精华内容
下载资源
问答
  • 层次分析法(AHP)详细步骤

    万次阅读 多人点赞 2019-01-07 13:01:10
    1. 算法简介 层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重...

    1. 算法简介

    层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
    层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

    2. 算法基本原理

    例子:
    在这里插入图片描述

    2.1. 解决问题的思路

    层次分析法的基本思路是将所要分析的问题层次化;根据问题的性质和所要达成的总目标,将问题分解为不同的组成因素,并按照这些因素的关联影响及其隶属关系,将因素按不同层次凝聚组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较并排列。

    2.2. 层次分析法的步骤

    1.建立层次结构模型

    • 将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
    • 最高层: 决策的目的、要解决的问题。
      最低层: 决策时的备选方案。
      中间层: 考虑的因素、决策的准则。
    • 对相邻的两层,称高层为目标层,低层为因素层

    层次分析法所要解决的问题是关于最低层对最高层的相对权重的问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中做出选择或形成选择方案的原则。

    2.构造判断矩阵
    层次分析法中构造判断矩阵的方法是一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较;对此时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

    判断矩阵aija_{ij}的标度方法

    标度 含义
    1 表示两个因素相比,具有同样重要性
    3 表示两个因素相比,一个因素比另一个因素稍微重要
    5 表示两个因素相比,一个因素比另一个因素明显重要
    7 表示两个因素相比,一个因素比另一个因素强烈重要
    9 表示两个因素相比,一个因素比另一个因素极端重要
    2,4,6,8 上述两相邻判断的中值
    倒数 因素iijj比较的判断aija_{ij},则因素jjii比较的判断aji=1/aija_{ji}=1/a_{ij}

    3.层次单排序及其一致性检验
    对应于判断矩阵最大特征根λmax\lambda max的特征向量,经归一化(使向量中各元素之和为1)后记为WWWW的元素为同一层次元素对于上一层因素某因素相对重要性的排序权值,这一过程称为层次单排序

    定义一致性指标CI=λnn1CI=\frac {\lambda-n}{n-1}
    CI=0CI=0,有完全的一致性;
    CICI接近于0,有满意的一致性;
    CICI越大,不一致越严重。

    为了衡量CICI的大小,引入随机一致性指标RIRI

    随机一致性指标RI
    n 1 2 3 4 5 6 7 8 9 10 11
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

    定义一致性比率:CR=CIRICR=\frac{CI}{RI},一般认为一致性比率CR<0.1CR<0.1时,认为A的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aija_{ij}加以调整。

    示例:
    在这里插入图片描述在这里插入图片描述

    4.层次总排序及其一致性检验

    • 计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。
    • 这一过程是从最高层次到最低层次依次进行的。
      在这里插入图片描述
      A层mm个因素A1,A2,,Am,A_{1},A_{2},···,A_{m},对总目标Z的排序为a1,a2,,ama_{1},a_{2},···,a_{m}
      B层nn个因素对上层A中因素为AjA_{j}的层次单排序为b1j,b2j,,bnj(j=1,2,3,,m)b_{1j},b_{2j},···,b_{nj}(j=1,2,3,···,m)

    B层的层次总排序(即B层第ii个因素对总目标的权值为:j=1majbij\sum_{j=1}^{m}a_{j}b_{ij})为:
    B1:a1b11+a2b12++amb1m,B_{1}:a_{1}b_{11}+a_{2}b_{12}+···+a_{m}b_{1m},
    B2:a1b21+a2b22++amb2m,B_{2}:a_{1}b_{21}+a_{2}b_{22}+···+a_{m}b_{2m},
    ···
    Bn:a1bn1+a2bn2++ambnm,B_{n}:a_{1}b_{n1}+a_{2}b_{n2}+···+a_{m}b_{nm},

    层次总排序的一致性比率为:CR=a1CI1+a2CI2++amCIma1RI1+a2RI2++amRImCR=\frac{a_{1}CI_{1}+a_{2}CI_{2}+···+a_{m}CI_{m}}{a_{1}RI_{1}+a_{2}RI_{2}+···+a_{m}RI_{m}},当CR<0.1CR<0.1时,认为层次总排序通过一致性检验。
    例子:
    在这里插入图片描述在这里插入图片描述

