精华内容
下载资源
问答
  • 以太网(IEEE 802.3)格式: 1、前导码:7字节0x55,一串1、0间隔,用于信号同步 2、起始定界符:1字节0xD5(10101011),表示一开始 3、DA(目的MAC):6字节 4、SA(源MAC):6字节 5、类型/长度:2字节,0~1500保留...

    转载 https://blog.csdn.net/farmwang/article/details/64131318

    以太网(IEEE 802.3)帧格式:

    1、前导码:7字节0x55,一串1、0间隔,用于信号同步
    2、帧起始定界符:1字节0xD5(10101011),表示一帧开始
    3、DA(目的MAC):6字节
    4、SA(源MAC):6字节
    5、类型/长度:2字节,0~1500保留为长度域值,1536~65535保留为类型域值(0x0600~0xFFFF)
    6、数据:46~1500字节
    7、帧校验序列(FCS):4字节,使用CRC计算从目的MAC到数据域这部分内容而得到的校验和。

    据RFC894的说明,以太网封装IP数据包的最大长度是1500字节,也就是说以太网最大帧长应该是以太网首部加上1500,再加上7字节的前导同步码和1字节的帧开始定界符,具体就是:7字节前导同步吗+1字节帧开始定界符+6字节的目的MAC+6字节的源MAC+2字节的帧类型+1500+4字节的FCS。

    按照上述,最大帧应该是1526字节,但是实际上我们抓包得到的最大帧是1514字节,为什么不是1526字节呢?原因是当数据帧到达网卡时,在物理层上网卡要先去掉前导同步码和帧开始定界符,然后对帧进行CRC检验,如果帧校验和错,就丢弃此帧。如果校验和正确,就判断帧的目的硬件地址是否符合自己的接收条件(目的地址是自己的物理硬件地址、广播地址、可接收的多播硬件地址等),如果符合,就将帧交“设备驱动程序”做进一步处理。这时我们的抓包软件才能抓到数据,因此,抓包软件抓到的是去掉前导同步码、帧开始分界符、FCS之外的数据,其最大值是6+6+2+1500=1514。
     

    以太网规定,以太网帧数据域部分最小为46字节,也就是以太网帧最小是6+6+2+46+4=64。除去4个字节的FCS,因此,抓包时就是60字节。当数据字段的长度小于46字节时,MAC子层就会在数据字段的后面填充以满足数据帧长不小于64字节。由于填充数据是由MAC子层负责,也就是设备驱动程序。

     

    以CSMA/CD作为MAC算法的一类LAN称为以太网。CSMA/CD冲突避免的方法:先听后发、边听边发、随机延迟后重发。一旦发生冲突,必须让每台主机都能检测到。关于最小发送间隙和最小帧长的规定也是为了避免冲突。

    考虑如下的情况,主机发送的帧很小,而两台冲突主机相距很远。在主机A发送的帧传输到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到冲突,于是发送冲突信号。假如在B的冲突信号传输到A之前,A的帧已经发送完毕,那么A将检测不到冲突而误认为已发送成功。由于信号传播是有时延的,因此检测冲突也需要一定的时间。这也是为什么必须有个最小帧长的限制。

    按照标准,10Mbps以太网采用中继器时,连接的最大长度是2500米,最多经过4个中继器,因此规定对10Mbps以太网一帧的最小发送时间为51.2微秒。这段时间所能传输的数据为512位,因此也称该时间为512位时。这个时间定义为以太网时隙,或冲突时槽。512位=64字节,这就是以太网帧最小64字节的原因。

    512位时是主机捕获信道的时间。如果某主机发送一个帧的64字节仍无冲突,以后也就不会再发生冲突了,称此主机捕获了信道。

    由于信道是所有主机共享的,如果数据帧太长就会出现有的主机长时间不能发送数据,而且有的发送数据可能超出接收端的缓冲区大小,造成缓冲溢出。为避免单一主机占用信道时间过长,规定了以太网帧的最大帧长为1500。

    100Mbps以太网的时隙仍为512位时,以太网规定一帧的最小发送时间必须为5.12μs。

    1000Mbps以太网的时隙增至512字节,即4096位时,4.096μs。

    展开全文
  • 在开始阅读之前,如果你对已介绍的总线技术还不了解的话,可以先阅读以下文章快速温习一下,等补完车载以太网和MOST,汽车总线技术楼主基本分享结束了。说一说LIN总线CAN总线基础(一)CAN总线基础(下)CAN FD 介绍...

