精华内容
下载资源
问答
  • 管理信息系统的定义概念和结构以对企业整体性、长期性、基本性问题进行谋略,最终追求完美打造管理信息...该文档为管理信息系统的定义概念和结构,是一份很不错参考资料,具有较高参考价值,感兴趣可以下载看看
  • 战略的概念定义

    2020-12-15 10:16:34
    为了企业更好发展规划,请收下这一款战略的概念定义,它能为你的企业战略添砖加瓦,喜欢战略的概念与定...该文档为战略的概念定义,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看
  • 27、数据结构笔记之二十七数组的定义概念 “人生最终的价值在于觉醒和思考能力,而不只在于生存。-- 亚里斯多德”  学习了串以及串几个应用,包括文本编辑,词索引等。这篇开始我们学习数组。首先来介绍...

    27、数据结构笔记之二十七数组的定义和概念

    “人生最终的价值在于觉醒和思考的能力,而不只在于生存。-- 亚里斯多德”

               学习了串以及串的几个应用,包括文本编辑,词索引等。这篇开始我们学习数组。首先来介绍数据的一些定义和概念。

    1.  数组

    数组可以看成是一种特殊的线性表,是线性表的推广,其特点是数据元素仍然是一个表,即线性表中数据元素本身也是一个线性表

    2.  数组的定义:

    数组是定长线性表在维数上的扩张,即线性表中的元素又是一个线性表,n维数组是一种“同构”的数据结构,其中每个数据元素类型相同,结构一致。、

    设有n维数组A[b1,b2,…,bn],其每一维的下界都为1,bi是第i维的上界。从数据结构的逻辑关系角度来看,A中的每个元素A[j1,j2, …,jn](1≤ji≤bi)都被n个关系所约束。在每个关系中,除第一个和最后一个元素外,其余元素都只有一个直接后继和一个直接前驱。因此就单个关系而言,仍是线性的。

    以二维数组A[m,n]为例,可以把它看成是一个定长的线性表,它的每个元素也是一个定长线性表。如下图1


    A可看成一个行向量形式的线性表:

    Am,n=[[a11a12…a1n], [a21a22…a2n], …, [am1am2…amn]];

    或列向量形式的线性表:

    Am,n=[[a11a21…am1], [a12a22…am2], …, [a1na2n…amn]];

    数组结构的特点如下:

    (1) 数据元素数目固定,一旦定义了一个数组结构,就不再有元素的增减变化。

    (2) 数据元素具有相同的类型。

    (3) 数据元素的下标关系具有上下界得约束且下标有序。

    数组的两个基本运算

    (1) 给定一组下标,存取相应的数据元素。

    (2) 给定一组下标,修改相应的数据元素中某个数据项的值。

    几乎所有的高级程序设计语言都提供了数组类型。实际上,在程序语言中把数组看成是具有共同名字的同一类型多个变量的集合。

    3.  数组的顺序存储

    数组一般不作插入和删除运算,一旦定义了数组,则结构中的数据元素个数和元素之间的关系就不再发生变动,因此数组适合于采用顺序存储结构。

    由于计算机的内存结构是一维线性的,因此存储多维数组时必须按某种方式进行降维处理,即将数组元素排成一个线性序列,这就产生了次序约定问题。因为多维数组是由较低一维的数组来定义的,依次类推,通过这种递推关系将多维数组的数据元素排成一个线性序列。

    对于数组,一旦确定了其维度和各维的长度,便可为它分配存储空间。反之,只要给出一组下标便可求得相应数组元素的存储位置,即在数据的顺序存储结构中,数据元素的位置是其下标的线性函数。

    二维数组的存储结构可分为以行为主序的两种方法(如下图2)


    设每个数据元素占用L个单元,m,n为数组的行数和列数,Loc(a11)表示元素a11的地址,那么以行为主序优先存储的地址计算公式为:

    Loc(aij)=Loc(a11)+((i-1)×n+(j-1))×L

    同理,以列为主序优先存储的地址计算公式为:

    Loc(aij)=Loc(a11)+((j-1)×m+(i-1))×L

    推广至多维数组,按下标顺序存储时,先排最右的下标,从右向左直到最左下标,而逆下标顺序则正好相反。

    展开全文
  • (我国《物流术语》2001年给出定义)物流术语关键词◇供应链◇客户◇需求信息◇物流功能◇高效率低成本◇正向◇反向(即逆向物流,如:退货;返回加工等)◇有机结合(物流功能间逻辑关系)物流六要素1.流体...

    物流:

    物体从供应地接受地实体流动过程。(我国《物流术语》2001年给出定义)

    物流术语的关键词

    ◇供应链
    ◇客户
    ◇需求信息
    ◇物流功能
    ◇高效率低成本
    ◇正向
    ◇反向(即逆向物流,如:退货;返回加工等)

    ◇有机结合(物流功能间的逻辑关系)


    物流的六要素

    1.流体(物质实体)2.载体3.流速4.流向5.流程6.流量

    物流的价值

    1.时间价值:

    “物”从供给者到需要者之间有一段时间差,由于改变这一时间差创造的价值。

    ◇物流的时间价值从三个方面实现:

    a.缩短时间创造价值(时尚性、保鲜的产品)

    b.弥补时间差创造价值

    c.延长时间差创造价值(如,红酒、白酒等)

    2.场所价值:

    “物”从供给者需求者之间有一段空间差异。供给者和需求者之间往往处于不同的场所,因改变这一场所的差别创造的价值。

    如,两地之间流入产生的价值:

    a.集中生产场所→分散需求场所
    b.分散生产场所→集中需求场所
    c.甲地生产→乙地需求

    3.加工附加价值:

    加工活动不是创造商品主要实体、形成商品主要功能和使用价值,而是带有完善、补充、增加性质的加工活动,物流加工活动必然会形成劳动对象的附加价值。


    现代物流的作用


    1.物流保障再生产过程。

    (物流是生产过程的基本保证;物流是实现从生产到消费的重要环节。)

    2.以尽可能低的物流成本,给顾客以尽可能好的物流服务。

    (如,快递物流,接受订货到发货的配送、信息通畅、使物流成本最小。)

    3.提高效益,增加销售和盈利。

    4.提高企业的核心的能力。
    (通过物流提高企业的管理能力;通过物流增强企业竞争力。)

    5.降低物流活動中的成本。

    (目前,美国的物流成本占GDP的比重约为10.5%;日本的占9.5%;印度的占9%;中国的占16%。

    由此得出结论,提升我国物流行业效率和效益的、紧迫性和必要性。)

    ◇物流是企业的“第三利润源泉”。

    ◇电子商务要以物流为基础,才能实现对流通领域的革命。

    ◇城市的现代化必须以物流的现代化为依托。

    ◇现代物流业推动第三产业的发展。

    ◇现代物流业是改善投资环境,扩大招商引资的重要措施。

    ◇现代物流业能够完善结构、提高国民经济总体质量。


    物流的职能

    ◇主体职能:

    运输、储存、配送

    ◇辅助职能:

    包装、装卸搬运、流通加工

    ◇信息职能:

    大数据收集、需求分析、订单处理、订单传递、作业信息处理与控制、客户关系管理、物流运营决策


    现代物流管理的形成和发展:

    ◇现代物流观念的启蒙与产生
    ——营销学者Fred E.Clark
    ——1929年《市场营销中的原则》
    营销的实现需要物流信息、运输、仓储、包装、配送等功能密切配合。

    ◇物流体系的形成

    ——1954年,Boston举行的第26次国际流通大会上,鲍尔.D.康柏斯发表“物流是市场营销的另一半”的演讲。
    ——1961年
    爱德华.W.斯马凯伊(Edward W.Smykay)
    罗纳德.J.鲍尔索克斯(Ronald J.Bowersox)
    弗兰克.H.莫斯曼(Frank H.Mossman)
    撰写《物流管理》

    ◇物流价值的发现过程

    第一阶段:(20世纪60年代和70年代)——PD产品配送阶段
    第二阶段:(20世纪70年代和80年代)——综合物流阶段
    第三阶段:(20世纪80年代以后)——供应链阶段
    (目前市场的竞争是供应链之间的竞争)


