电流环、速度环、位置环,分别能反馈电机运行的角加速度、角速度和旋转位置

    芯片通过三者的反馈控制电机各相的驱动电流,实现电机的速度和位置都准确按照预定运行。伺服电机能保证只要负载在额定范围内,就能达到很高的精度,具体精度首先受制于编码器的码盘,与控制算法也有很大关系。与步进电机原理结构不同的是,伺服电机由于把控制电路放到了电机之外,里面的电机部分就是标准的直流电机或交流感应电机。一般情况下电机的原始扭矩是不够用的,往往需要配合减速机进行工作,可以使用减速齿轮组或行星减速器。伺服电机常用于需要高精度定位的领域,比如机床、工业机械臂、机器人等。常见的伺服电机长这样:(里面有三环控制电路)

    在这里插入图片描述
    内部结构是这样:(这款是空心杯无刷直流电机)
    在这里插入图片描述

    舵机

    舵机则是国人起的俗称,因为航模爱好者们最初用它控制船舵、飞机舵面而得名。伺服电机的英文是servomotor。舵机呢?有人也叫servomotor,有人简称为servo。大概就是「伺服电机」和「小伺伺」的关系吧。从结构来分析,舵机包括一个小型直流电机,加上传感器、控制芯片、减速齿轮组,装进一体化外壳。

    能够通过输入信号(一般是PWM信号,也有的是数字信号)控制旋转角度。由于是简化版,原本伺服电机的三环控制被简化成了一环,即只检测位置环。廉价的方案就是一个电位器,通过电阻来检测,高级的方案则会用到霍尔传感器,或者光栅编码器。给模型用的舵机很多干脆就是塑料外壳加塑料齿轮组。比如著名的廉价舵机SG90,俗称9g舵机(因为重量是9g):

    在这里插入图片描述
    稍一拆解就看到里面是这样的:
    在这里插入图片描述
    可以看到塑料齿轮组、电机、电位器、电路板等。随着消费级小型机器人在近两年的热潮,小型轻量的舵机一下子成了最合适的关节元件。但机器人关节对性能的要求远高于船舵,而作为商业产品也比DIY玩家对舵机质量要求高得多。作为一家有追求的消费级机器人公司,我们在六足全地形机器人HEXA上使用的19个舵机均使用了全铝合金外壳、金属轴承、钢齿轮组。全是为了保证这个小东西被买回家后也能一直活蹦乱跳下去而不是玩几天就坏掉。不过这样的舵机成本不低,同品质的在市场上至少需要150元,况且我们自己实现的不受力时进入省电模式、超静音无抖动、360度无死角自由定位等特性,在其他舵机上根本是没有的。

    在这里插入图片描述

    有刷电机工作原理

    有刷电机是大家最早接触的一类电机,中学时物理课堂上介绍电动机也是以它为模型来展示的。有刷电机的主要结构就是定子+转子+电刷,通过旋转磁场获得转动力矩,从而输出动能。电刷与换向器不断接触摩擦,在转动中起到导电和换相作用。

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    有刷电机采用机械换向,磁极不动,线圈旋转。电机工作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流方向的交替变化是随电机转动的换相器和电刷来完成的。

    在有刷电机中,这个过程是将各组线圈的两个电源输入端,依次排成一个环,相互之间用绝缘材料分隔,组成一个象圆柱体的东西,与电机轴连成一体,电源通过两个碳元素做成的小柱子(碳刷),在弹簧压力的作用下,从两个特定的固定位置,压在上面线圈电源输入环状圆柱上的两点,给一组线圈通电。

    随着电机转动,不同时刻给不同线圈或同一个线圈的不同的两极通电,使得线圈产生磁场的N-S极与最靠近的永磁铁定子的N-S极有一个适合的角度差,磁场异性相吸、同性相斥,产生力量,推动电机转动。碳电极在线圈接线头上滑动,象刷子在物体表面刷,因此叫碳“刷”。

    相互滑动,会摩擦碳刷,造成损耗,需要定期更换碳刷;碳刷与线圈接线头之间通断交替,会发生电火花,产生电磁破,干扰电子设备。

     