    我们之前已经分享了LIN、CAN、CAN FD、FlexRay总线。在开始阅读之前,如果你对已介绍的总线技术还不了解的话,可以先阅读以下文章快速温习一下,等补完车载以太网和MOST,汽车总线技术楼主基本分享结束了。

    说一说LIN总线

    CAN总线基础(一)

    CAN总线基础(下)

    CAN FD 介绍

    FlexRay 介绍

    背景

    车载以太网的出现背景楼主就不多做赘述了,其实主要是因汽车E/E架构和功能的复杂度提升而带来的对车辆数据传输带宽提高和通讯方式改变(基于服务的通讯-SOA)的需求。

    就目前汽车总线的应用情况,成本低、可靠性高、应用普遍的有Lin、CAN通讯,CAN FD也是最近几年才逐渐得到应用,而FlexRay、车载Ethernet等基于成本因素,目前主要在高端车型中使用。

    其中楼主之前介绍的FlexRay后续得到普遍应用的可能性楼主认为不是很大,首先成本方面与车载以太网差不多而通讯速率又远低于它,而伴随着未来智能化、网联化的趋势,车载Ethernet在未来得到推广的可能性要比FlexRay高很多。需要注意的是CAN FD在市场推广实施还没有几年,第三代CAN总线-CAN XL也即将登场,CAN XL传输速率将达到10Mbit/s,可填补CAN FD和百兆车载以太网(100BASE-T1)之间的鸿沟,从这点也可以看出车载通讯的快速发展及对通讯带宽的越来越高的要求,同时也可从另一方面说明FlexRay的尴尬。当然所有总线的应用都是分所在的域和场景的,例如对于安全要求很高的场合,采用了基于时间触发机制的FlexRay因实时性和确定性更高则更合适。

    标准

    在车载网络方面,玩家是很多的,也推出了各自的标准,如下:

    其中OPEN Alliance和电气与电子工程师协会(IEEE)制定的标准是车载以太网领域比重最大和应用最广泛的,例如我们熟知的100BASE-T1和1000BASE-T1。

    自1980年以来,IEEE一直负责以太网的维护、开发和标准化。尽管各个公司都可提供专有的以太网解决方案,但大多数时候公司都会交给IEEE进行标准化以确保更广泛的应用。802工作组则专门负责以太网,因此,所有与以太网相关的标准都以802开头(例如,IEEE 802.1,IEEE 802.2,IEEE 802.3等)。

    OPEN Alliance SIG是由汽车制造商和供应商组成的联盟,目的是促进以太网在汽车工业中的进一步发展。OPEN Alliance SIG与IEEE合作,将汽车以太网转换为通用标准。就目前的车载以太网标准方面,主流标准的是如下几个,目前主要是第二个100BASE-T1:用单对双绞线实现100Mbit/s的数据传输,走的靠前的OEM则使用更快的千兆以太网。

    车载以太网的网络分层和拓扑

    OSI七层网络模型(OSI=Open Systems Interconnection)是互联网发展过程中一个很重要的模型。OSI是一个开放性的通信系统互连参考模型,其含义就是建议所有公司使用这个规范来控制网络。只有统一通信规范时,才能实现真正的互联化。OSI 七层模型及通信互联的传输过程,如下图所示:

    OSI 七层网络模型是一个理想的网络参考模型,TCP/IP模型是已经被实际广泛应用于因特网的网络分层模型。TCP/IP 模型没有对 OSI 的 5~7 层做严格区分,统称为应用层

    车载以太网是基于 TCP/IP 的网络分层模型,并由 OPEN 和 AUTOSAR 等联盟对以太网相关协议进行了规范和补充。

    以太网的网络拓扑结构有点对点形式、类似于CAN或LIN的总线形式、链式和星型等形式:

    也有由上面几种形式的组合形式:

    当然现在多个节点的车载以太网的互联互通需要交换机Switch,Switch的作用如下:

    车载以太网的物理连接

    从硬件的角度看,以太网接口电路主要由MAC(Media Access Control)控制器和物理层接口PHY(Physical Layer,PHY)两大部分构成,如下图所示:

    MAC及PHY工作在OSI七层模型的数据链路层和物理层,如下

    PHY和MAC之间是如何传送数据和相互沟通的呢?MAC与PHY之间通过两个接口连接,分别为SMI接口和MII接口。

    MII(Media Independent Interface)即媒体独立接口,MII接口是MAC与PHY连接的标准接口,以太网MAC通过该接口发出数据帧经过PHY后传输到其他网络节点上,同时其他网络节点的数据先经过PHY后再由MAC接收。MII是IEEE-802.3定义的以太网行业标准,MII接口提供了MAC与PHY之间、PHY与STA(Station Management)之间的互联技术,该接口支持10Mb/s与100Mb/s的数据传输速率,数据传输的位宽为4位。"媒体独立"表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。802.3协议最多支持32个PHY,但有一定的限制:要符合协议要求的connector特性。

    SMI叫串行管理接口,以太网MAC通过该接口可以访问PHY的寄存器,通过对这些寄存器操作可对PHY进行控制和管理。SMI接口包括MDIO(控制和管理PHY以获取PHY的状态)和MDC(为MDIO提供时钟)。MDC由MAC提供,MDIO是一根双向的数据线。用来传送MAC层的控制信息和物理层的状态信息。MDIO数据与MDC时钟同步,在MDC上升沿有效。

    由此可见,MAC 和PHY,一个是数据链路层,一个是物理层;两者通过MII传送数据。 因此Ethernet的接口实质是MAC通过MII总线控制PHY的过程

    MII接口后续又衍生了很多其他版本,如RMII、GMII、SGMII、RGMII等。这里简要介绍其中的MII和RMII,如下图所示。MII共使用了16根线。其中CRS与COL只在半双工模式有效,而车载以太网固定工作在全双工模式下,故应用在汽车环境需要14根线

    RMII是精简版的MII,数据发送接收均为两根,相比MII减少了4根,另外它整合或减去了一些线,最终RMII只有8根线RMII的接口如下:

    在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件。考虑到芯片面积及模拟/数字混合架构的原因,通常,将MAC集成进微控制器而将PHY留在片外。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合,可分为下列几种类型:

    CPU集成MAC与PHY,目前来说并不多见:

    CPU集成MAC,PHY采用独立芯片,这种在车载以太网上是主流方式,因嵌入式芯片厂商一般都将MAC集成在MCU内部,而PHY芯片则由OEM或控制器供应商自己选择:

    CPU不集成MAC与PHY,MAC与PHY采用集成芯片。这种在消费用以太网上比较比较常见,如电脑的网卡有这种方式的。

    在以太网连接线束上,车载以太网与消费用以太网也是不同的,首先消费用以太网的标准主要采用10BASE-2、10/100BASE-TX和1000BASE-T,其中1000BASE-T是使用RJ45接口,需要四对双绞线共8根线进行数据传输,而10/100BASE-TX则是只使用四对双绞线其中的两对共4根线进行数据传输,如下是100BASE-TX的示意图(使用了两对双绞线)。

    在很早之前的10BASE-2则是同轴电缆进行数据传输,因此消费类以太网采用线束总结如下:

    车载以太网一般都基本采用带T1的标准,如IEEE 100BASE-T1(以前称为OABR)、IEEE 1000BASE-T1,这些都使用一对双绞线共两根线进行数据传输:

    其次在编码方式上,1000BASE-T主要采用PAM5的编码方式:

    车载以太网100BASE-T1和1000BASE-T1主要采用PAM3的编码方式。

    从上面可知,车载以太网主要采用基于一对双绞线进行数据传输的100BASE-T1或1000BASE-T1标准,而我们电脑则使用RJ45接口采用基于4对双绞线进行数据传输的1000BASE-TX标准,因此当我们用电脑测量控制器以太网时,有时需要转换器,如下:

    车载以太网帧结构

    以太网帧的格式如下:

    以太帧有多种类型,不同类型的帧具有不同的格式和MTU值,但在同种物理媒体上都可同时存在。常见有两种帧格式,第一种是上世纪80年代初提出的DIX v2格式,即Ethernet II帧格式。Ethernet II后来被IEEE802标准接纳,并写进了IEEE802.3x-1997的3.2.6节。

    第二种是1983年提出的IEEE802.3格式

    这两种格式的主要区别在于,Ethernet II格式中包含一个Type字段,标识以太帧处理完成之后将被发送到哪个上层协议进行处理。IEEE802.3格式中,同样的位置是长度字段。

    不同的Type字段值可以用来区别这两种帧的类型,当Type字段值小于等于1500(或者十六进制的0x05DC)时,帧使用的是IEEE802.3格式。当Type字段值大于等于1536(或者十六进制的0x0600)时,帧使用的是Ethernet II格式。以太网中大多数的数据帧使用的是Ethernet  II格式

    以太帧中还包括源和目的MAC地址,分别代表发送者的MAC和接收者的MAC,此外还有帧校验序列字段,用于检验传输过程中帧的完整性。

    汽车行业通常使用Ethernet  II格式,该格式还可包含VLAN信息作为扩展,因此,又分基本MAC帧(无VLAN)和标记MAC帧(包括VLAN)两种。

    MAC addresses: Ethernet II帧通常以接收者目标地址开头。 作用是指定要接收消息的网络节点。 与随后的发送者源地址相反,除单播地址外,还可以使用多播或广播地址。对于以太网帧,只能有一个发送方,但可以有多个接收方。

    Ether type: 基本和标记的MAC帧通过类型字段(以太类型)进行区分。 这通常标识有效载荷数据区域中包含的分组,并给出有关较高层中使用的协议(例如,IPv4)的信息。如果以太类型的值为0x8100,则将类型字段向后移四个字节,并在其原始位置插入一个VLAN标签。

    VLAN Tag:VLAN标签由协议标识符(TPID)和控制信息(TCI)组成。 TPID包含原始类型字段的值,而TCI由优先级(PCP),符合丢弃要求或规范的形式指示符(DEI或CFI)和标识符(VID)组成。标识符和优先级主要用于汽车行业。标识符区分不同应用区域的相应虚拟网络。优先级允许通过交换机优化运行时间,以便优先转发重要信息。

    Payload:在类型字段之后,以太帧包含有效载荷数据区域。 有效负载的最小长度为不带VLAN标记的46字节或带VLAN标记的42字节, 在汽车工业中,它最多可以包含1500个字节

    CRC校验:CRC校验在以太帧的末尾发送。 校验中包含的值是使用标准化算法计算的,该算法在发送方和接收方中以相同的方式实现。该计算是在以太帧的所有字段中进行的,因此可以确保整个消息的完整性。

    以太网Packet: 对于以太网II帧的传输,以太网控制器在开头插入前同步码和起始帧定界符(SFD),用于指示传输开始。前同步码,开始帧定界符和以太帧的组合称为以太网数据包

    车载以太网帧传输过程

    上面我们已经提到,车载以太网是基于TCP/IP的网络模型,因此我们先不考虑应用层数据是根据哪种应用层协议组织的,从应用层来的数据,经过传输层会加上TCP/UDP报头,再到网络层的IP报头,然后到链路层增加MAC地址等信息,最后由PHY转换成线路上的二进制流实现在发送端和接收端的数据传输。

    其中上面传输层的TCP协议和网络层的IP协议,楼主在本篇文章中就不过多赘述了,大家感兴趣的请自行查询了解。而应用层协议有不少,例如DoIP、DHCP、SOME/IP等,而最重要的车载以太网应用层协议主要是SOME/IP协议,关于这部分的阐述楼主放到下一篇。

    参考文献:

    1、Ethernet introduction(BOSCH、Tektronix、Vector、CSDN等资料)

    点个“在看”再走!

