精华内容
下载资源
问答
  • 是一种实用的多准则决策方法。它把复杂的决策问题表示为一个有序的递阶层次结构,通过人们的主观判断和科学计算给出备选方案的优劣顺序。
  • 介绍层次分析法的基本概念,同时也分析了层次分析法权重的计算方法及应用,层次分析法的计算方法有四种方法:几何平均法、算术平均法、特征向量法、最小二乘法,以往的文献利用层次分析法解决实际问题时,都是采用其中的...
  • 摘要:本文详细阐述了层次分析法及其步骤,利用Matlab和GUI技术整合来实现层次分析法,并用实例加以验证。使得层次分析法界面化简洁化,操作更便捷。  1.层次分析法基本原理  层次分析法(Analytic ...
  • 层次分析法原理及应用案例

    万次阅读 2020-10-30 15:04:00
    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标...

    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

    层次分析法具体步骤:

    1.建立层次结构模型

    将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层是指决策的目的、要解决的问题。 最低层是指决策时的备选方案。 中间层是指考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。

    2.构造判断(成对比较)矩阵

    在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。

     重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵称作判断矩阵。判断矩阵具有如下性质:

    Aij度量方法:

    3.层次单排序及其一致性检验

    对应于判断矩阵最大特征根λ的特征向量,经归一化(使向量中各元素之和等于1)后记为W。W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。能否确认层次单排序,则需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。其中,n阶一致阵的唯一非零特征根为n;n 阶正互反阵A的最大特征根λ≥n,当且仅当λ=n时,A为一直矩阵,由于λ的连续依赖于aij,则λ 比n 大的越多,A的不一致性越严重,一致性指标用CI计算,CI越小,说明一致性越大。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量A 的不一致程度。定义一致性指标为:

    CI=0,有完全的一致性;CI 接近于0,有满意的一致性;CI 越大,不一致越严重。

    为衡量CI 的大小,引入随机一致性指标 RI:

     

    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表2:

    考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将CI和随机一致性指标RI进行比较,得出检验系数CR,公式如下:

    一般,如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。

    4.层次总排序及其一致性检验

    计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。

    5 算法举例

    算法举例:(成对矩阵中的值均需要人为按经验填写。)

    第一步:建立层次结构

    从苏州、杭州桂林三个城市选择一个城市去旅游。考虑的因素为景色、费用、居住、饮食、旅游5个因素。如下图所示:

    第二步:构造成对比较矩阵

    (注:矩阵中的各个元素均需要人为按经验填写)

    第三步:层次单排序及一致性检验

    求该矩阵的最大特征值及其对应的最大特征向量

    A的最大特征值为λ=5.037,归一化后的特征向量W={0.263,0.475,0.055,0.099,0.110}

    进行一致性检验

    A通过了一次性验证,结果是可行的。

    第四步:层次总排序及一次性检验

    与此类似,求出方案层中各方案的成对比较矩阵

     

    对每个成对矩阵汇总并进行一致性检验。

    全部通过。计算每个方案对最终目标的权重:

    B3对应的值最大,所以去桂林方案最佳。 

    展开全文
  • AHP(层次分析法)原理及案例先结合日常生活中的例子深入浅出的讲解了AHP的原理,随后结合案例给出了层次分析法的具体操作实现过程。
  • 模糊层次综评模型及应用实例 摘要介绍了模糊层次法评价水环境质量的基本原理和方法步骤建立了水环 境质量综合评价模型利用?该评价?方法就?...水质综合评价的基本思路是 用层次分析法确定各指标的权重在
  • 数学建模:层次分析法实例以及代码

    万次阅读 多人点赞 2020-11-22 22:06:09
    目录层次分析法的思想层次分析法步骤具体案例(市政工程项目建设决策)1.问题提出2.建立递阶层次结构3.构造判断矩阵(成对比较阵)并赋值4.层次单排序(计算权向量)与检验(一致性检验)计算权向量一致性检验5.层次总...

    博主联系方式:
    QQ:1540984562
    微信:wxid_nz49532kbh9u22
    QQ交流群:892023501(嵌入式方向)
    QQ交流群:856398158(后端方向)

    层次分析法的思想

    层次分析法的思想:将所有要分析的问题层次化
    根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型
    最后,对问题进行优劣比较排序.