    物流合理化目标

    1.最短路径:运输配送的路线是最短的或较短的。
    2.时间少:以较少的时间实现一批货物的运输、配送。
    3.整合好:物流功能集成度高,例如,物流功能包装,装卸搬运和运输的集成,可靠的包装方便装卸搬运和运输。
    4.高质量:按照物流服务质量指标提供物流服务。如及时送达,包装盒货物完好。
    5.最低库存:库存与服务满意度是相互排斥的,通常情况,保证服务满意度需较多存货,存货多增加了服务企业库存成本。
    6.低成本:同一单物流业务,不同物流企业运作,出现成本差异性,有时成本差异非常显著。
    7.生命周期支持:在物料、商品和保质期内,实现物流,确保物流过程增值。
    8.安全准确环保:物流过程“安全第一”;准时,送达指定地点、指定客户,物流过程中对环境污染,保护环境。


    国际物流概况及结构(美、日、中)

    1.美国物流产业概况及结构特点

    ◇20世纪80年代的美国
    物流管理的内容已由企业内部延伸到企业外部。
    ——电子数据交换(EDI)
    ——准时制生产(JIT)

    ——配送计划

    ◇20世纪90年代
    电子商务在美国如火如荼地发展,促使现代物流上升到了前所未有的重要地位。
    ——美国物流的成本改善经历了
    ——从20世纪80年代到现在,物流成本下降从16.50%→10.60%,约10.50%。

    ◇90年代之前,物流主管比率12%
    ◇90年代直到今天,物流主管比率>35%
    就美国奥尔良洲立大学表明,美国
    物流管理人员年薪酬——7万美元
    物流主管年薪酬——10万美元
    副总裁年薪酬——20万美元
    (美国物流从业者:92%学士学位,41%硕士学位,22%有正式从业资格证书。)


    2.日本物流产业概况及结构特点

    ◇日本物流业发展概况
    日本物流业的发展已有较长的历史,在世界,居领先水平,特别是日本政府近年来,为了大力扶持物流产业的发展,所采取的宏观政策导向,给日本物流产业带来快速增长。
    ◇日本物流业发展的主要特点
    ——全面完善物流基础设施建设(日本航空,地铁,高铁物流设施居于世界领先水平。)
    ——全球创新的物流作业和管理理念(如,准时制运作,零库存)
    ——确立海运立国战略(港口物流的通畅性、安全性、及时性、环保性,不断提升物流服务质量,并且物流成本最低)

    ◇日本主要制造业(如汽车,电子产品,生化产品)物流成本约占销售额的8%。

    ——物流总成本,约占GDP的9.58%。

    ◇日本政府的综合物流政策

    1.科技理论研究与实践应用相结合(80年代创新的准时制物流和零库存理念,如今风靡全球。)

    2.重视培养物流管理人才(很多工科院校重视物流工程技术和人才的培养)

    3.政府的大力支持和积极引导(日本政府制定了全国物流发展统一的行动计划《日本综合物流施政纲要》,从规划到布局,硬件设施及软件开发,规划管理等各方面,规划引导日本现代物流业。)

    ◇日本政府推进物流发展的主要经验:

    积极加快建立物流基地,其突出特点是得政府政策扶持,基地通常建在中心城市边缘的交通枢纽地带,物流基地服务功能齐全。


    展开全文
  • 除了动态Web界面,一个有价值的Web应用必然需要进行数据存储,开发上我们一般称之为数据持久化(Data Persistence)。从业务功能角度出发,简单应用可以认为就是数据增删改查。比如一个产品级博客应用,最...

    数据持久化

    掌握了Servlet/JSP技术,我们已经可以创建动态的Web应用了。除了动态的Web界面,一个有价值的Web应用必然需要进行数据存储,开发上我们一般称之为数据持久化(Data Persistence)。从业务功能的角度出发,简单的应用可以认为就是数据的增删改查。比如一个产品级的博客应用,最核心的功能就是对博客内容的创建、修改、删除和查询,而这些功能都离不开Web服务器背后的数据库系统。

    cfcc09b51abec79e33aa64a336151194.png

    狭义地理解, “持久化”就是指把业务数据永久存储到数据库中;广义的理解,“持久化”则包括和数据库相关的各种操作。将内存中的数据存入数据库就能够随时获取或者更新这些数据。所以让我们首先来了解一下数据库系统。

    数据库简介

    数据库技术诞生于上个世纪60年代,是计算机科学的一个重要分支。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要。能够统一管理和共享数据的数据库管理系统(DBMS, Database Management System)应运而生。

    DBMS的主要包括两个功能:数据定义功能:提供数据定义语言(DDL,Data Definition Language),用以定义数据库中的数据对象

    数据操纵功能:提供数据操纵语言(DML,Data Manipulation Language),用以实现对数据的基本操作(查询、插入、删除和修改)

    数据库的运行管理和维护等,如数据的安全、完整性、并发和恢复等控制

    自数据库从诞生以来,大致经历了以下几个阶段:

    目前,非关系型数据库正在蓬勃的发展中,比如MongoDB、Redis、BigTable等非关系型数据库已经被很多领域广泛的应用。

    关系型数据库依然是Web开发中的主流数据库。我们将以使用最广泛的开源关系型数据库MySQL作为我们博客应用的数据库。

    关系型数据库,是指使用关系模型来组织数据,使用集合代数等数学概念和方法来处理数据的一种数据库。在关系型数据库中,现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。不过我们这里先不深入其数学原理,我们以更形象的方式来理解关系型数据库的几个基本概念。

    数据库表

    关系可以认为就是一个二维表格,关系型数据库就是一组二维表格的集合,通过表格来描述和存数对象和对象之间的关系。

    我们已经实现了博客页面,我们来分析一下这个页面:

    cb7372f19e8633262f0ec5c88420b3c2.png

    从中我们看到,一篇博客至少具有以下信息:博客标题

    创建时间

    博客内容

    作者头像

    作者名称

    这些信息存储到数据库中,就这样一个blog表:

    a32bac7bf7192ad1b084cca6f2c0aae6.png

    表中的每一列就是表的一个字段,对应Blog对象的一个属性;表中的每一张就是一条记录,对应于一篇具体的博客。

    793e72b76f4c54380b464d6c0ea3958e.png

    主键

    数据存储起来之后我们需要非常方便得查询。接下来我们想一个问题:如何快速地识别出一条博客记录?一种方法是根据title来标识一条记录。如果Ricky也写了一篇名为“天码营是什么?”的博客呢?这时候title就不是唯一标识了。

    7e6d6f275bc60082d27ad5eb4a711af0.png

    这时我们可以给blog表,增加一个id字段,通过唯一的整数值来标识一条记录。能够唯一确定一条记录的字段就称为主键。

    dc4fb557070b034a5a7d3bf8092c1dd5.png

    注意多个字段可以一起作为一个表的主键,但是在开发中一般情况下我们使用自增的整数字段来作为主键。即每增加一条记录,记录的id的值就自动增加,这样就保证了每条记录的唯一性。`

    字段的数据类型

    表中的每个字段,与一个类的属性一样,具有数据类型。数据中有三种主要的数据类型:文本、数字和日期/时间类型。不同的数据类型拥有不同的特性,例如数字类型可以做一些数学操作,时间类型可以按照一定规则进行排序或筛选。同时,不同的数据类型在存储时是不一样,这就导致了不同的数据类型效率上有很大的差别。在后面的学习中,我们将会在数据库表的设计过程中讲解具体的数据类型,以及选择数据类型的最佳实践。

    数据库表关系

    一对多关系

    观察Blog表中的数据,我们发现虽然只有David和Ricky两名作者,但是却出现了5次作者姓名和作者头像的信息,这样不仅浪费存储空间,带来潜在的不一致性等问题。

    40e744234279b89e540a374fd42d471f.png

    这样的表结构设计具有明显的不合理性。与类的设计需要符合面向对象的设计原则一样,表的设计也需要遵循一些范式来保证良好的表结构。

    这里我们可以把作者的信息提取出来放到一个单独的user表中:

    912fa013a9cdd894f57a73cf8400478b.png

    相应地需要修改blog表的结构:

    ec7b284e0bba3b51a38ed2c2beb4b78e.png

    我们发现blog表中多了一个author字段,保存的是User的id。这时就形成了一个外键约束。

    a94a3615d5d5c5698dce062699f3ae5d.png

    我们说一个表具有外键,就是说表中一个字段或者几个字段的组合在另外一个表中是主键。回到场景中即:author有一个外键约束,外键是user表的主键id。

    设置外键后,当往blog表中中插入数据时,数据库会自动检查插入数据的author字段,是否存在user表中存在对应的记录。如果不存在,数据库会抛出错误,拒绝插入,这样就可以保证数据的一致性和完整性。分为这样两个表同时也让分别维护博客信息和用户信息更为方便,处理逻辑得意分离。

    user表和blog表是一种一对多的关系,其含义也很容易理解,一个用户可以创建多篇博客。其它两种关系我们在后面的内容中再行介绍。基于外键我们可以建立表与表之间的另外两种关系:一对一和多对多。