    无刷电机工作原理

    无刷电机中,换相的工作交由控制器中的控制电路(一般为霍尔传感器+控制器,更先进的技术是磁编码器)来完成。

    在这里插入图片描述

    在这里插入图片描述

    无刷电机采取电子换向,线圈不动,磁极旋转。无刷电机,是使用一套电子设备,通过霍尔元件,感知永磁体磁极的位置,根据这种感知,使用电子线路,适时切换线圈中电流的方向,保证产生正确方向的磁力,来驱动电机。消除了有刷电机的缺点。

    这些电路,就是电机控制器。无刷电机的控制器,还可以实现一些有刷电机不能实现的功能,比如调整电源切换角,制动电机,使电机反转,锁住电机,利用刹车信号,停止给电机供电。现在电瓶车的电子报警锁,就充分利用了这些功能。

    无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷直流电动机是以自控式运行的,所以不会象变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。

     

    有刷电机与无刷电机调速方式的区别

    实际上两种电机的控制都是调压,只是由于无刷直流采用了电子换向,所以要有数字控制才可以实现了,而有刷直流是通过碳刷换向的,利用可控硅等传统模拟电路都可以控制,比较简单。

     1、有刷马达调速过程是调整马达供电电源电压的高低。调整后的电压电流通过整流子及电刷地转换,改变电极产生的磁场强弱,达到改变转速的目的。这一过程被称之为变压调速。

     2、无刷马达调速过程是马达的供电电源的电压不变,改变电调的控制信号,通过微处理器再改变大功率MOS管的开关速率,来实现转速的改变。这一过程被称之为变频调速。

     

    性能差异

    ti的一个介绍视频关于有刷电机与无刷电机的对比,如下图所示,很完整。

    在这里插入图片描述

    1、有刷电机结构简单、开发时间久、技术成熟

    早在十九纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机在交流电产生以后得到了广泛的应用。但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。尤其是直流无刷电机一直无法投入商业运营,伴随着电子技术的日新月异,直至近几年才慢慢投入商业运营,就其实质来说依然属于交流电机范畴。

    无刷电机诞生不久,人们就发明了直流有刷电机。由于直流有刷电机机构简单,生产加工容易,维修方便,容易控制;直流电机还具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,所以一经问世就得到了广泛应用。

     

    2、直流有刷电机响应速度快,起动扭矩大

    直流有刷电机起动响应速度快,起动扭矩大,变速平稳,速度从零到最大几乎感觉不到振动,起动时可带动更大的负荷。无刷电机起动电阻大(感抗),所以功率因素小,起动扭矩相对较小,起动时有嗡嗡声,并伴随着强烈震动,起动时带动负荷较小。

    3、直流有刷电机运行平稳,起、制动效果好

    有刷电机是通过调压调速,所以起动和制动平稳,恒速运行时也平稳。无刷电机通常是数字变频控制,先将交流变成直流,直流再变成交流,通过频率变化控制转速,所以无刷电机在起动和制动时运行不平稳,振动大,只有在速度恒定时才会平稳。

     

    4、直流有刷电机控制精度高

    直流有刷电机通常和减速箱、译码器一起使用,使的电机的输出功率更大,控制精度更高,控制精度可以达到0.01毫米,几乎可以让运动部件停在任何想要的地方。所有精密机床都是采用直流电机控制精度。无刷电机由于在启动和制动时不平稳,所以运动部件每次都会停到不同的位置上,必须通过定位销或限位器才可以停在想要的位置上。

    5、直流有刷电机使用成本低,维修方便

    由于直流有刷电机结构简单,生产成本低,生产厂家多,技术比较成熟,所以应用也比较广泛,比如工厂、加工机床、精密仪器等,如果电机故障,只需更换碳刷即可,每个碳刷只需要几元,非常便宜。无刷电机技术不成熟,价格较高,应用范围有限,主要应在恒速设备上,比如变频空调、冰箱等,无刷电机损坏只能更换。