    展开全文
  • 关于pcap截取的网卡数据帧的分析;一个Demo说明网络协议封分层以及具体截获的包分析说明 一个实际的包数据分析 packet_header ------>包的头部---16字节 --------packet_content start--------- 52 54 00 12 35 ...
  • 以太网(IEEE 802.3)格式: 1、前导码:7字节0x55,一串1、0间隔,用于信号同步 2、起始定界符:1字节0xD5(10101011),表示一开始 3、DA(目的MAC):6字节 4、SA(源MAC):6字节 5、类型/长度:2字节,0~...
    以太网(IEEE 802.3)帧格式:
    

    1、前导码:7字节0x55,一串1、0间隔,用于信号同步
    2、帧起始定界符:1字节0xD5(10101011),表示一帧开始
    3、DA(目的MAC):6字节
    4、SA(源MAC):6字节
    5、类型/长度:2字节,0~1500保留为长度域值,1536~65535保留为类型域值(0x0600~0xFFFF)
    6、数据:46~1500字节
    7、帧校验序列(FCS):4字节,使用CRC计算从目的MAC到数据域这部分内容而得到的校验和。

    据RFC894的说明,以太网封装IP数据包的最大长度是1500字节,也就是说以太网最大帧长应该是以太网首部加上1500,再加上7字节的前导同步码和1字节的帧开始定界符,具体就是:7字节前导同步吗+1字节帧开始定界符+6字节的目的MAC+6字节的源MAC+2字节的帧类型+1500+4字节的FCS。

    按照上述,最大帧应该是1526字节,但是实际上我们抓包得到的最大帧是1514字节,为什么不是1526字节呢?原因是当数据帧到达网卡时,在物理层上网卡要先去掉前导同步码和帧开始定界符,然后对帧进行CRC检验,如果帧校验和错,就丢弃此帧。如果校验和正确,就判断帧的目的硬件地址是否符合自己的接收条件(目的地址是自己的物理硬件地址、广播地址、可接收的多播硬件地址等),如果符合,就将帧交“设备驱动程序”做进一步处理。这时我们的抓包软件才能抓到数据,因此,抓包软件抓到的是去掉前导同步码、帧开始分界符、FCS之外的数据,其最大值是6+6+2+1500=1514。

    以太网规定,以太网帧数据域部分最小为46字节,也就是以太网帧最小是6+6+2+46+4=64。除去4个字节的FCS,因此,抓包时就是60字节。当数据字段的长度小于46字节时,MAC子层就会在数据字段的后面填充以满足数据帧长不小于64字节。由于填充数据是由MAC子层负责,也就是设备驱动程序。
    展开全文
  • 以太网数据帧结构以及大小限制

    千次阅读 2018-04-09 21:47:58
    以太网数据帧结构 以太网是目前最流行的一种局域网组网技术(其他常见局域网组网技术还有令牌环局域网、无线局域网、ATM局域网),以太网技术的正式标准是IEEE 802.3标准,它规定了在以太网中传输的数据帧结构,如...

     以太网数据帧结构    

           以太网是目前最流行的一种局域网组网技术(其他常见局域网组网技术还有令牌环局域网、无线局域网、ATM局域网),以太网技术的正式标准是IEEE 802.3标准,它规定了在以太网中传输的数据帧结构,如下图所示。

                  

          1、前导码/帧起始定界符:7字节0x55,一串1、0间隔,用于信号同步,1字节0xD5(10101011),表示一帧开始
      2、目的地址:6字节
      3、源地址:6字节
      4、类型/长度:2字节,0~1500保留为长度域值,1536~65535保留为类型域值(0x0600~0xFFFF)
      5、数据:46~1500字节
      6、帧校验序列(FCS):4字节,使用CRC计算从目的MAC到数据域这部分内容而得到的校验和。

            ARP报文是典型的以太网数据帧,他的结构为:

          以太网帧头部中的前两个字段是以太网的MAC地址和源MAC地址,目的地址为全1的特殊地址是以太网广播地址。在ARP表项建立前,源主机只知道目的主机的IP地址,并不知道其MAC地址,所以在数据链路上,源主机只有通过广播的方式将ARP请求数据包发送出去,同一网段上的所有以太网接口都会接收到广播的数据包。