    一对一关系

    我们可以把Blog的内容单独拿出来放在一张表中,命名为blog_content。那么blog_content和blog就是一对一的关系,一篇博客有其唯一的内容,一条内容也只会属于某一篇博客。

    856fc5e7e98bb511aae0d930be9efa79.png

    一对一关系相对不是很常见,但是依然有其应用场景。比如一篇博客信息中,占用空间的主要就是博客内容。将其独立出去,blog表的数据量就大大减小,在数据记录非常多时且如果需要频繁修改和访问blog表中的信息时,,可以极大的增加我们的读写效率。因为数据库表的存储的数据越少,读写效率越高。

    多对多关系

    最后一种关系是多对多关系。假设我们希望给每篇博客设置标签,则一个标签可以对应多篇博客,一篇博客可以对应多个标签。标签数据可以通过定义个tag表来保存。而标签和博客的多对多关系,需要再单独定义一个表来描述,命名为blog_tag,这三个表如下所示:

    b7cc16101ec76c9b546ab42818722279.png

    上图中可见,具有“Java”标签的文章有《JSP简介》和《Servlet简介》,对应blog_tag表的两条记录<1,2>,<1,3>;博客《天码营是什么》具有标签“互联网”和“天码营”对应1blog_tag1表的两条记录<2,1>,<5,1>。

    总结

    这节课我们学习了数据库的一些基础概念,我们可以大致的了解如何针对一个需求来进行数据库的设计,我们已经有了一个感性的认识。具体如何操作来去创建一张数据库表以及创建他们之间的关系呢?接下来,我们先安装好MySQL数据库,然后学习如何通过结构化查询语言(SQL)来操作数据库。

    展开全文
  • 声明:本文转至Big大鸟的博客下,转载的名为《什么叫大数据 大数据的概念》一文,链接地址http://blog.csdn.net/qq_36738482/article/details/728235091、大数据定义 对于“大数据”(Big data)研究机构Gartner给...

    声明:本文转至Big大鸟的博客下,转载的名为《什么叫大数据 大数据的概念》一文,链接地址http://blog.csdn.net/qq_36738482/article/details/72823509


    1、大数据定义

     对于“大数据”(Big data)研究机构Gartner给出了定义,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力

    的海量、高增长率和多样化的信息资产。

    大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

    从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算分布式处理分布式数据库云存储虚拟化技术

    随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

    大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库云计算平台、互联网和可扩展的存储系统。

    最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB,它们按照进率1024(2的十次方)来计算:

    8bit= 1Byte

    1KB= 1,024 Bytes

    1MB= 1,024 KB = 1,048,576 Bytes

    1GB= 1,024 MB = 1,048,576 KB

    1TB= 1,024 GB = 1,048,576 MB

    1PB= 1,024 TB = 1,048,576 GB

    1EB= 1,024 PB = 1,048,576 TB

    1ZB= 1,024 EB = 1,048,576 PB

    1YB= 1,024 ZB = 1,048,576 EB

    1BB= 1,024 YB = 1,048,576 ZB

    1NB= 1,024 BB = 1,048,576 YB

    1 DB = 1,024 NB = 1,048,576 BB

    1887–1890年

    赫尔曼·霍尔瑞斯美国统计学家赫尔曼·霍尔瑞斯为了统计1890年的人口普查数据发明了一台电动器来读取卡片上的洞数,该设备让美国用一年时间就完成了原本耗时8年的人口普查活动,由此在全球范围内引发了数据处理的新纪元。

    1935–1937年

    美国总统富兰克林·罗斯福利用社会保障法开展了美国政府最雄心勃勃的一项数据收集项目,IBM最终赢得竞标,即需要整理美国的2600万个员工和300万个雇主的记录。共和党总统候选人阿尔夫兰登scoffs嘲笑地说,“要整理如此繁多的职工档案,还必须而调用大规模的现场调查人员去核实那些信息不完整的人员记录。”

    1943年

    一家英国工厂为了破译二战期间的纳粹密码,让工程师开发了系列开创性的能进行大规模数据处理的机器,并使用了第一台可编程的电子计算机进行运算。该计算机被命名为“巨人”,为了找出拦截信息中的潜在模式,它以每秒钟5000字符的速度读取纸卡——将原本需要耗费数周时间才能完成的工作量压缩到了几个小时。破译德国部队前方阵地的信息以后,帮助盟军成功登陆了诺曼底。

    1997年

    美国宇航局研究员迈克尔·考克斯和大卫·埃尔斯沃斯首次使用“大数据”这一术语来描述20世纪90年代的挑战:超级计算机生成大量的信息——在考克斯和埃尔斯沃斯按案例中,模拟飞机周围的气流——是不能被处理和可视化的。数据集通常之大,超出了主存储器本地磁盘,甚至远程磁盘的承载能力。”他们称之为“大数据问题。”

    2002年

    在9/11袭击后,美国政府为阻止恐怖主义已经涉足大规模数据挖掘。前国家安全顾问约翰·波因德克斯特领导国防部整合现有政府的数据集,组建一个用于筛选通信、犯罪、教育、金融、医疗和旅行等记录来识别可疑人的大数据库。一年后国会因担忧公民自由权而停止了这一项目。

    2004年

    9/11委员会呼吁反恐机构应统一组建“一个基于网络的信息共享系统”,以便能快处理应接不暇的数据。到2010年,美国国家安全局的30000名员工将拦截和存储17亿年电子邮件、电话和其它通讯日报。与此同时,零售商积累关于客户购物和个人习惯的大量数据,沃尔玛自吹已拥有一个容量为460字节的缓存器——比当时互联网上的数据量还要多一倍。

    2007–2008年

    随着社交网络的激增,技术博客和专业人士为“大数据” 概念注入新的生机。“当前世界范围内已有的一些其他工具将被大量数据和应用算法所取代”。《连线》的克里斯·安德森认为当时处于一个“理论终结时代”。一些政府机构和美国的顶尖计算机科学家声称,“应该深入参与大数据计算的开发和部署工作,因为它将直接有利于许多任务的实现。”

    2009年1月

    印度政府建立印度唯一的身份识别管理局,对12亿人的指纹、照片和虹膜进行扫描,并为每人分配12位的数字ID号码,将数据汇集到世界最大的生物识别数据库中。官员们说它将会起到提高政府的服务效率和减少腐败行为的作用,但批评者担心政府会针对个别人进行剖面分析并与分享这些人的私密生活细节。

    2009年5月

    大数据或成反恐分析利器美国总统巴拉克·奥巴马政府推出data.gov网站作为政府开放数据计划的部分举措。该网站的超过4.45万量数据集被用于保证一些网站和智能手机应用程序来跟踪从航班到产品召回再到特定区域内失业率的信息,这一行动激发了从肯尼亚到英国范围内的政府们相继推出类似举措。

    2009年7月

    应对全球金融危机,联合国秘书长潘基文承诺创建警报系统,抓住“实时数据带给贫穷国家经济危机的影响” 。联合国全球脉冲项目已研究了对如何利用手机和社交网站的数据源来分析预测从螺旋价格到疾病爆发之类的问题。

    2011年2月

    扫描2亿年的页面信息,或4兆兆字节磁盘存储,只需几秒即可完成。IBM的沃森计算机系统在智力竞赛节目《危险边缘》中打败了两名人类挑战者。后来纽约时报配音这一刻为一个“大数据计算的胜利。”

    2012年3月

    美国政府报告要求每个联邦机构都要有一个“大数据”的策略,作为回应,奥巴马政府宣布一项耗资2亿美元的大数据研究与发展项目。国家卫生研究院将一套人类基因组项目的数据集存放在亚马逊的计算机云内,同时国防部也承诺要开发出可“从经验中进行学习”的“自主式”防御系统。中央情报局局长戴维·彼得雷乌斯将军在发帖讨论阿拉伯之春机构通过云计算收集和分析全球社会媒体信息之事时,不禁惊叹我们已经被自卸卡车倒进了“‘数字尘土”中。