    6、无电刷、低干扰

    无刷电机去除了电刷,最直接的变化就是没有了有刷电机运转时产生的电火花,这样就极大减少了电火花对遥控无线电设备的干扰。  

     

    7、噪音低,运转顺畅

    无刷电机没有了电刷,运转时摩擦力大大减小,运行顺畅,噪音会低许多,这个优点对于模型运行稳定性是一个巨大的支持。

    8、寿命长,低维护成本

    少了电刷,无刷电机的磨损主要是在轴承上了,从机械角度看,无刷电机几乎是一种免维护的电动机了,必要的时候,只需做一些除尘维护即可。

    无刷电机控制原理

    电机驱动控制就是控制电机的转动或者停止,以及转动的速度。电机驱动控制部分也叫做电子调速器,简称电调,英文electronic speed controller(ESC)。电调对应使用的电机不同,分无刷电调和有刷电调。

    有刷电机的永磁体是固定不动的,线圈绕在转子上,通过一个电刷跟换相器接触间断来改变磁场方向来保持转子持续转动。无刷电机,顾名思义,这种电机是没有所谓的电刷和换相器的,他的转子是永磁体,而线圈是固定不动的,直接接到外部电源,问题就来了,线圈磁场方向怎么改变呢?事实上,无刷电机外部还需要一个电子调速器,这个调速器说白了就是一个电机驱动,它随时都在改变着固定线圈内部电流的方向,保证它跟永磁体之间的作用力是相互排斥,持续转动得以延续。

     

    刷电机工作可以不需要电调,直接把电供给电机就能够工作,但是这样无法控制电机的转速。无刷电机工作必须要有电调,否则是不能转动的。必须通过无刷电调将直流电转化为三相交流电,输给无刷电机才能转动。

     

    最早的电调可不是像现在的电调一样,最早全是有刷电调,说道这你可能要问了,什么是有刷电调,和现在的无刷电调有什么区别。事实上这差别呀可大了去了,有刷电调和无刷电调都是根据电机来说的,现在电机的转子,就是能转动的部分全是磁铁块,线圈是定子不转动的,因为这中间没有碳刷,这就是无刷电机。而有刷电机呢,顾名思义就是有碳刷,所以就是有刷电机,像我们平常小孩子玩的一二十块钱的遥控车用的电机就是有刷电机。电调就是根据这两种电机而命名的有刷电调和无刷电调。从专业的角度来讲呢就是有刷电调就是输出时直流电,无刷电调输出是三相交流电。直流电就是我们电池里存储的电,有正负极之分,我们家用220V的,用于手机充电器或者电脑的电源都是交流电。交流电就是带有一定的频率,通俗讲就是一根线上正负、正负的来回交换着;直流电就是正极是正极,负极是负极。交流直流弄清楚了,那么什么又是“三相电”呢?理论讲三相交流电是电的一种传输形式,简称三相电,是由3个频率相同、振幅相等、相位依次互差120度的交流电势组成的电源。通俗的讲,就是我们家用的三项交流电,除了电压、频率、驱动角不同,其他都一样,现在对于三相电和直流电都了解了吧。

    无刷电调,输入的是直流电,通过一个滤波电容稳定电压。然后分成俩两路,一路是电调的BEC使用,BEC是给接收机与电调自身单片机供电使用的,输出至接收机的电源线就是信号线上的红线和黑线,另一路是介入MOS管使用,在这里,电调上电,单片机开始启动,驱动MOS管震动,使电机发出滴滴滴的声音。启动后待命,有些电调带有油门校准功能,在进入待命前会监测油门位置是在高还是低还是中间,高的话进入电调行程校准,中间的话开始发出报警信号,电机会滴滴的响,低的话会进入正常工作状态。一切准备就绪后,电调内的单片机会根据PWM信号线上的信号决定输出电压的大小和频率的高低以及驱动方向和进角多少来驱动电机的转速,转向。这就是无刷电调原理。在驱动电机运转的时候,电调内共有3组MOS管工作,每组2个极,一个控制正极输出,一个控制负极输出,当正极输出时,负极不输出,负极输出时,正极不输出,这样子也就形成了交流电,同样,三组都是这样工作的,它们的频率是8000HZ。讲到这,无刷电调也相当于一个工厂里电机上使用的变频器或者调速器。