    3.算法总结

    • 应用领域:经济计划个管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
    • 处理问题类型:决策、评价、分析、预测等。
    • 建立层次分析结构模型是关键一步,要有主要决策层参与。
    • 构造成对比较矩阵是数量依据,应由经验丰富、判断力强的专家给出。

    4.参考

    1. 层次分析法建模——《百度文库》
    展开全文
  • AHP层次分析法

    万次阅读 多人点赞 2014-02-21 01:07:12
    在比赛中,我们运用了层次分析法(AHPAnalytic Hierarchy Process)进行建模,好不容易理解了这一方法的思想,在自己的博客里记录一下,希望可以帮助初次接触层次分析法的人,更快地理解这一的整体思想,也利于...

    2014年参加数学建模美赛, 其中一道题是选出5大优秀教练,数据来源要求自行寻找。 在比赛中,我们运用了层次分析法(AHPAnalytic Hierarchy Process)进行建模,好不容易理解了这一方法的思想,在自己的博客里记录一下,希望可以帮助初次接触层次分析法的人,更快地理解这一的整体思想,也利于进一步针对细节进行学习。文章内容主要参阅 《matlab数学建模算法实例与分析》,部分图片来源于WIKI

     

     

    文章分为2部分:

    1第一部分以通俗的方式简述一下层次分析法的基本步骤和思想

    2第二部分介绍一下我们队伍数学建模过程中,对层次分析法的应用,中间有些地方做了不严谨的推理,例如关于一致性的检验,如有人发现不正确,希望可以指正

     

    第一部分:

     

    层次分析法(Analytic Hierarchy Process ,简称 AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。

    人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 


    运用层次分析法建模,大体上可按下面四个步骤进行: 
    (i )建立递阶层次结构模型; 
    (ii )构造出各层次中的所有判断矩阵; 
    (iii )层次单排序及一致性检验; 
    (iv )层次总排序及一致性检验。 

     

    这四个步骤中,前两个步骤最容易理解,后两个步骤需要一点时间理解

     

    首先从层次结构模型说起

    层次分析法是用来根据多种准则,或是说因素从候选方案中选出最优的一种数学方法

    最顶层是我们的目标,比如说选leader,选工作,选旅游目的地

    中间层是判断候选方物或人优劣的因素或标准

    选工作时有:发展前途  ,待遇 ,工作环境等

    选leader时有:年龄,经验,教育背景,魅力

     

    在分层以后,为了选出最优候选

    给目标层分配值1.000

    然后将这一值作为权重,分配给不同因素,对应因素的权重大小代表该因素在整个选择过程中的重要性程度

    然后对于候选方案,每一个标准再将其权重值分配给所有的候选方案,每一方案获得权重值,来源于不同因素分得的权重值的和

     

    如下图:

                目标层分配值为1, 然后我们给了4个候选方案评估标准 criterion 1 、 criterion 2、criterion 3、criterion 4

                假设我们认为这四个标准同等重要, 于是目标层的值1 就被均分到 4个准则上, 每个准则获得的值为 0.25

                然后我们从评估标准 criterion 1 出发, 考虑在该评估标准下, 3 个候选方案的优劣比如何。 假如我们认为在标准1 的衡量下,   3 个方案完全平等, 方案1 在该标准下的得分就应该是: 0.25 * (1/3) 

               同理, 如果我们假设剩下的 3 个标准下, 3个候选方案都是平分秋色, 那么方案 1 的最终得分就应该是

               0.33 =  0.25 * (1/3)   +   0.25 * (1/3)   +  0.25 * (1/3)  +  0.25 * (1/3) 

               最终获得的各个方案的的权重值的和依然为1

     

    这不就是一个简单的权重打分的过程吗?为什么还要层次分析呢。这里就有两个关键问题:

    1每个准则(因素)权重具体应该分配多少

    2每一个候选方案在每一个因素下又应该获得多少权重

     

    这里便进入层次分析法的第二个步骤,也是层次分析法的一个精华(构造比较矩阵(判断矩阵)comparison matrix):

     

    首先解决第一个问题:每个准则(因素)权重具体应该分配多少?