    2012年7月

    美国国务卿希拉里·克林顿宣布了一个名为“数据2X”的公私合营企业用来收集统计世界各地的妇女和女童在经济、政治和社会地位方面的信息。“数据不只是测量过程——它能给予我们启发,”她解释说。“一旦人们开始对某个问题实施测量时,就更倾向于采取行动来解决它们,因为没有人愿意排到名单的最低端去。”让大数据开始竞赛吧。

    HadoopMapReduce

    思维模式转变的催化剂是大量新技术的诞生,它们能够处理大数据分析所带来的3个V的挑战。扎根于开源社区,Hadoop已经是目前大数据平台中应用率最高的技术,特别是针对诸如文本、社交媒体订阅以及视频等非结构化数据。除分布式文件系统之外,伴随Hadoop一同出现的还有进行大数据集处理MapReduce架构。根据权威报告显示,许多企业都开始使用或者评估Hadoop技术来作为其大数据平台的标准。

    大数据NoSQL数据库

    我们生活的时代,相对稳定的数据库市场中还在出现一些新的技术,而且在未来几年,它们会发挥作用。事实上,NoSQL数据库在一个广义上派系基础上,其本身就包含了几种技术。总体而言,他们关注关系型数据库引擎的限制,如索引、流媒体和高访问量的网站服务。在这些领域,相较关系型数据库引擎,NoSQL的效率明显更高。

    内存分析

    在Gartner公司评选的2012年十大战略技术中,内存分析在个人消费电子设备以及其他嵌入式设备中的应用将会得到快速的发展。随着越来越多的价格低廉的内存用到数据中心中,如何利用这一优势对软件进行最大限度的优化成为关键的问题。内存分析以其实时、高性能的特性,成为大数据分析时代下的“新宠儿”。如何让大数据转化为最佳的洞察力,也许内存分析就是答案。大数据背景下,用户以及IT提供商应该将其视为长远发展的技术趋势。

    集成设备

    随着数据仓库设备(Data Warehouse Appliance)的出现,商业智能以及大数据分析的潜能也被激发出来,许多企业将利用数据仓库新技术的优势提升自身竞争力。集成设备将企业的数据仓库硬件软件整合在一起,提升查询性能、扩充存储空间并获得更多的分析功能,并能够提供同传统数据仓库系统一样的优势。在大数据时代,集成设备将成为企业应对数据挑战的一个重要利器。

    结构

    大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

    其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:

    第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

    第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

    第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

    特点

    大数据大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。

    大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。

    从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。

    大数据最核心的价值就是在于对于海量数据进行存储和分析。相比起现有的其他技术而言,大数据的“廉价、迅速、优化”这三方面的综合成本是最优的。

    当前用于分析大数据的工具主要有开源与商用两个生态圈

    开源大数据生态圈:

    1、Hadoop HDFS、HadoopMapReduce, HbaseHive 渐次诞生,早期Hadoop生态圈逐步形成。

    2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。

    3、NoSQL,membase、MongoDB

    商用大数据生态圈:

    1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。

    2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。

    3、数据集市:QlikView、 Tableau 、 以及国内的Yonghong Data Mart 。

    数据采集

    定义:利用多种轻型数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。

    特点和挑战:并发系数高。

    使用的产品:MySQLOracleHbaseRedis和 MongoDB等,并且这些产品的特点各不相同。

    统计分析

    大数据定义:将海量的来自前端的数据快速导入到一个集中的大型分布式数据库 或者分布式存储集群,利用分布式技术来对存储于其内的集中的海量数据 进行普通的查询和分类汇总等,以此满足大多数常见的分析需求。

    特点和挑战:导入数据量大,查询涉及的数据量大,查询请求多。

    使用的产品:InfoBright,Hadoop(Pig和Hive),YunTable, SAP Hana和OracleExadata,除Hadoop以做离线分析为主之外,其他产品可做实时分析。

    挖掘数据

    定义:基于前面的查询数据进行数据挖掘,来满足高级别 的数据分析需求。

    特点和挑战:算法复杂,并且计算涉及的数据量和计算量都大。

    使用的产品:R,Hadoop Mahout

    SOA模型

    我们需要的是以数据为中心的SOA还是以SOA为中心的数据?答案取决于如何处理的SOA-数据关系的三个不同模型来管理大数据、云数据和数据层次结构。在越来越多的虚拟资源中,将这些模型之间所有类型的数据进行最优拟合是SOA所面临的巨大挑战之一。本文详细介绍了每个SOA模型管理数据的优点、选择和选项。

    SOA的三个数据中心模型分别是数据即服务(DaaS)模型、物理层次结构模型和架构组件模型。DaaS数据存取的模型描述了数据是如何提供给SOA组件的。物理模型描述了数据是如何存储的以及存储的层次图是如何传送到SOA数据存储器上的。最后,架构模型描述了数据、数据管理服务和SOA组件之间的关系。

    SOA和数据企业的例子

    也许以极限情况为开始是理解SOA数据问题的最好方式:一个企业的数据需求完全可以由关系数据库管理系统(RDBMS)中的条款来表示。这样一个企业可能会直接采用数据库设备或者将专用的数据库服务器和现有的查询服务连接到SOA组件(查询即服务,或QaaS)上。这种设计理念之前已经被人们所接受。该设计之所以成功是因为它平衡了上述三个模型之间的关系。QaaS服务模型不是机械地连接到存储器上;而是通过一个单一的架构——RDBMS(关系型数据库管理系统)。数据去重和完整性便于管理单一的架构。

    通过大数据的例子可以更好地理解为什么这个简单的方法却不能在更大的范围内处理数据。多数的大数据是非关系型的、非交易型的、非结构化的甚至是未更新的数据。由于缺乏数据结构因此将其抽象成一个查询服务并非易事,由于数据有多个来源和形式因此很少按序存储,并且定义基础数据的完整性和去重过程是有一些规则的。当作为大数据引入到SOA的应用程序中时,关键是要定义三种模型中的最后一种模型,SOA数据关系中的架构模型。有两种选择:水平方向和垂直方向。

    大数据:“人工特征工程+线性模型”的尽头SOA和各类数据模型

    在水平集成数据模型中,数据收集隐蔽于一套抽象的数据服务器,该服务器有一个或多个接口连接到应用程序上,也提供所有的完整性和数据管理功能。组件虽不能直接访问数据,但作为一种即服务形式,就像他们在简单情况下的企业,其数据的要求是纯粹的RDBMS模型。应用程序组件基本上脱离了RDBMS与大数据之间数据管理的差异。尽管由于上述原因这种方法不能创建简单的RDBMS查询模型,但是它至少复制了我们上面提到的简单的RDBMS模型。

    垂直集成的数据模型以更多应用程序特定的方式连接到数据服务上,该方式使得客户关系管理、企业资源规划或动态数据认证的应用程序数据很大程度在服务水平上相互分离,这种分离直接涉及到数据基础设施。在某些情况下,这些应用程序或许有可以直接访问存储/数据服务的SOA组件。为了提供更多统一的数据完整性和管理,管理服务器可以作为SOA组件来操作各种数据库系统,以数据库特定的方式执行常见的任务,如去重和完整性检查。这种方法更容易适应于遗留应用和数据结构, 但它在问数据何访方式上会破坏SOA即服务原则,也可能产生数据管理的一致性问题。

    SOA和水平数据模型

    毫无疑问水平模型更符合SOA原则,因为它更彻底地从SOA组件中抽象出了数据服务。不过,为了使其有效,有必要对非关系型数据库进行抽象定义和处理低效率与抽象有关的流程——SOA架构师知道除非小心的避免此类事情否则这将会成为不可逾越的障碍。

    水平的SOA数据策略已经开始应用于适用大数据的抽象数据。解决这个问题最常见的方法是MapReduce,可以应用于Hadoop形式的云构架。Hadoop以及类似的方法可以分发、管理和访问数据,然后集中查询这一分布式信息的相关结果。实际上,SOA组件应将MapReduce和类似数据分析功能作为一种查询功能应用。

    效率问题

    效率问题较为复杂。因为水平数据库模型可能是通过类似大多数SOA流程的信息服务总线来完成的,一个重要的步骤是要确保与该编排相关的开销额度保持在最低程度。这可以帮助减少与SOA相关的数据访问开销,但它不能克服存储系统本身的问题。因为这些存储系统已经通过水平模型脱离了SOA组件,很容易被忽略与延迟和数据传输量相关的问题,特别地,如果数据库是云分布的,那么使用他们就会产生可变的网络延迟