     

    电调的输入是直流,通常由锂电池来供电。输出是三相交流,可以直接驱动电机。另外航模无刷电子调速器还有三根信号输入线,输入PWM信号,用于控制电机的转速。对于航模,尤其是四轴飞行器,由于其特殊性,需要专门的航模电调。

    那么为什么在四轴飞行器上需要专门的电调呢,其有什么特别的地方?四轴飞行器有四个桨,两两相对呈十字交叉结构。在桨的转向上分正转和反转,这样可抵消单个桨叶旋转引起的自旋问题。每个桨的直径很小,四个桨转动时的离心力是分散的。不像直机的桨,只有一个能产生集中的离心力形成陀螺性质的惯性离心力,保持机身不容易很快的侧翻掉。所以通常用到的舵机控制信号更新频率很低。

    四轴为了能够快速反应,以应对姿态变化引起的飘移,需要高反应速度的电调,常规PPM电调的更新速度只有50Hz左右,满足不了这种控制所需要的速度,且PPM电调MCU内置PID稳速控制,能对常规航模提供顺滑的转速变化特性,用在四轴上就不合适了,四轴需要的是快速反应的电机转速变化。用高速专用电调,IIC总线接口传送控制信号,可达到每秒几百上千次的电机转速变化,在四轴飞行时,姿态时刻能够保持稳定。即使受到外力突然冲击,依旧安然无恙。

    展开全文
  • 双直线电动机与压缩机一体化结构设计,有效利用空间,减小了斯特林制冷机的体积。双直线电机驱动压缩机,受力对称,振动小。为进一步减小振动和电磁干扰,电机采用正弦宽调制驱动,温度调节采用数字增量式PID,整个...
  • 机器人开发--伺服电机介绍1 电机介绍1.1 概述1.2 分类2 伺服电机介绍2.1 概述2.2 特点3 AGV电机选型参考直流有刷电机直流无刷电机直流伺服电机步进电机厂家参考 1 电机介绍 1.1 概述 电机(英文:Electric machinery...
  • 双直线电动机与压缩机一体化结构设计,有效利用空间,减小了斯特林制冷机的体积。双直线电机驱动压缩机,受力对称,振动小。为进一步减小振动和电磁干扰,电机采用正弦宽调制驱动,温度调节采用数字增量式PID,整个...
  • 一般情况下,对于交流伺服驱动器,可通过对其内部功能参数进行人工设定而实现位置控制、速度控制、转矩控制等多种功能。 工业机器人有4大组成部分,分别为本体、伺服、减速器和控制器。 工业机器人电动伺服系统的...
  • 伺服电机分为直流和交流伺服电动机两大类。其主要特点是:当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降;其作用:可使控制速度,位置精度非常准确。Panasonic伺服电机目前运动控制中般都...
  • 本文研究的数字交流伺服驱动器,实行了模块化设计,硬件结构简单,软件编程容易。
  •   在定位系统中,最常用的电机不外乎是步进电机和伺服电机,其中步进电机主要可分为2相、5相、微步进统,伺服电机则主要分为DC伺服和AC伺服两种。 2相、5相和微步进系统主要是驱动器所表现出来分辨率不同,2相步进...
  • 伺服电机

    2021-05-18 22:47:18
    交流伺服电机和步进电机的原理区别 步进电机原理: 步进电机是一种将电脉冲转换成角位移的执行机构,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(步距角),它的旋转是以...
  • 伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 分类: 【浅谈】伺服...
  • 机床交流伺服系统控制交流电动机时,要求测知交流电动机的三相电流。一般的方法是通过电流传感器直接测得三相电流,基于电机绕组的联接方式,要求至少需要2个电流传感器,常用的电流传感器为霍尔元件。通常这类...
  • 永磁伺服电机概述

    千次阅读 2019-12-03 15:07:11
    伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,399
精华内容 559
热门标签
关键字:

交流伺服电机结构