    如果直接要给各个因素分配权重比较困难,在不同因素之间两两比较其重要程度是相对容易的

     

    现在将不同因素两两作比获得的值aij  填入到矩阵的 i 行 j 列的位置,则构造了所谓的比较矩阵,对角线上都是1, 因为是自己和自己比

    这个矩阵容易获得,我们如何从这一矩阵获得对应的权重分配呢

    这里便出现了一个比较高级的概念,正互反矩阵和一致性矩阵

    首先正互反矩阵的定义是:

     

    我们目前构造出的矩阵很明显就是正互反矩阵

     

    而一致性矩阵的定义是:


    这里我们构造出的矩阵就不一定满足一致性,比如我们做因素1:因素2= 4:1  因素2:因素3=2:1    因素1:因素3=6:1(如果满足一致性就应该是8:1),我们就是因为难以确定各因素比例分配才做两两比较的,如果认为判断中就能保证一致性,就直接给出权重分配了

     

    到了关键部分,一致性矩阵有一个性质可以算出不同因素的比例

     

    这里的w就是我们想要知道的权重,所以通过 求比较矩阵的最大特征值所对应的特征向量,就可以获得不同因素的权重,归一化一下(每个权重除以权重和作为自己的值,最终总和为1)就更便于使用了。(实际上写这篇博客就是因为,重新翻了线代的书才好不容易理解这里的,就想记录下来)

     

    这里补充一点线性代数的知识:

        n阶矩阵有n个特征值,每个特征值对应一个n维特征列向量,特征值和特征向量的计算方法这里就省略了,反正书中的程序是直接用matlab 的eig函数求的

     

    这里不能忘了,我们给出的比较矩阵一般是不满足一致性的,但是我们还是把它当做一致矩阵来处理,也可以获得一组权重,但是这组权重能不能被接受,需要进一步考量

    例如在判断因素1,2,3重要性时,可以存在一些差异,但是不能太大,1比2重要,2比3 重要,1和3比时却成了3比1重要,这显然不能被接受

     

    于是引入了一致性检验:

              一致性的检验是通过计算一致性比例CR 来进行的

              

              当 10 . 0 < CR 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。 

     

    CI的值由判断矩阵计算获得,RI的值查表获得,具体的计算公式这里就略去,重点是理解为什么要做一致性检验

     

     

    接下来解决第二个问题:每一个候选方案在每一个因素下又应该获得多少权重

     

    这里则需要将不同候选方案,在不同因素下分别比较,具体的比较方法,还是使用比较矩阵,只不过之前准则层的比较矩阵比较的对象是因素,这里比较的是某一因素下,候选方案的优劣, n个因素则需构造出来n个比较矩阵

    例如在工作环境的因素下,工作1与工作2相比为 :4:2,工作2与工作3=2:1  工作1:工作3=6:1.,这样构造一个矩阵,再用之前的一致性矩阵的方法就可以求出一个权重,然后相对应因素(这里是工作环境)所拥有的权值就可以按这个权重比例分配给不同候选物或人。

     

    其他因素同理

     

     

    至此两个问题就都得到了解决

    最终将每个候选物、人从不同因素获得的权值求和,就可以得到不同候选对于目标层的权值大小,继而可以根据值的大小,来选出优劣

     

    对于第一部分的总结:

     

    • 通过对层次分析法的基本了解,不难发现层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。 

     

    • 但很明显的缺点是,整个分析过程似乎都是依赖于人的主观判断思维,一来不够客观,二来两两比较全部人为完成,还是非常耗费精力的,尤其是当候选方案比较多的时候

     

     

     

    文章的第二部分:


    层次分析法的变形应用(也可能本来就是这样用的,只不过参考书上没这样说,外语
    论文没细看)解决最优教练选择问题

     

    目标:选最优教练

     

    准则:  

     

     

    1. 职业生涯所带队伍的胜率      
    2. 职业生涯所带队伍的胜场            
    3. 从教时长(年)          
    4. 职业生涯所带队伍获奖状况(化成分数)

     

      

    候选:  众多教练

     

    准则层比较矩阵获得

     

     

    • 准则层的比较矩阵好构造 ,作6次两两比较,就可以获得4*4的比较矩阵

     

     

    候选层比较矩阵

     

    每一个准则对应下来的 候选层 已经有定量的数据了。 这里其实就不再需要候选层比较矩阵了, 因为有4000个教练的话, 得比4000*3999次,可以直接利用定量的数据计算权重