    上述问题的一个解决方案是现代分层存储模式。数据库不是磁盘,而是一组相互连接的高速缓存点,其存储于本地内存中,也可能转向固态硬盘,然后到本地磁盘,最后到云存储。缓存算法处理这些缓存点之间的活动,从而来平衡存储成本(同时也是平衡同步地更新成本)和性能。

    大数据应用领域对于大数据,它也是经常可以创建适用于大多数分析的汇总数据。例如一个计算不同地点车辆数量的交通遥测应用。这种方法可以产生大量的数据,但是如果汇总数据最后一分钟还存储在内存中,最后一小时存储在闪存中,最后一天存在磁盘上,那么控制应用程序所需的实际时间可以通过快速访问资源得到满足,然而假设分析时我们可以使用一些更便宜、更慢的应用程序是会怎样。

    SOA都是抽象的,但当抽象隐藏了底层影响性能和响应时间的复杂性时,这种抽象的危险程度会提高。数据访问也是这样的,因此,SOA架构师需要认真地考虑抽象与性能之间的平衡关系,并为其特定的业务需求优化它。

    Hadoop

    Hadoop旨在通过一个高度可扩展的分布式批量处理系统,对大型数据集进行扫描,以产生其结果。Hadoop项目包括三部分,分别是Hadoop Distributed File System(HDFS)、HadoopMapReduce编程模型,以及Hadoop Common。

    Hadoop平台对于操作非常大型的数据集而言可以说是一个强大的工具。为了抽象Hadoop编程模型的一些复杂性,已经出现了多个在Hadoop之上运行的应用开发语言。Pig、Hive和Jaql是其中的代表。而除了Java外,您还能够以其他语言编写map和reduce函数,并使用称为Hadoop Streaming(简写为Streaming)的API调用它们。

    流定义

    从技术角度而言,流是通过边缘连接的节点图。图中的每个节点都是“运算符”或“适配器”,均能够在某种程度上处理流内的数据。节点可以不包含输入和输出,也可以包含多个输入和输出。一个节点的输出与另外一个或多个节点的输入相互连接。图形的边缘将这些节点紧密联系在一起,表示在运算符之间移动的数据流。

    右图一个简单的流图,它可以从文件中读取数据,将数据发送到名为Functor的运算符(此运算符能够以某种编程方式转换所传入的数据),然后将这些数据传入另一个运算符。在此图片中,流数据被传送至Split运算符,而后又将数据传入文件接收器或数据库(具体情况视Split运算符的内部状况而定)。

    利用Apache Hadoop等开源项目,通过传感器、RFID、社交媒体、呼叫中心记录和其他来源提供的新型数据创造价值。

    Streams

    大数据应用领域即,IBM InfoSphere Streams。在IBMInfoSphere Streams(简称Streams)中,数据将会流过有能力操控数据流(每秒钟可能包含数百万个事件)的运算符,然后对这些数据执行动态分析。这项分析可触发大量事件,使企业利用即时的智能实时采取行动,最终改善业务成果。

    当数据流过这些分析组件后,Streams将提供运算符将数据存储至各个位置,或者如果经过动态分析某些数据被视为毫无价值,则会丢弃这些数据。你可能会认为Streams与复杂事件处理(CEP) 系统非相似,不过Streams的设计可扩展性更高,并且支持的数据流量也比其他系统多得多。此外,Streams还具备更高的企业级特性,包括高可用性、丰富的应用程序开发工具包和高级调度。

    出于这样的目的,许多组织开始启动自己的大数据治理计划。所谓大数据治理,指的是制定策略来协调多个职能部门的目标,从而优化、保护和利用大数据,将其作为一项企业资产。

    容量问题

    这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。在解决容量问题上,不得不提LSI公司的全新Nytro™智能化闪存解决方案,采用Nytro产品,客户可以将数据库事务处理性能提高30倍,并且超过每秒4.0GB的持续吞吐能力,非常适用于大数据分析

    延迟问题

    “大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储,自动、智能地对热点数据进行读/写高速缓存的LSI Nytro系列产品等等都在蓬勃发展。

    安全问题

    某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,大数据应用催生出一些新的、需要考虑的安全性问题,这就充分体现出利用基于DuraClass™ 技术的LSI SandForce®闪存处理器的优势了,实现了企业级闪存性能和可靠性,实现简单、透明的应用加速,既安全又方便。

    大数据应用领域成本问题

    对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。重复数据删除等技术已经进入到主存储市场,而且还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,这种锱铢必较的服务器也只有LSI推出的Syncro™ MX-B机架服务器启动盘设备都能够获得明显的投资回报,当今,数据中心使用的传统引导驱动器不仅故障率高,而且具有较高的维修和更换成本。如果用它替换数据中心的独立服务器引导驱动器,则能将可靠性提升多达100倍。并且对主机系统是透明的,能为每一个附加服务器提供唯一的引导镜像,可简化系统管理,提升可靠性,并且节电率高达60%,真正做到了节省成本的问题。

    数据的积累

    许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

    灵活性

    大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

    应用感知

    最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。

    针对小用户

    依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。

    大数据大数据治理计划也需要关注与其他信息治理计划类似的问题。这些计划必须解决以下问题:

    ■元数据

    大数据治理需要创建可靠的元数据,避免出现窘境,例如,一家企业重复购买了相同的数据集两次,而原因仅仅是该数据集在两个不同的存储库内使用了不同的名称。

    ■隐私

    企业需要严格关注遵守隐私方面的问题,例如利用社交媒体进行数据分析。

    ■数据质量

    考虑到大数据的庞大数量和超快速度,组织需要确定哪种级别的数据质量属于“足够好”的质量。

    信息生命周期管理。大数据治理计划需要制定存档策略,确保存储成本不会超出控制。除此之外,组织需要设定保留计划,以便按照法规要求合理处置数据。

    ■管理人员

    最终,企业需要招募大数据管理员。例如,石油与天然气公司内的勘探开采部门的管理员负责管理地震数据,包括相关元数据在内。这些管理员需要避免组织因不一致的命名规范而付款购买已经拥有的外部数据。除此之外,社交媒体管理员需要与法律顾问和高级管理人员配合工作,制定有关可接受的信息使用方法的策略。

    数据价值

    众所周知,企业数据本身就蕴藏着价值,但是将有用的数据与没有价值的数据进行区分看起来可能是一个棘手的问题。

    显然,您所掌握的人员情况、工资表和客户记录对于企业的运转至关重要,但是其他数据也拥有转化为价值的力量。一段记录人们如何在您的商店浏览购物的视频、人们在购买您的服务前后的所作所为、如何通过社交网络联系您的客户、是什么吸引合作伙伴加盟、客户如何付款以及供应商喜欢的收款方式……所有这些场景都提供了很多指向,将它们抽丝剥茧,透过特殊的棱镜观察,将其与其他数据集对照,或者以与众不同的方式分析解剖,就能让您的行事方式发生天翻地覆的转变。

    但是屡见不鲜的是,很多公司仍然只是将信息简单堆在一起,仅将其当作为满足公司治理规则而必须要保存的信息加以处理,而不是将它们作为战略转变的工具。

    毕竟,数据和人员是业务部门仅有的两笔无法被竞争对手复制的财富。在善用的人手中,好的数据是所有管理决策的基础,带来的是对客户的深入了解和竞争优势。数据是业务部门的生命线,必须让数据在决策和行动时无缝且安全地流到人们手中。

    大数据应用所以,数据应该随时为决策提供依据。看看在政府公开道路和公共交通的使用信息这样看起来甚至有点晦涩的数据时会发生什么:这些数据来源为一些私营公司提供了巨大的价值,这些公司能够善用这些数据,创造满足潜在需求的新产品和服务。

    企业需要向创造和取得数据方面的投入索取回报。有效管理来自新旧来源的数据以及获取能够破解庞大数据集含义的工具只是等式的一部分,但是这种挑战不容低估。产生的数据在数量上持续膨胀;音频、视频和图像等富媒体需要新的方法来发现;电子邮件、IM、tweet和社交网络等合作和交流系统以非结构化文本的形式保存数据,必须用一种智能的方式来解读。

    但是,应该将这种复杂性看成是一种机会而不是问题。处理方法正确时,产生的数据越多,结果就会越成熟可靠。传感器、GPS系统和社交数据的新世界将带来转变运营的惊人新视角和机会。请不要错过。