           两个字节长的以太网帧类型表示帧中数据的类型。对于ARP包来说,该字段值为0x0806;对IP包来说,该字段的值为0x0800。接下来就是ARP数据包部分了,第一个硬件类型字段表示发送方想要知道的硬件接口类型,对于以太网MAC地址,它的值为1.协议类型字段表示要映射的协议地址类型,它的值为0x0800时,即表示要映射为IP地址,该值与以太网数据帧头中的类型字段的值使用相同的一组值。

    接下来的两个单字节长度的字段,称为硬件地址长度和协议地址长度,它们分别指出硬件地址和协议地址的长度,长度单位为字节。对于以太网上ARP请求或应答来说,它们的值分别为6和4,代表MAC地址的长度和IP地址的长度。在ARP协议包中流出硬件地址长度和协议地址长度字段可以使得ARP协议在任何网络中被使用,而不仅仅只在以太网中。

          操作字段op指出ARP数据包的类型,它们可以使ARP请求(值为1)、ARP应答(值为2)。

          接下来的四个字段是发送端的以太网MAC地址、发送端的IP地址、目的端的以太网MAC地址和目的端的IP地址。


    大小限制

        我们注意到上面提到数据的大小46~1500字节.46是如何算出来的呢?

        这里一句话带过,为了避免信号碰撞.也就是说信号在A和B之间传输 的来回时间必须控制在一定范围之内。IEEE定义了这个标准,一个碰撞域内,最远的两台机器之间的round-trip time 要小于512bit time.(来回时间小于512位时,所谓位时就是传输一个比特需要的时间)。这也是我们常说的一个碰撞域的直径。

      512个位时,也就是64字节的传输时间,如果以太网数据包大于或等于64个字节,就能保证碰撞信号到达A的时候,数据包还没有传完。

        前面提到,以太网首部要占14个字节,最后一个帧校验序列(FCS)占4字节.(前导码/帧起始定界符并不能算是真正意义上的以太网数据帧,它们是以太网在物理层上发送以太网数据时添加上去的),所以数据最小必须是64-14-4=46字节.对于ARP协议,数据长度只有28字节,剩余必须全部补0,为18个字节.

        最长长度1500字节也是以太网的规定,目的是避免数据太长,导致数据一直占用信道.



        参考:

        为什么以太网数据帧最小为64字节

        以太网完整协议

    展开全文
  • 本文主要记录使用抓包工具抓取网络数据包的过程,可以更好的理解Linux网络协议栈。 1、实验环境 一个嵌入式开发板:加载好网卡驱动...数据包包含内容如下(https://xingxingzhihuo.blog.csdn.net/article/details...
  • 关于以太网数据链路层长度大小 以太网一包数据:总长度为1518,带Vlan的为1522,4个字节Vlan Tag在类型之前 带Vlan
  • 目的地址 源地址 类型 数据 校验...数据字段长度(2字节):指示其后的逻辑链路控制(LLC)数据字节的长度 逻辑链路控制LLC:携带的用户数量 填充字段PAD:以保证有足够长度来适应碰撞检测的需要 校验序列...
  • EtherType 是以太帧里的一个字段,用来指明应用于帧数据字段的协议。根据 IEEE802.3,Length/EtherType 字段是两个八字节的字段,含义两者取一,这取决于其数值。在量化评估中,字段中的第一个八位字节是最重要的。...
  • 以太网数据帧格式及ARP协议

    千次阅读 2020-08-29 15:59:52
    在物理层上看,一个完整的以太网帧有7个字段,事实上,前两个字段并不能算是真正意义上的以太网数据帧,它们是以太网在物理层上发送以太网数据时添加上去的。为了实现底层数据的正确阐述,物理层使用7个字节前同步码...
  • 以太网帧

    万次阅读 2018-05-20 20:46:59
     以太网帧(Ethernet frame)是符合以太网标准的链路层协议数据单元(PDU),其格式有Ethernet V1、Ethernet V2、RAW 802.3、IEEE 802.3/802.2 LLC和IEEE 802.3/802.2SNAP。现在大多数网络应用都使用Ethernet V2...
  • 以太网帧格式