    • 例如“职业生涯所带队伍的胜场” 这一准则对应到每个教练都有直接相应数据的,例如教练 A, B, C 职业生涯所带队伍胜场数为 100,150, 90. 此时该准则下得到的分数, 就应当按照 10:5:9 的比例来进一步划分。 

     

    类似的,胜率准则 下就根据  “胜率   计算权重分配比例。 从教时长准则下就根据 “从教时间的年数” 计算权重分配比例

     

    这里又有两点可以注意:

     

    1.不同因素下数据的量纲和性质不一样,直接用数据作比来分配,不一定合适,比如胜率越要接近1越难,0.7比胜率0.5  和胜率0.9比0.7  ,后者比值比前者小,这显然不合适。这里可以利用指数函数和对数函数对数据先做一次处理, 再作为权重分配的依据。

     

    2.这里的用定量数据作比获得的矩阵显然满足一致性要求,不需要做一致性检验。以职业生涯所带队伍的胜场数为例,如果教练 A, B, C 职业生涯所带队伍胜场数为 100,150, 90。 那么 A:B :C 无论怎么作比, 都不会违反 10:15:9 的一致性。 

     

    综上就对层次分析法完成了定性定量结合的应用,以及对多个候选方案的比较(其实只是就是用程序控制数据作比,我们水平有限,能成功应用该方法已经不容易了)

     

    很遗憾的是比赛时编写的代码存放的优盘不慎丢失, 没有办法把代码共享出来, 这里只能将书中的代码贴出。比赛建模时, 就是在这个代码基础上进行修改实现。 只要理解了下列代码,编写符合自己需求的程序, 应当是水到渠成的事。

     

     

     

     matlab 代码(对应于文章第一部分选 Leader 的内容):

     

     

    clc,clear
    fid=fopen('txt3.txt','r');
    n1=6;n2=3;
    a=[];
    for i=1:n1
    	tmp=str2num(fgetl(fid));
    	a=[a;tmp]; %读准则层判断矩阵
    end
    for i=1:n1
    	str1=char(['b',int2str(i),'=[];']);
    	str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']);
    	eval(str1);
    	for j=1:n2
    		tmp=str2num(fgetl(fid));
    		eval(str2); %读方案层的判断矩阵
    	end
    end
    ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标
    [x,y]=eig(a);  % matlab eig(a) 返回矩阵的特征值和特征向量, 这里的 x 为矩阵 a 的 n 个特征向量, y 为矩阵 a 的 n 个特征值
    lamda=max(diag(y));  %  eig 函数返回的 y 是矩阵形式保存的, dig(y) 提取对角线上的n 个特征值到一个数组中, 求出最大特征值 lamda
    num=find(diag(y)==lamda);  % 返回最大特征的索引
    w0=x(:,num)/sum(x(:,num));  % x( :num) 为最大特征值所对应的那一列特征向量。 w0 中准则层计算出的 包含归一化后的n 个权重值
    cr0=(lamda-n1)/(n1-1)/ri(n1)
    
    for i=1:n1 % 循环 n 个维度, 针对每个维度, 都计算一次方案层的比较矩阵及其权重值
    	[x,y]=eig(eval(char(['b',int2str(i)])));
    	lamda=max(diag(y));
    	num=find(diag(y)==lamda);
    	w1(:,i)=x(:,num)/sum(x(:,num));
    	cr1(i)=(lamda-n2)/(n2-1)/ri(n2);
    end
    cr1, ts=w1*w0, cr=cr1*w0

     

    txt3.txt 中的内容, 前6行为准则层的 6 x 6 比较矩阵, 后 18 行则为 6 个准则下, 各自的 3 x 3 的比较矩阵。 

    1 1 1 4 1 1/2
    1 1 2 4 1 1/2
    1 1/2 1 5 3 1/2
    1/4 1/4 1/5 1 1/3 1/3
    1 1 1/3 3 1 1
    2 2 2 3 3 1
    1 1/4 1/2
    4 1 3
    2 1/3 1
    1 1/4 1/5
    4 1 1/2
    5 2 1
    1 3 1/3
    1/3 1 1/7
    3 7 1
    1 1/3 5
    3 1 7
    1/5 1/7 1
    1 1 7
    1 1 7
    1/7 1/7 1
    1 7 9
    1/7 1 1
    1/9 1 1