    有些人会说,数据中蕴含的价值只能由专业人员来解读。但是泽字节经济并不只是数据科学家和高级开发员的天下。

    数据的价值在于将正确的信息在正确的时间交付到正确的人手中。未来将属于那些能够驾驭所拥有数据的公司,这些数据与公司自身的业务和客户相关,通过对数据的利用,发现新的洞见,帮助他们找出竞争优势。

    数据机遇

    自从有了IT部门,董事会就一直在要求信息管理专家提供洞察力。实际上,早在1951年,对预测小吃店蛋糕需求的诉求就催生了计算机的首次商业应用。自那以后,我们利用技术来识别趋势和制定战略战术的能力不断呈指数级日臻完善。

    今天,商业智能 (使用数据模式看清曲线周围的一切) 稳居 CXO 们的重中之重。在理想的世界中,IT 是巨大的杠杆,改变了公司的影响力,带来竞争差异、节省金钱、增加利润、愉悦买家、奖赏忠诚用户、将潜在客户转化为客户、增加吸引力、打败竞争对手、开拓用户群并创造市场。

    大数据分析是商业智能的演进。当今,传感器、GPS 系统、QR 码、社交网络等正在创建新的数据流。所有这些都可以得到发掘,正是这种真正广度和深度的信息在创造不胜枚举的机会。要使大数据言之有物,以便让大中小企业都能通过更加贴近客户的方式取得竞争优势,数据集成和数据管理是核心所在。

    面临从全球化到衰退威胁的风暴, IT部门领导需要在掘金大数据中打头阵,新经济环境中的赢家将会是最好地理解哪些指标影响其大步前进的人。

    大数据应用当然,企业仍将需要聪明的人员做出睿智的决策,了解他们面临着什么,在充分利用的情况下,大数据可以赋予人们近乎超感官知觉的能力。Charles Duigg是《习惯的力量》一书的作者,他找出的一个黄金案例分析的例子是美国零售商 Target,其发现妇女在怀孕的中间三个月会经常购买没有气味的护肤液和某些维生素。通过锁定这些购物者,商店可提供将这些妇女变成忠诚客户的优惠券。实际上,Target 知道一位妇女怀孕时,那位妇女甚至还没有告诉最亲近的亲朋好友 -- 更不要说商店自己了。

    很明显,在可以预见的将来,隐私将仍是重要的考量,但是归根结底,用于了解行为的技术会为方方面面带来双赢,让卖家了解买家,让买家喜欢买到的东西。

    再看一下作家兼科学家 Stephen Wolfram的例子,他收集有关自身习惯的数据,以分析他的个人行为,预测事件在未来的可能性。

    大数据将会放大我们的能力,了解看起来难以理解和随机的事物。对其前途的了解提供了获取崭新知识和能力的机会,将改变您的企业运作的方式。

    发展前景

    大数据的意义是由人类日益普及的网络行为所伴生的,受到相关部门、企业采集的,蕴含数据生产者真实意图、喜好的,非传统结构和意义的数据 。

    2013年5月10日,阿里巴巴集团董事局主席马云淘宝十周年晚会上,将卸任阿里集团CEO的职位,并在晚会上做卸任前的演讲,马云说,大家还没搞清PC时代的时候,移动互联网来了,还没搞清移动互联网的时候,大数据时代来了。

    大数据正在改变着产品和生产过程、企业和产业,甚至竞争本身的性质。把信息技术看作是辅助或服务性的工具已经成为过时的观念,管理者应该认识到信息技术的广泛影响和深刻含义,以及怎样利用信息技术来创造有力而持久的竞争优势。无疑,信息技术正在改变着我们习以为常的经营之道,一场关系到企业生死存亡的技术革命已经到来。

    借着大数据时代的热潮,微软公司生产了一款数据驱动的软件,主要是为工程建设节约资源提高效率。在这个过程里可以为世界节约40%的能源。抛开这个软件的前景不看,从微软团队致力于研究开始,可以看他们的目标不仅是为了节约了能源,更加关注智能化运营。通过跟踪取暖器、空调、风扇以及灯光等积累下来的超大量数据,捕捉如何杜绝能源浪费。“给我提供一些数据,我就能做一些改变。如果给我提供所有数据,我就能拯救世界。”微软史密斯这样说。而智能建筑正是他的团队专注的事情。

    随着全球范围内个人电脑、智能手机等设备的普及和新兴市场内不断增长的互联网访问量,以及监控摄像机智能电表等设备产生的数据爆增,使数字宇宙的规模在2012到2013两年间翻了一番,达到惊人的2.8ZB。 IDC预计,到2020年,数字宇宙规模将超出预期,达到40ZB。

    大数据应用40ZB究竟是个什么样的概念呢?地球上所有海滩上的沙粒加在一起估计有七万零五亿亿颗。40ZB相当于地球上所有海滩上的沙粒数量的57倍。也就是说到2020年,数字宇宙将每两年翻一番;到2020年,人均数据量将达5,247GB。

    该报告同时显示,尽管个人和机器每天产生大量数据,使数字宇宙前所未有地不断膨胀,但仅有0.4%的全球数据得到了分析。由此可见,大数据的应用几乎是一块未被开垦的处女地。

    价值

    谷歌搜索、Facebook的帖子和微博消息使得人们的行为和情绪的细节化测量成为可能。挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。大数据也日益显现出对各个行业的推进力。

    大数据时代来临首先由数据丰富度决定的。社交网络兴起,大量的UGC(互联网术语,全称为User Generated Content,即用户生成内容的意思)内容、音频、文本信息、视频、图片等非结构化数据出现了。另外,物联网的数据量更大,加上移动互联网能更准确、更快地收集用户信息,比如位置、生活信息等数据。从数据量来说,已进入大数据时代,但硬件明显已跟不上数据发展的脚步。

    以往大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,而提及“大数据”,通常是指解决问题的一种方法,并对其进行分析挖掘,进而从中获得有价值信息,最终衍化出一种新的商业模式。

    虽然大数据在国内还处于初级阶段,但是商业价值已经显现出来。首先,手中握有数据的公司站在金矿上,基于数据交易即可产生很好的效益;其次,基于数据挖掘会有很多商业模式诞生,定位角度不同,或侧重数据分析。比如帮企业做内部数据挖掘,或侧重优化,帮企业更精准找到用户,降低营销成本,提高企业销售率,增加利润。

    未来,数据可能成为最大的交易商品。但数据量大并不能算是大数据,大数据的特征是数据量大、数据种类多、非标准化数据的价值最大化。因此,大数据的价值是通过数据共享、交叉复用后获取最大的数据价值。未来大数据将会如基础设施一样,有数据提供方、管理者、监管者,数据的交叉复用将大数据变成一大产业。据统计,大数据所形成的市场规模在51亿美元左右,而到2017年,此数据预计会上涨到530亿美元。

    存储

    随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。

    针对大数据的世界领先品牌存储企业有:IBM、EMC、LSISandForce 、 云创存储、INTEL、惠普、戴尔、甲骨文、日立、赛门铁克等。

    “大数据”的商业价值简而言之,企业可以通过思考数据战略的总体回报,来应对大数据的挑战,抓住大数据的机会。Informatica所指的‘数据回报率’,是为帮助高级IT和业务部门领导者进行大数据基本的战术和战略含义的讨论而设计的一个简单概念。等式非常简单:如果您提高数据对于业务部门的价值,同时降低管理数据的成本,从数据得到的回报就会增加 -- 无论是用金钱衡量,还是更好的决策

    数据回报率=数据价值/数据成本

    在技术层面,数据回报率为数据集成、数据管理、商业智能和分析方面的投入提供了业务背景和案例。它还与解决业务的基础有关:挣钱、省钱、创造机会和管理风险。它涉及对效率的考虑,同时推动了改变游戏规则的洞察力。

    实现回报

    Informatica深知,对于很多企业来说,向数据回报模型的转变不会一蹴而就。管理数据并将其成本降低的短期要求将会是首要焦点,同样还需要打破障碍以了解数据。企业只有这时才可以开始从传统和新兴数据集获得更多价值。Informatica可提供数据集成平台和领导力,为企业提供全程帮助。

    在大数据的世界中,最灵活和成功的企业将会是那些善用大机遇的公司。

    意义

    1.变革价值的力量

    未来十年,决定中国是不是有大智慧的核心意义标准(那个”思想者”),就是国民幸福。一体现到民生上,通过大数据让事情变得澄明,看我们在人与人关系上,做得是否比以前更有意义;二体现在生态上,看我们在天与人关系上,做得是否比以前更有意义。总之,让我们从前10年的意义混沌时代,进入未来10年意义澄明时代。