    层次分析法步骤

    1、找准各因素之间的隶属度关系,建立递阶层次结构
    2、构造判断矩阵,并赋值
    3、层次单排序(计算权向量)与检验(一致性检验)
    4、层次总排序(组合权向量)与检验(一致性检验)
    5、结果分析

    具体案例(市政工程项目建设决策)

    1.问题提出

    市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

    2.建立递阶层次结构

    1、明确决策目标:“合理建设市政工程,使综合效益最高”。

    2、为了实现这一目标,需要考虑的主要准则有三个,即经济效益社会效益环境效益
    还必须考虑直接经济效益间接经济效益方便日常出行方便假日出行减少环境污染改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

    3、解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

    这样递阶层次就形成了:
    在这里插入图片描述

    3.构造判断矩阵(成对比较阵)并赋值

    1、构造判断矩阵的方法:
    每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行第一列
    如下图所示:
    在这里插入图片描述
    2、如何对判断矩阵进行赋值:
    向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
    (可以类比模糊PID中的隶属程度,都是人为设定的,也是被人诟病的一个地方)
    在这里插入图片描述
    设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质:

    (1) aij>0
    (2) aji=1/ aji
    (3) aii=1

    判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
    在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik .
    当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
    对于上述的例子,可以构造出下面的判断矩阵:
    在这里插入图片描述

    4.层次单排序(计算权向量)与检验(一致性检验)

    计算权向量

    对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
    层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
    这里简要介绍和法:
    对于一致性判断矩阵,每一列归一化后就是相应的权重。
    对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

    公式: 在这里插入图片描述
    在层层排序中,要对判断矩阵进行一致性检验。判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。

    但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

    因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

    一致性检验

    第一步,计算一致性指标CI
    在这里插入图片描述
    第二步,查表确定相应的平均随机一致性指标RI
    据判断矩阵不同阶数查下表,得到平均随机一致性指标RI:
    在这里插入图片描述
    第三步,计算一致性比例CR并进行判断:
    在这里插入图片描述
    当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

    图1
    图2
    可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

    5.层次总排序(组合权向量)与检验(一致性检验)

    总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。这一权重的计算采用从上而下的方法,逐层合成。
    文字性描述公式如下:
    在这里插入图片描述

    计算过程如下,更好理解过程:
    P(C1/A) = P(C1/B1) * P(B1/A) = 0.5 * 0.1429 = 0.07145
    CR(C1/A) = CR(C/B) * CR(B/A) = 0 * 0 = 0
    P(D1/A) = P(D1/C1) * P(C1/B1) * P(B1/A)
    + P(D1/C2) * P(C2/B1) * P(B1/A)
    + P(D1/C3) * P(C3/B2) * P(B2/A)
    + P(D1/C4) * P(C4/B2) * P(B2/A)
    + P(D1/C5) * P(C5/B3) * P(B3/A)
    + P(D1/C6) * P(C6/B3) * P(B3/A)
    =0.8333 * 0.5 * 0.1429
    +0.75 * 0.5 * 0.1429
    +0.1667 * 0.75 * 0.4286
    +0.8750 * 0.25 * 0.4286
    +0.1667 * 0.75 * 0.4286
    +0.8333 * 0.25 * 0.4286

    在这里插入图片描述

    6.结果分析

    从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
    根据层次排序过程分析决策思路:

    1、对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益
    2、对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出
    3、从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

    由此我们可以分析出决策思路:
    即决策比较看重的是社会效益和环境效益,不太看重经济效益;(总结准则层B)
    因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,(总结准则层C)由此,最终的方案选择建地铁也就顺理成章了。

    7.层次分析法的优缺点

    优点:
    (1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
    (2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。
    (3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

    缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。当然,采取专家群体判断的办法是克服这个缺点的一种途径。

    层次分析法的代码实现(matlab)

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    使用示例:
    将上面代码保存名为test1,并在点运行的时候添加到路径;
    输入的A矩阵是要以向量的形式输入的;
    之后按下回车即可,可以看到和之前的第4步得到的结果是一样的。
    在这里插入图片描述
    通过不断的使用这个式子计算相应矩阵(准则层B到准则层C、准则层C到方案层D)的权向量,最后可以得到最终的结果。
    简单的修改上面的程序,传入参数为矩阵,免得每次都要打。

    function w= test1(A)
    % disp('请输入判断矩阵A(n阶)');
    % A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    输入:

    Array1=[1 1/3 1/3;3 1 1;3 1 1];
    Array2=[1 1;1 1];
    Array3=[1 3;1/3 1];
    Array4=[1 3;1/3 1];
    Array5=[1 5;1/5 1];
    Array6=[1 3;1/3 1];
    Array7=[1 1/5;5 1];
    Array8=[1 7;1/7 1];
    Array9=[1 1/5;5 1];
    Array10=[1 1/3;7 1];
    
    A=test1(Array1);
    B1=test1(Array2);
    B2=test1(Array3); 
    B3=test1(Array4);
    C1=test1(Array5);
    C2=test1(Array6);
    C3=test1(Array7);
    C4=test1(Array8);
    C5=test1(Array9);
    C6=test1(Array10);
    

    得到相应的矩阵:
    在这里插入图片描述

    展开全文
  • 通过本资料你可以掌握层次分析法的原理,及应用.有实例...
  • 数学建模之层次分析法及其应用

    千次阅读 多人点赞 2020-07-28 23:57:16
    层次分析法在数学建模中是非常常见的,其原理、应用场景及实例本文里都有。希望能对数学建模爱好者、挑战者提供一些帮助。如有不清楚或错误的地方还望指出。

    概述

    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模
    糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。常用于相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
    运用层次分析法建模,大体上可按下面四个步骤进行:

    1. 建立递阶层次结构模型;
    2. 构造出各层次中的所有判断矩阵;
    3. 层次单排序及一致性检验;
    4. 层次总排序及一致性检验

    下面将用实例分别阐述这些步骤。

    递阶层次结构的建立与特点

    我们拿到一个问题,常将其分为若干层次结构,上一层次的元素作为准则对下一层次有关元素起支配作用。
    这些层次可以分为三类:.

    1. 最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
    2. 中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
    3. 最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

    如我们想去旅游,现在要选择旅游地点,就可以先这样划分一下:在这里插入图片描述

    递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过 9 个。这是因为支配的元素过多会给两两比较判断带来困难。

    构造判断矩阵

    构造判断矩阵的方法是一致矩阵法,即:将上述两组权重进行综合,确定各方案对目标的权重。所有元素之间采用相对尺度两两对比,确定权重。

    标度含 义
    1表示两个因素相比,具有相同重要性
    3表示两个因素相比,前者比后者稍重要
    5表示两个因素相比,前者比后者明显重要
    7表示两个因素相比,前者比后者强烈重要
    9表示两个因素相比,前者比后者极端重要
    2,4,6,8表示上述相邻判断的中间值
    倒数若因素i 与因素 j 的重要性之比为 a i j a_{ij} aij ,那么因素 j 与因素i 重要性之比为 a i j = 1 / a i j a_{ij}= 1/a_{ij} aij=1/aij

    确定A1-A5的权重,如A1相对A4来说,A1比A4稍微重要,所以矩阵Z(1,4)=3.其对称位置就是1/3。
    在这里插入图片描述
    注:Z是成对比较、正互反矩阵。

    层次单排序及一致性检验

    所谓层次单排序是指根据判断矩阵计算对于上一层某因素而言本层次与之有联系的因素的重要性次序的权值。它是本层次所有因素相对上一层而言的重要性进行排序的基础。
     在这里插入图片描述
    满足 a i j ∗ a j k = a i k a_{ij}*a_{jk}= a_{ik} aijajk=aik正互反矩阵称为一致矩阵
    定理 1:
    正互反矩阵 A 的最大特征根 λ m a x λ_{max} λmax必为正实数,其对应特征向量的所有分量均为正实数。 A 的其余特征值的模均严格小于 λ m a x λ_{max} λmax
    定理 2
    若 A 为一致矩阵,则

    • A 必为正互反矩阵。
    • A 的转置矩阵 A T A^T AT也是一致矩阵。
    • A 的任意两行成比例,比例因子大于零,从而 rank(A) = 1(同样, A 的任意两列也成比例)。
    • A 的最大特征值 λ m a x λ_{max} λmax = n ,其中n 为矩阵 A 的阶。A 的其余特征根均为零。
    • 若 A 的最大特征值 λ m a x λ_{max} λmax 对应的特征向量为 W = ( w 1 . . . w n ) T W={(w_1 ... w_n)}^T W=(w1...wn)T ,则 s i j = w i w j s_{ij}=\frac{w_i}{w_j} sij=wjwi
      ij ww a = , ∀i, j = 1,2,L,n ,即