     

    再上一段 JAVA 代码, 方便 JAVA 童鞋参考, 这部分仅仅展示了如何用JAVA 代码进行准则层比较矩阵计算 。 

     

    import org.apache.commons.math3.linear.*;
    
    
    public class MatrixTester {
        public static void main(String[] args) {
    
            // Create a real matrix with two rows and three columns, using a factory
            // method that selects the implementation class for us.
            double[][] matrixData = {   {1d,    1d,     1d,     4d,     1d,     1d/2d},
                                        {1d,    1d,     2d,     4d,     1d,     1d/2d},
                                        {1d,    1d/2d,  1d,     5d,     3d,     1d/2d },
                                        {1d/4d, 1d/4d,  1d/5d,  1d,     1d/3d,  1d/3d },
                                        {1d,   1d,     1d/3d,  3d,     1d,     1d },
                                        {2d,    2d,     2d,     3d,     3d,     1d },
                                    };
            RealMatrix m = MatrixUtils.createRealMatrix(matrixData);
    
    
    
            // One more with three rows, two columns, this time instantiating the
            // RealMatrix implementation class directly.
            double[][] matrixData2 = {{1d, 2d}, {2d, 5d}, {1d, 7d}};
            RealMatrix n = new Array2DRowRealMatrix(matrixData2);
    
            // Note: The constructor copies  the input double[][] array in both cases.
            // Now multiply m by n
    //        RealMatrix p = m.multiply(n);
    //        System.out.println(p.getRowDimension());    // 2
    //        System.out.println(p.getColumnDimension()); // 2
    //
    //        // Invert p, using LU decomposition
    //        RealMatrix pInverse = new LUDecomposition(p).getSolver().getInverse();
    
    
            RealMatrix D = new EigenDecomposition(m).getD();
            RealMatrix V = new EigenDecomposition(m).getV();
    
            for(int i=0; i<D.getRowDimension();i++)
            {
                System.out.println(D.getRowMatrix(i));
            }
    
            for(int i=0; i<V.getRowDimension();i++)
            {
                System.out.println(V.getRowMatrix(i));
            }
    
            // 特征值
            double maxLamda;
            int columIndexForMaxLamda=0;
            maxLamda=D.getEntry(0,0);
    
            for(int i =0, j=0; i<D.getRowDimension()&&j<D.getColumnDimension();i++,j=i)
            {
                double lamda = D.getEntry(i,j);
                if(maxLamda<lamda)
                {
                    maxLamda=lamda;
                    columIndexForMaxLamda = j;
                }
                System.out.println(lamda);
            }
    
            // 输出尚未做归一化 w1, w2, w3, w4, w5, w6 , 
            System.out.println(V.getColumnMatrix(columIndexForMaxLamda));
    
        }
    }
    

     

     

    展开全文
  • 层次分析法在matlab上的实现

    万次阅读 多人点赞 2018-06-12 10:36:17
    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题...

           层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

    计算步骤

           1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

      2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

      3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

      4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

    案例

    (1)建立层次结构模型

            层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用选拔干部为例:对三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型: 假设有三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型

    (2)构造判断矩阵

           在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较。对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

           比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。设共有 n 个元素参与比较,则A=(a_{ij})_{n\times n}称为成对比较矩阵。

      成对比较矩阵中aij的取值可参考 Satty 的提议,按下述标度进行赋值。aij在 1-9 及其倒数中间取值。

    • aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;
    • aij = 3,元素 i 比元素 j 略重要;
    • aij = 5,元素 i 比元素 j 重要;
    • aij = 7, 元素 i 比元素 j 重要得多;
    • aij = 9,元素 i 比元素 j 的极其重要;
    • aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
    • a_{ij}=\frac{1}{n},n=1,2,...,9, 当且仅当aji = n

      成对比较矩阵的特点:a_{ij}>0,a_{ij}=1,a_{ij}=\frac{1}{a_{ji}}。(备注:当i=j时候,aij = 1)

           对该例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较法,得到成对比较阵如下:

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      a14 = 5 表示品德与年龄重要性之比为 5,即决策人认为品德比年龄重要。

    (3)判断矩阵的一致性检验

           所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

           从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有

      a_{ij}a_{jk}=a_{ik},1\le i,j,k\le n.