    2.变革经济的力量

    生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。

    3.变革组织的力量

    随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化WEB2.0应用,如RSS、维基、博客等。 大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。

    用途

    大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程中发现和验证大数据的规律及其与自然和社会活动之间的关系。

    大数据与云计算的关系物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

    有些例子包括网络日志,RFID,传感器网络社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。

    弊端

    虽然大数据的拥护者看到了使用大数据的巨大潜力,但也有隐私倡导者担心,因为越来越多的人开始收集相关数据,无论是他们是否会故意透露这些数据或通过社交媒体张贴,甚至他们在不知不觉中通过分享自己的生活而公布了一些具体的数字细节。

    分析这些巨大的数据集会使我们的预测能力产生虚假的信息,将导致作出许多重大和有害的错误决定。此外,数据被强大的人或机构滥用,自私的操纵议程达到他们想要的结果。

    洛杉矶警察局加利福尼亚大学合作利用大数据预测犯罪的发生。

    google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

    统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

    麻省理工学院利用手机定位数据和交通数据建立城市规划。

    梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

    Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。“SAP想通过这次收购来扭转其长久以来在预测分析方面的劣势。”Laney分析到。

    PredPol Inc. 公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪暴力犯罪分布下降了33%和21%。

    American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。

    大数据实践 基础架构先行Express Scripts Holding Co.的产品制造。该公司发现那些需要服药的人常常也是最可能忘记服药的人。因此,他们开发了一个新产品:会响铃的药品盖和自动的电话呼叫,以此提醒患者按时服药。

    Infinity Property & Casualty Corp.的黑暗数据(dark data)。Laney对于黑暗数据的定义是,那些针对单一目标而收集的数据,通常用过之后就被归档闲置,其真正价值未能被充分挖掘。在特定情况下,这些数据可以用作其他用途。该公司用累积的理赔师报告来分析欺诈案例,通过算法挽回了1200万美元的代位追偿金额。

    利用起互联网大数据,对消费者的喜好进行判定。商户可以为消费者定制相应的独特的个性服务,甚至可以在一些商品或者服务上匹配用户心情等等。商家还可以根据大数据为消费者提供其可能会喜好的特色产品,活动,小而美的小众商品等等 。

    地产业的升级改造,具有令人兴奋的商业前景。一个Shopping Mall的投资往往高达数十亿元,设想一下,如果智能化升级能够让一个Shopping Mall的顾客数量和人均消费提升30%-50%,为此投入几百万元甚至上千万元对于投资方来说非常划算,那么仅仅针对国内Shopping Mall的智能化升级就是一个千亿元级别的市场。

    经典大数据案例-沃尔玛经典营销:啤酒与尿布

    “啤酒与尿布”的故事产生于20世纪90年代美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。

    在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店, 直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。

    当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算 法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。

    IBM战略

    IBM的大数据战略以其在2012年5月发布智慧分析洞察“3A5步”动态路线图作为基础。所谓“3A5步”,指的是在“掌握信息”(Align)的基础上“获取洞察”(Anticipate),进而采取行动(Act),优化决策策划能够救业务绩效。除此之外,还需要不断地“学习”(Learn)从每一次业务结果中获得反馈,改善基于信息的决策流程,从而实现“转型”(Transform)。

    大数据基于“3A5步”动态路线图,IBM提出了“大数据平台”架构。该平台的四大核心能力包括Hadoop系统、流计算(StreamComputing)、数据仓库(Data Warehouse)和信息整合与治理(Information Integration and Governance)。

    在大数据处理领域,IBM于2012年10月推出了IBMPureSystems专家集成系统的新成员——IBM PureData系统。这是IBM在数据处理领域发布的首个集成系统产品系列。PureData系统具体包含三款产品,分别为PureDataSystem for Transactions、PureData System forAnalytics和PureData System for Operational Analytics,可分别应用于OLTP(联机事务处理)、OLAP(联机分析处理)和大数据分析操作。与此前发布的IBMPureSystems系列产品一样,IBM PureData系统提供内置的专业知识、源于设计的集成,以及在其整个生命周期中的简化体验。

    斯隆数字巡天收集在其最初的几个星期,就比在天文学的历史上之前的2000年的收集了更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上将获得数据公布,沃尔玛每隔一小时处理超过100万客户的交易,录入量数据库估计超过2.5 PB相当于美国国会图书馆的书籍的167倍 。FACEBOOK从它的用户群获得并处理400亿张照片。解码最原始的人类基因组花费10年时间处理,如今可以在一个星期内实现。

    “大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。

    大数据已经出现,因为我们生活在一个有更多信息的社会中。有46亿全球移动电话用户有20亿人访问互联网。基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人收益的这笔钱将反过来导致更多的信息增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。

    大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

    大数据实践国内网络广告投放正从传统的面向群体的营销转向个性化营销,从流量购买转向人群购买。虽然市场大环境不好,但是具备数据挖掘能力的公司却倍受资本青睐。

    163大数据是一个很好的视角和工具。从资本角度来看,什么样的公司有价值,什么样的公司没有价值,从其拥有的数据规模、数据的活性和这家公司能运用、解释数据的能力,就可以看出这家公司的核心竞争力。而这几个能力正是资本关注的点。

    移动互联网与社交网络兴起将大数据带入新的征程,互联网营销将在行为分析的基础上向个性化时代过渡。创业公司应用“大数据”告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发表的正确内容等,这正好切中了广告商的需求。

    社交网络产生了海量用户以及实时和完整的数据,同时社交网络也记录了用户群体的情绪,通过深入挖掘这些数据来了解用户,然后将这些分析后的数据信息推给需要的品牌商家或是微博营销公司。

    实际上,将用户群精准细分,直接找到要找的用户正是社交内容背后数据挖掘所带来的结果。而通过各种算法实现的数据信息交易,正是张文浩为自己的社交数据挖掘公司设计的盈利模式。这家仅仅五六个人的小公司拿到了天使投资。未来的市场将更多地以人为中心,主动迎合用户需求,前提就是要找到这部分人群。

    在移动互联网领域,公司从开发者角度找到数据挖掘的方向,通过提供免费的技术服务,帮助开发者了解应用状况。

    国内的企业跟美国比较,有一个很重要的特性就是人口基数的区别,中国消费群体所产生的这种数据量,与国外相比不可同日而语。

    伴随着各种随身设备、物联网和云计算云存储等技术的发展,人和物的所有轨迹都可以被记录。在移动互联网的核心网络节点是人,不再是网页。数据大爆炸下,怎样挖掘这些数据,也面临着技术与商业的双重挑战。

    首先,如何将数据信息与产品和人相结合,达到产品或服务优化是大数据商业模式延展上的挑战之一。

    其次,巧妇难为无米之炊,大数据的关键还是在于谁先拥有数据。

    从市场角度来看,大数据还面临其他因素的挑战。

    产业界对于大数据的热情持续升温的同时,资本也敏锐地发现了这一趋势,并开始关注数据挖掘和服务类公司。

    最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。

    大数据时代:如何节省存储成本“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”

    事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普、IBM、微软在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。

    “大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在2011年12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术信息安全技术,也都与“大数据”密切相关。

    大数据是继云计算、物联网之后IT产业又一次颠覆性的技术变革。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。

    大数据时代网民和消费者的界限正在消弭,企业的疆界变得模糊,数据成为核心的资产,并将深刻影响企业的业务模式,甚至重构其文化和组织。因此,大数据对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。如果不能利用大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判,所有传统的产品公司都只能沦为新型用户平台级公司的附庸,其衰落不是管理能扭转的。

    大数据时代将引发新一轮信息化投资和建设热潮。据IDC预测,到2020年全球将总共拥有35ZB的数据量,而麦肯锡则预测未来大数据产品在三大行业的应用就将产生7千亿美元的潜在市场,未来中国大数据产品的潜在市场规模有望达到1.57万亿元,给IT行业开拓了一个新的黄金时代。