    定理 3

    n 阶正互反矩阵 A 为一致矩阵当且仅当其最大特征根 λ m a x = n λ_{max} = n λmax=n ,且当正互反矩阵 A 非一致时,必有 λ m a x > n λ_{max}> n λmax>n
    根据定理 3,我们可以由 λ m a x λ_{max} λmax 是否等于n 来检验判断矩阵 A 是否为一致矩阵。

    对判断矩阵的一致性检验的步骤如下:

    1. 计算一致性指标 C I = λ m a x − n n − 1 CI=\frac{λ_{max}-n}{n-1} CI=n1λmaxn
    2. 查找相应的平均随机一致性指标 RI 。对n = 1 …9,Saaty 给出了 RI 的值,如表 2 所示。在这里插入图片描述
      计算一致性比例 C R = C I R I CR=\frac{CI}{RI} CR=RICI
      C R < 0.10 CR < 0.10 CR<0.10时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。

    层次总排序及一致性检验

    上面我们得到的是一组元素对其上一层中某元素的权重向量。我们最终要得到各元素,特别是最低层中各方案对于目标的排序权重,从而进行方案选择。总排序权重要自上而下地将单准则下的权重进行合成。
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述
    对层次总排序也需作一致性检验,检验仍象层次总排序那样由高层到低层逐层进行。这是因为虽然各层次均已经过层次单排序的一致性检验,各成对比较判断矩阵都已具有较为满意的一致性。但当综合考察时,各层次的非一致性仍有可能积累起来,引起最终分析结果较严重的非一致性。
    设 B 层中与 Aj 相关的因素的成对比较判断矩阵在单排序中经一致性检验,求得单排序一致性指标为CI( j) ,( j = 1,L,m ),相应的平均随机一致性指标为 RI( j) (CI( j)、RI( j) 已在层次单排序时求得),则 B 层总排序随机一致性比例为
    在这里插入图片描述

    层次分析法的应用

    在应用层次分析法研究问题时,遇到的主要困难有两个:

    1. 如何根据实际情况抽象出较为贴切的层次结构;
    2. 如何将某些定性的量作比较接近实际定量化处理。

    层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。但层次分析法也有其局限性,主要表现在:
    3. 它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性。
    4. 比较、判断过程较为粗糙,不能用于精度要求较高的决策问题。AHP 至多只能算是一种半定量(或定性与定量结合)的方法。
    在这里插入图片描述

    回顾总结

    在这里插入图片描述

    例题

    挑选合适的工作。经双方恳谈,已有三个单位表示愿意录用某毕业生。该生根据已有信息建立了一个层次结构模型,如图所示
    在这里插入图片描述
    标准层的判断矩阵也已给出
    在这里插入图片描述
    方案层的判断矩阵给出
    在这里插入图片描述
    函数文件:

    function [CR,quan]=AHPfun(A)
    n=size(A,1);
    [V,D] = eig(A); %V 是特征向量,D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)
    Max_eig = max(D(:)); %那么怎么找到最大特征值所在的位置了?需要用到find函数,它可以用来返回向址或者矩阵中不为0的元素的位置索引。
    %那么问题来了,我们要得到最大特征值的位置,就需婴将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为
    %这时候可以用到矩阵与常数的大小判断运算
    D = Max_eig;
    [r,c]=find(D == Max_eig,1);
    %找到D中第“个与最大特征值相等的元素的位置,记录它的行和列。
    %第二步:对求出的特征向量进行归-“化即可得到我们的权重
    quan=V(:,c)./sum(V(:,c));
    %我们先根据上面找到的最大特征值的列数c找到对应的特征向量,然后再进行标准化。
    % 计算一致性比例CR
    CI = (Max_eig - n)/(n-1);
    RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持n = 15
    CR=CI/RI(n);
    end
    