      但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。

      由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。对成对比较矩阵 的一致性要求,转化为要求: 的绝对值最大的特征值和该矩阵的维数相差不大。

      检验成对比较矩阵A一致性的步骤如下:

    • 计算衡量一个成对比较矩阵 A (n>1 阶方阵)不一致程度的指标CI:

      CI=\frac{\lambda_{max}(A)-n}{n-1}

      RI是这样得到的:对于固定的n,随机构造成对比较阵A, 其中aij是从1,2,…,9,1/2,1/3,…,1/9中随机抽取的. 这样的A是不一致的, 取充分大的子样得到A的最大特征值的平均值

    n 1 2 3 4 5 6 7 8 9
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

      注解:

    • 从有关资料查出检验成对比较矩阵 A 一致性的标准RI:RI称为平均随机一致性指标,它只与矩阵阶数 n 有关。
    • 按下面公式计算成对比较阵 A 的随机一致性比率 CR:

      CR=\frac{CI}{RI} 。

    • 判断方法如下: 当CR<0.1时,判定成对比较阵 A 具有满意的一致性,或其不一致程度是可以接受的;否则就调整成对比较矩阵 A,直到达到满意的一致性为止。

      例如对例 2 的矩阵

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      计算得到\lambda_{max}(A)=5.073,CI=\frac{\lambda_{max}(A)-5}{5-1}=0.018,查得RI=1.12,

      CR=\frac{CI}{RI}=\frac{0.018}{1.12}=0.016<0.1

      这说明 A 不是一致阵,但 A 具有满意的一致性,A 的不一致程度是可接受的。

      此时A的最大特征值对应的特征向量为U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。 这个向量也是问题所需要的。通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于 1。该特征向量标准化后变成U = (0.475,0.263,0.051,0.103,0.126)Z。经过标准化后这个向量称为权向量。这里它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是资历。各因素的相对重要性由权向量U的各分量所确定。

      求A的特征值的方法,可以用 MATLAB 语句求A的特征值:〔Y,D〕=eig(A),D为成对比较阵 的特征值,Y的列为相应特征向量。

      在实践中,可采用下述方法计算对成对比较阵A = (aij)的最大特征值λmax(A)和相应特征向量的近似值。

      定义

      U_k=\frac{\sum_{j=1}^{n}a_{kj}}{\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}}U=(u_1,u_2,\ldots,u_n)^z

      可以近似地看作A的对应于最大特征值的特征向量。

      计算

      \lambda=\frac{1}{n}\sum^{n}_{i=1}\frac{(AU)_i}{u_i}=\frac{1}{n}\sum^{n}_{i=1}\frac{\sum^{n}_{i=1}}\frac{\sum^n_{j=1}a_{ij}u_{j}}{u_i}

      可以近似看作A的最大特征值。实践中可以由λ来判断矩阵A的一致性

    (4) 层次总排序及决策

           现在来完整地解决例 2 的问题,要从三个候选人y1,y2,y3中选一个总体上最适合上述五个条件的候选人。对此,对三个候选人y = y1,y2,y3分别比较他们的品德(x1),才能(x2),资历(x3),年龄(x4),群众关系(x5)。

      先成对比较三个候选人的品德,得成对比较阵

      B_1=\begin{pmatrix}1&\frac{1}{3}&\frac{1}{8}\\3&1&\frac{1}{3}\\8&3&1\end{pmatrix}

      经计算,B1的权向量

      ωx1(Y) = (0.082,0.236,0.682)z

      \lambda_{max}(B_1)=3.002,CI=0.001,\frac{CI}{RI}=\frac{0.001}{0.58}<0.1

      故B1的不一致程度可接受。ωx1(Y)可以直观地视为各候选人在品德方面的得分。

      类似地,分别比较三个候选人的才能,资历,年龄,群众关系得成对比较阵

      B_2=\begin{pmatrix}1&2&5\\\frac{1}{2}&1&2\\\frac{1}{5}&\frac{1}{2}&1\end{pmatrix}   B_3=\begin{pmatrix}1&1&3\\1&1&3\\\frac{1}{3}&\frac{1}{3}&1\end{pmatrix}