    当前还处在大数据时代的前夜,预计今明两年将是大数据市场的培育期,2014年以后大数据产品将会形成业绩。

    大数据给城市带来的重大变革宋清辉:大数据正改变我们的未来

    大数据时代,与其让对你感兴趣的人去搜寻你的隐私,就不如自曝隐私。当我在全球不同城市演讲结束交换名片的时候,基本从来不发载有自己名字、电话、地址等基本信息的名片,因为那根本用不着,也不符合大数据时代的精髓。所以我的名片简单到只有一个名字和几个二维码,只要百度一下或者扫一扫二维码,关于个人的信息别人就会一览无余,包括在写什么文章、在哪里演讲等信息……

    不想说一个人若拒绝大数据就去失去生命这样沉重的话题,但大数据确实在深刻改变着你和我的未来。

    2015年5月26日,中共贵州省委副书记、省政府省长陈敏尔在峰会上透露,国家在制定大数据国家战略及行动计划。贵州省将抓住和用好战略机遇,深入挖掘大数据的商业价值、管理价值和社会价值。[2]

    工信部信息服务处处长李琰在论坛期间则表示,工信部将抓紧研究制定大数据发展的指导性文件。下一步,工信部将和有关部门加强协同,积极营造良好的环境,推动应用和产业相互促进、良性发展,为我国大数据产业和大数据创新发展探索积累经验。

    大数据时代来了!不得不承认如今数据量的激增越来越明显,各种各样的数据铺天盖地的砸下来,企业选择相应工具来存储、分析与处理它们。从Excel、BI工具,到现在最新的可视化数据分析工具大数据魔镜,数据分析软件进步越来越快,免费的大数据魔镜已经可以达到500多种可视化效果和实现数据共享。那么在大数据时代中,都新出现了哪些数据类型呢?

    1)过于一些记录是以模拟形式方式存在的,或者以数据形式存在但是存贮在本地,不是公开数据资源,没有开放给互联网用户,例如音乐、照片、视频、监控录像等影音资料。现在这些数据不但数据量巨大,并且共享到了互联网上,面对所有互联网用户,其数量之大是前所未有。举个例子,Facebook每天有18亿张照片上传或被传播,形成了海量的数据。[3]

    2)移动互联网出现后,移动设备的很多传感器收集了大量的用户点击行为数据,已知IPHONE有3个传感器,三星有6个传感器。它们每天产生了大量的点击数据,这些数据被某些公司所有拥有,形成用户大量行为数据。

    3)电子地图如高德、百度、Google地图出现后,其产生了大量的数据流数据,这些数据不同于传统数据,传统数据代表一个属性或一个度量值,但是这些地图产生的流数据代表着一种行为、一种习惯,这些流数据经频率分析后会产生巨大的商业价值。基于地图产生的数据流是一种新型的数据类型,在过去是不存在的。

    4)进入了社交网络的年代后,互联网行为主要由用户参与创造,大量的互联网用户创造出海量的社交行为数据,这些数据是过去未曾出现的。其揭示了人们行为特点和生活习惯。

    5)电商户崛起产来了大量网上交易数据,包含支付数据,查询行为,物流运输、购买喜好,点击顺序,评价行为等,其是信息流和资金流数据。

    6)传统的互联网入口转向搜索引擎之后,用户的搜索行为和提问行为聚集了海量数据。单位存储价格的下降也为存储这些数据提供了经济上的可能。

    上面我们所指的大数据不同与过去传统的数据,其产生方式、存储载体、访问方式、表现形式、来源特点等都同传统数据不同。大数据更接近于某个群体行为数据,它是全面的数据、准确的数据、有价值的数据。这些新类型数据相信大家都很熟悉,它们已经比传统数据类型更深入地走进了我们生活。


    展开全文
  • 1、云计算不是虚拟化。这似乎是个普遍误解,所以值得说明一下:虚拟化服务器不构成云。...人要明白:云计算的价值其一方面在于通过API访问及使用核心云服务。这既适用于公有云,又适用于私有云。要是...
  • 如何用计算机高效地处理这些信息从而创造价值 绪论 数据是信息载体,是描述客观事物属性数、字符及所有能输入到计算机中并被计算机程序识别和处理符号集合。数据是计算机程序加工原料 数据元素:是...
  • 是规划、控制和提供数据及信息资产一组业务职能,包括开发执行监督有关 数据计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据和信息资产的价值。——DMBOK 1.0 数据治理 Data ...
  • 为此,文献计量分析可以确定其他作者引用最多文章,他们引文和引文,从而可以从内涵,行为和机制角度定义作者和期刊网络。 结果表明,顾客消费特征是“丰富”而不是“稀缺”,企业价值共同创造是顾客消费...
  • DevOps - 概念定义

    2018-06-04 23:49:00
    DevOps(Development+Operations)强调共同对业务目标负责,以实现用户价值作为唯一评判标准:保证产品功能及时实现、成功部署和稳定使用; 是一种重视软件开发人员(Dev)和IT运维技术人员(Ops)之间沟通合作...
  • PMBOK (英 2004 3rd P110) 项目范围管理中范围定义过程中有一种输入叫做产品分析(Product Analysis),其中提到了分析工具有价值分析和价值工程,据课堂上老师介绍国内基本把这两种方法当作一种方法,没有区别。...
  • 第一节 期权的概念、类型和投资策略: 二、要了解一件事首先就得知道它是什么,有哪些; (1)是什么:期权的就是指一种合约,该合约赋予持有人在某一特定日期或该日之前的任何时间以固定价格购进或售出一种资产...
  • DM)又称数据库中知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究热点问题,所谓数据挖掘是指从数据库大量数据中揭示出隐含、先前未知并有潜在价值的信息非平凡过程...
  • 一CRM 的概念框架 1 CRM 的概念模型 图 1 CRM 概念发展模型图 客户关系管理 (CRM)简单地定义就是站在客户立场引导客户的需求让客户满意度最 大同时使企业收益也最大这样顾客能够获得所需要的服务或产品企业同时也能...
  • 软件定义存储的概念已经遍地开花,但各大存储厂商对软件定义存储的理解各不相同。在VMware看来,软件定义存储就是把数据存储系统三个基本组成部分,包括最底层的数据保护、中间的数据服务(如快照)和上层的数据管理的...
  • 一、雪亮工程基本概念  从定义上来看,“雪亮工程"是以县、乡、村三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点"群众性治安防控工程”。因为"群众眼睛...
  • 展开全部一、固定资产概念所谓固定资产是指使用期限较长,单位价值较高,并在使用过e68a84e8a2ad62616964757a686964616f31333433616238程中保持原有实物形态资产。它是地勘单位实物资产主要组成部分,它具有以下...
  • 文化的概念

    2017-01-01 21:55:00
    文化的概念 美国人类学家克罗伯和克鲁克洪在其《文化:概念的批判考察》一书中提出一个综合性的定义:“文化是通过符号而获得,并通过符号而传播的行为模型,这类模型有显性的和隐性的;其符号也像人工制品一样体现...
  • 顺其自然:“准备就绪的定义”降低了敏捷性,因为它破坏了流程,承担了更多特定于角色职责,引入了更多等待状态(延迟),并有可能破坏基于业务价值的优先级。 最初想法基于“完成的定义”。 这两个定...
  • 定义;三个含义;ERP发展阶段;是管理项目还是软件项目;图示说明;ERP能帮我们做什么;提高管理效率实施ERP能够引进先进管理思想还会对企业进行业务流程重组和优化流程优化能提升管理水平改善管理效率直观感受应该...
  • 经济学中几个概念

    千次阅读 2017-04-15 09:55:47
    最近看了几篇解释关于经济学概念的文章,找出几个比较感兴趣的概念,整理一下,通过经济学思维从另外的角度来观看这个世界,别有一番风味。机会成本维基百科在维基百科中,对机会成本定义如下: 机会成本...
  • 文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下钩子方法源于设计模式中模板方法(Template Method)模式,模板方法模式的概念为:在一个方法中定义一个算法的骨架...
  • 哈哈,集合是不能精确定义的基本数学概念。这让我想到13武大表演赛打“人是不是万物的尺度”那场陈铭一辩驳论时说:“人尝试定义万物但从未对过。”这场表演赛观赏性极高,建议大家看看。好了,我们步入正题: 这个...
  • 图论基本概念

    2020-08-07 05:06:09
    #基本概念 简单来说,点用边连起来就是图。 图是由顶点有穷非空集合和顶点之间边集合组成,通常表示为:G = (V...权值:边长度,或者说边价值” 连通:如果图中节点U、V之间催在一条从U通过若干条边、点到达V

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,156
精华内容 462
关键字:

价值定义的概念