    主文件:

    clc;clear
    a0=[1 1 1 4 1 1/2
        1 1 2 4 1 1/2
        1 1/2 1 5 3 1/2
        1/4 1/4 1/5 1 1/3 1/3
        1 1 1/3 3 1 1
        2 2 2 3 3 1 ];
    a1=[1 1/4 1/2;
        4 1 3;
        2 1/3 1 ];
    a2=[1 1/4 1/5;
        4 1 1/2;
        5 2 1 ];
    a3=[1 3 1/3;
        1/3 1 1/7;
        3 7 1 ];
    a4=[1 1/3 5;
        3 1 7;
        1/5 1/7 1];
    a5=[1 1 7;
        1 1 7;
        1/7 1/7 1 ];
    a6=[1 7 9;
        1/7 1 1;
        1/9 1 1];
    F=cat(3,a1,a2,a3,a4,a5,a6);
    [a,b,c]=size(F);
    all=ones(3,c);
    cr=[];
    [CR,quan]=AHPfun(a0);
    cr0=CR;
    quan0=quan;
    disp('准则层权值为:');disp(quan0');
    disp('准则层一致性比例为:');disp(cr0);
    for i =1:c
        A=F(:,:,i);
        [CR,quan]=AHPfun(A);
        cr=[cr,CR];
        all(:,i)=quan;  
        
    end
    allquan=ones(3,1);
    for j=1:3
        allquan(j,1)=sum(all(j,:).*quan0');
    end
    disp('方案层单排序权值:');disp(all);
    disp('方案层一致性比例为:');disp(cr);
    disp('总排序权值:');disp(allquan);
    
    

    输出:

    准则层权值为:
        0.1507    0.1792    0.1886    0.0472    0.1464    0.2879
    
    准则层一致性比例为:
        0.0981
    
    方案层单排序权值:
        0.1365    0.0974    0.2426    0.2790    0.4667    0.7986
        0.6250    0.3331    0.0879    0.6491    0.4667    0.1049
        0.2385    0.5695    0.6694    0.0719    0.0667    0.0965
    
    方案层一致性比例为:
        0.0176    0.0236    0.0068    0.0624   -0.0000    0.0068
    
    总排序权值:
        0.3952
        0.2996
        0.3052
    
    

    答案
    在这里插入图片描述

    展开全文
  • 在分析层次分析法(AHP)确定权重不足的基础上,结合物元分析理论,建立确定顶煤可放性各因素权重的物元分析模型.该方法充分考虑各专家对事物的不同认识程度,克服了以往AHP法在确定指标权重中所存在的片面性,使指标体系...
  • 1.构造层次结构模型 企业有一笔留成利润,应该怎样使用最合理。 2.构造判断矩阵 ` 该厂认为根据总目标重要性排名为:C2>C3>C1 构造判断矩阵细化: A C1 C2 C3 C1 1 1/5 1/3 C2 5 1 3 C3 3 1/3 1 ...

    本文为根据爱课程网站—国防科技大学系统工程原理课程整理

    AHP计算有三种方式可以选择:幂法、和积法、方根法,本文使用和积法。

    1.构造层次结构模型

    企业有一笔留成利润,应该怎样使用最合理。
    在这里插入图片描述

    2.构造判断矩阵

    `在这里插入图片描述
    该厂认为根据总目标重要性排名为:C2>C3>C1
    构造判断矩阵细化:

    AC1C2C3
    C111/51/3
    C2513
    C331/31

    该矩阵代表C2重要性最高,并分别是C1重要性的5倍、C3重要性的3倍。
    使用和积法得到特征向量W,以及最大特征值λmax=3.0385
    在这里插入图片描述

    3.一致性检验

    经过一致性检验得到CI(n=3),并且根据查表,RI=0.58,所以CR=(CI/RI)=0.0332<0.1,所以可以认为A-C具有满意的一致性。
    在这里插入图片描述
    所以三个准则的权重确定下来:

    W
    C10.1042
    C20.6372
    C30.2583

    4.对方案层P使用第二步同样方式求解,最终得到层次总排序计算结果。

    在这里插入图片描述
    这张表中的0意味着该方案对该层次无贡献,比如P1(发奖金)对C2(提升企业技术水平)没有贡献。
    所以从表中可得,最优的方案为方案P3:办业余学校