      B_4=\begin{pmatrix}1&3&4\\\frac{1}{3}&1&1\\\frac{1}{4}&1&1\end{pmatrix}

      B_5=\begin{pmatrix}1&4&\frac{1}{4}\\1&1&\frac{1}{4}\\4&1&1\end{pmatrix}

      通过计算知,相应的权向量为

       \omega_{x_2}(Y)=(0.606,0.265,0.129)^z

       \omega_{x_3}(Y)=(0.429,0.429,0.143)^z

       \omega_{x_4}(Y)=(0.636,0.185,0.179)^z

       \omega_{x_5}(Y)=(0.167,0.167,0.667)^z

      它们可分别视为各候选人的才能分,资历分,年龄分和群众关系分。经检验知B2,B3,B4,B5的不一致程度均可接受。

      最后计算各候选人的总得分。y1的总得分

       \omega_z(y_1)=\sum{5}{j=1}u_j\omega_{xj}(y_1)=0.457\times 0.082+0.263\times 0.606+0.051\times 0.429+0.104\times 0.6366+0.162\times 0.1670.306

      从计算公式可知,y1的总得分ω(y1)实际上是y1各条件得分ωx1(y1) ,ωx2(y1) ,...,ωx5(y1) ,的加权平均, 权就是各条件的重要性。同理可得y2,Y3 的得分为

      ωz(y2) = 0.243,ωz(y3) = 0.452

      0.457 0.263 0.051 0.103 0.126 总得分
    Y1 0.082 0.606 0.429 0.636 0.167 0.305
    Y2 0.244 0.265 0.429 0.185 0.167 0.243
    Y3 0.674 0.129 0.143 0.179 0.667 0.452

      即排名:Y3 > Y1 > Y2

      比较后可得:候选人y3是第一干部人选。

    优缺点

    (一)优点

    1. 系统性的分析方法:

           层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。

    2. 简洁实用的决策方法:

           这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来。

    3. 所需定量数据信息较少:

    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。

    (二)缺点

    1. 不能为决策提供新方案:

           层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。

    2. 定量数据较少,定性成分多,不易令人信服:

           在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。

    3. 指标过多时数据统计量大,且权重难以确定:

           当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。

    4. 特征值和特征向量的精确求法比较复杂:

           在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。

    注意事项

           如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。

      为保证递阶层次结构的合理性,需把握以下原则:

      1、分解简化问题时把握主要因素,不漏不多;

      2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。

    四层AHP

          上面例子是只有目标层、准则层、方案层,下面的结构多了子准则层,并且准则层对应不同的子准则层

    如果对你有帮助,请点下赞,予人玫瑰手有余香!

    时时仰望天空,理想就会离现实越来越近!

     

    展开全文
  • 层次分析法原理和matlab代码

    千次阅读 2020-06-15 21:16:56
    文章目录一、层次分析法简述二、求解过程1、建立层次结构模型2、构造成对比较矩阵3、计算权向量并做一致性检验4、计算组合权向量并做组合一致性检验三、参考文献 一、层次分析法简述 层次分析法(The analytic ...

    一、层次分析法简述

    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

    适用于解决多个备选方案决策以及在选择过程中各个因素的重要性比较。 比如说经常举的例子:选择旅游地,有3个选择方案,苏杭、北戴河和桂林,选择过程需要考虑多个因素,比如景色、费用、居住、饮食和旅途。江苏省2019年研究生数模比赛B题,高校学生选择高铁还是火车回家,在里程、时长、个人可支配收入、舒适度等多个因素中分析主要因素。

    二、求解过程

    1、建立层次结构模型

    在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

    以旅游问题为例,我们就可以建立如下模型:
    在这里插入图片描述

    2、构造成对比较矩阵

    从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1-9比较尺度构造成对比较阵,直到最下层。

    成对比较法是指,不把所有因素放在一起比较,而是两两相互比较。并且为了方便定量分析,把比较的结果用1-9进行标识。如果用aija_{ij}表示因素i与因素j对上一层因素的重要程度,1-9比较尺度的含义如下:

    在这里插入图片描述
    两两因素比较的结果可用成对比较矩阵表示:
    A=(aij)n×n,aij>0,aji=1aijA=(a_{ij})_{n\times n}, a_{ij}>0, a_{ji}=\frac{1}{a_{ij}}