    2019-10-07 22:11:50
    DIX Ethernet II格式
  • 以太网数据帧内容详解

    千次阅读 2019-09-13 18:52:26
    在学习计算机网络的时候,好像更偏重于了解ip头部的格式,经常忽略了数据链路层下数据帧的格式,今天在书上看到一个不错的关于数据帧格式的介绍,翻译并分享给大家。 Preamble 前导码,序言:7byte或56bits的...
  • 在使用CLICK路由器的时候会发现,当数据字段填充过少发送时,网卡会自动对进行填充,确保它至少有64字节 为什么需要有一定的长度,查阅资料,原因如下: 以太网(IEEE 802.3)格式: 1、前导码(前...
  • 1 【单选题】 下面哪个不是TCP/IP协议中的层次 ...802.3以太网帧中length的最大值为 A、 1500 B、 1518 C、 1536 D、 1566 我的答案:A 4 【单选题】 以太网帧的最小长度为 A、 38 B、 46 C、 64 D、 76 我的答案:C
  • 以太网帧结构详解

    万次阅读 多人点赞 2019-07-15 21:52:59
    以太网帧结构详解前言分层模型- OSI分层模型– TCP/IP数据封装终端之间的通信帧格式Ethernet_II 帧格式IEEE802.3 帧格式数据帧传输以太网的MAC地址数据帧的发送和接收单播广播组播发送与接收 前言 20世纪60年代以来...
  • IEEE-802.3 1)题目“ IEEE 802.3以太网帧封装” 题目内容:编写程序实现IEEE 802.3以太网帧封装。 2)要求: 1.要求画出界面,以太网帧的数据部分、...数据字段 校验字段 7B 1B (6B) (6B) (2B) (长度可变) (4B) 实现
  • 以太网帧分析

    2021-09-21 16:05:56
    OSI 模型的数据链路层(第 2 层)实际上由两个子层组成:媒体访问控制 (MAC) 子层和逻辑链路控制 (LLC) 子层。 MAC 子层控制设备交互。... 它们包含除其他外的以太网帧,该帧被分成多个数据集。 这些记录由提供重要信
  • 以太网帧长度1518、1522、1536的说明

    千次阅读 2018-01-15 14:13:15
    一、IEEE802.3 以太网帧结构:  Preamble (7-bytes) --前导码 Start Frame Delimiter (1-byte) --定界符  Dest. MAC Address (6-bytes) --目的地址  Source MAC Address (6-bytes) --...
  • 在传统以太网中,为什么要有最小帧长度最大帧长度的限制?   以太网(IEEE 802.3)格式: 1、前导码:7字节0x55,一串1、0间隔,用于信号同步 2、起始定界符:1字节0xD5(10101011),表示一开始 3、DA(目的...
  • 2.以太网帧结构

    2020-08-03 10:42:02
    网络传输数据时需要定义遵循一些标准,以太网是根据IEEE 802.3标准来管理和控制数据帧的。了解IEEE 802.3标准是充分理解以太网中链路层通信的基础。 2.网路通信协议 20世纪60年代以来,计算机网络得到了飞速发展。...
  • 网络基础知识(以太网帧结构)二

    千次阅读 2019-04-11 18:26:30
    以太网帧整体结构 3. 以太网帧
  • 数据链路层——以太网帧结构

    千次阅读 2020-05-16 22:28:13
    目录前言格式Ethernet_II格式IEEE802.3格式数据帧传输以太网的MAC地址 前言        数据包在以太网物理介质上传播之前必须封装头部和尾部信息,封装后的数据包称为数据帧...
  • 以太网数据帧协议分析

    万次阅读 2015-10-17 17:58:53
    通过本次总结,更直观的学习了数据报和格式和入户正确快速利用搜索的其他主机的MAC地址和IP地址(121.42.123.186),将数据填入格式中。在实验中遇到不懂的问题及时细读实验要求和实验内容原理或者直接问同学,增强...
  • 以太网数据包长度限制

    千次阅读 2020-06-21 19:13:10
    链路层的数据交互是基于数据帧, 一帧数据包的最大长度1518(以太网帧最大长度)-18(以太网帧头帧尾) = 1500字节。 IP层: 由于链路层的数据最大为1500,所以该层的最大数据包长度为1500-20(IP包首部)=1480...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 16,220
精华内容 6,488
关键字:

以太网帧数据字段的最大长度是