    5.层次总排序计算结果的一致性检验

    在这里插入图片描述
    其中C3的CR=0代表其具有完全一致性。
    由此可得,办业余学校是最合理的方式。

    展开全文
  • 计算最下层对最上层总排序的权向量 4. 计算总排序权向量并做一致性检验 1 . 0 ? CR CR 进行检验若通过则可按照总排序权向量表示的结果进 行决策否则需要重新考虑模型或重新构造那些一致性比 率 较大的成对比较矩阵 m...
  • 基于现有的高校教师绩效评价中定性因素较多,采用层次分析法进行评价又需检验一致性的问题,构建教师绩效评价指标的层次结构模型以及定性与定量结合的综合多因素评价。依据模糊层次分析法的思路,兼顾大学教师绩效...
  • AHP层次分析法

    万次阅读 多人点赞 2014-02-21 01:07:12
    在比赛中,我们运用了层次分析法(AHPAnalytic Hierarchy Process)进行建模,好不容易理解了这一方法的思想,在自己的博客里记录一下,希望可以帮助初次接触层次分析法的人,更快地理解这一的整体思想,也利于...
  • 层次分析法 模型应用实例 层次分析法(AHP)对人力资源中的经常碰到的问题:岗位工资等级、绩效评估进行一个量化的分析,从而定义一个合理的薪酬水平,对员工做出公正的绩效评估,使员工觉得公平,使公司得到效率。
  • 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成
  • 总结已有创业机会评估方法的不足,并针对传统层次分析法(AHP)在实际应用中存在的问题,将改进的层次分析法,即三标度的AHP,从定量与定性,主观与客观相结合的角度对创业机会进行评估,并结合实例初步探讨其可行性,...
  • 层次分析法(AHP)原理以及应用

    千次阅读 多人点赞 2021-02-12 18:36:02
    博主现大三参与四次数学建模大赛,本人专业为大数据方向,由于以后或许从事数据分析行业,其实数学建模和大数据分析有很多相似之处,可以说差不多是共通的。经历了这么多次比赛个人总结一些建模必备的数据分析方法是...
  • 层次分析法实例:选择旅游目的地

    千次阅读 2020-04-14 19:40:16
    小白打算去旅游,打算使用层次分析法选择旅游目的地。 建立递阶层次结构 目标层 选择旅游目的地的 准则层 不要超过9个因素,这里选取5个:景色、费用、居住、饮食、旅途 方案层 广州、昆明、拉萨 构造比较判别矩阵...
  • 层次分析法的详细介绍,和实例应用,及matlab步骤
  • 介绍了AHP的原理,以及三个难度增加的应用案例的分析
  • 【AHP】层次分析法 | 过程解读 案例实践

    万次阅读 多人点赞 2020-08-20 19:56:21
    AHP 层次分析法 一. AHP 层次分析法介绍 AHP 层次分析法简介 AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。在评价对象的待评价属性复杂多样,结构各异,...
  • 为了优选出经济合理、技术可行的露天矿剥离工艺,根据露天剥离工艺影响因素,建立基于层次分析法的露天剥离工艺比选指标体系,并应用该方法对东露天矿4#~9#煤间岩石剥离工艺选择进行了实例研究。结果表明,选出的单斗—...
  • 层次分析法(AHP)是美国运筹学家匹茨堡大学教授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的...
  • 目录层次分析法概述定义步骤归纳例子应用实例Python实现程序如下:运行结果截图 层次分析法概述 定义 本文所有图片均来自本人的OneNote笔记 步骤归纳 例子 建立层次结构模型 构造判断(成对比较)矩阵 第...
  • 主要介绍了Python聚类算法之凝聚层次聚类的原理与具体使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
  • 层次分析法在规划环境影响识别中的应用——以鄂尔多斯市杭锦能源化工基地为例,房春生,孟赫,本文探讨了在规划环境影响评价中利用层次分析法进行环境影响识别的理论和方法,并对杭锦能源化工基地规划环境影响进行了...
  • 分析了铜绿山矿区的特点,并应用层次分析法的基本决策理论,结合矿区排水系统的具体条件,提出了具体的排水方案,通过建立模型,进行层次...层次分析法作为系统工程的一种重要分析方法,已应用于许多工程实例的决策过程当中。
  • 层次分析法

    万次阅读 2015-06-11 18:11:53
    层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 29,078
精华内容 11,631
关键字:

层次分析法应用实例