    其中n是参与对比的元素的个数。

    成对比较矩阵因没有专门的数据,往往具有很强的主观性,为了增强数据的科学性(尤其是参加比赛)可以:

    1. 查找相关资料和文献,确定主要因素(定性)以及哪个因素更重要(减少问卷问题数量);
    2. 设置调查问卷(定量);

    旅游问题中,成对比较矩阵示例:

    A=[ 1 1/2 4 3 3;
    2 1 7 5 5;
    1/4 1/7 1 1/2 1/3;
    1/3 1/5 2 1 1;
    1/3 1/5 3 1 1]
    

    如果只分析景色等因素对于选择旅游地的重要程度(往上一层,准则–>目标),那么只用各因素的成对比较矩阵A即可。如果是想要确定最终去哪个目的地,还得确定方案层对准则层的重要程度,即把苏杭、北戴河和桂林作为比较因素,生成对景色和费用等的比较矩阵,分别记为B1B2B5B_{1}B_{2}…B_{5},示例如下:

    #三个城市作为比较因素,所以n(矩阵维度)=3
    #因为要分析城市对景色、费用、居住、饮食和旅途各自的重要程度,所以就有5个比较矩阵
    B1=[ 1 2 5;
    1/2 1 2;
    1/5 1/2 1]
    
    B2=[1 1/3 1/8;
    3 1 1/3;
    8 3 1]
    
    B3=[1 1 3;
    1 1 3;
    1/3 1/3 1]
    
    B4=[1 3 4;
    1/3 1 1;
    1/4 1 1]
    
    B5=[1 1 1/4;
    1 1 1/4;
    4 4 1]
    

    3、计算权向量并做一致性检验

    对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

    所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

    如果A是完全一致的成对比较矩阵,应该有:
    aijajk=aik,1i,j,kna_{ij}a_{jk}=a_{ik}, 1\le i,j,k \le n

    但由于客观事物的复杂性、人们认识上的多样性和片面性, 即使有九级标度, 也不能保证每个判断矩阵具有完全一致性。因此, 为了保证层次分析法 的结论基本合理, 还必须对形成的判断矩阵进行一致性检验。方法是:

    1. 先计算比较矩阵的最大特征值λmax\lambda_{max}, 然后计算一致性指标:CI=λmaxnn1CI=\frac{\lambda_{max}-n}{n-1}
    2. 如果 CI=0CI=0, 则表明该判断矩阵具有完全一致性, 检验结束,否则进行下一步;
    3. 计算随机一致性比率,CR=CIRICR=\frac{CI}{RI},如果CR<0.1CR<0.1,就认为一致性可以接受,否则重新设定比较矩阵,重新验证一致性。

    其中矩阵的平均随机一致性指标RI(rand index),只与矩阵阶数n有关,常用的如下:
    在这里插入图片描述
    计算一致性的matlab代码:

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);y=ones(n,100);m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp('w=');disp(w);
    %以下是一致性检验
    CI=(t-n)/(n-1);
    RI=[0 0 0.52 0.89 1.12 1.26 1.36  1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.1
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    else
        disp('此矩阵的一致性不可以接受!');
    end
    

    matlab的运行过程和结果:

    >> ahp
    请输入判断矩阵A(n阶)
    A=[ 1 1/2 4 3 3;
    2 1 7 5 5;
    1/4 1/7 1 1/2 1/3;
    1/3 1/5 2 1 1;
    1/3 1/5 3 1 1]
    w=
        0.2636
        0.4758
        0.0538
        0.0981
        0.1087
    
    此矩阵的一致性可以接受!
    CI=
        0.0180
    
    CR=
        0.0161
    

    得到权向量:

    W=[0.2636,0.4758,0.0538,0.0981,0.1087]
    

    至于说RI取值不同[1]_{[1]},差别没那么大,应该是精度和随机数取值的问题。

    4、计算组合权向量并做组合一致性检验

    计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

    一致性检验的方法和前面的一样,不再赘述,计算出各自权重。

    w1=[0.5954,0.2764,0.1283]
    w2=[0.0819,0.2363,0.6817]
    w3=[0.4286,0.4286,0.1429]
    w4=[0.6337,0.1919,0.1744]
    w5=[0.1667,0.1667,0.6667]
    

    去苏杭的概率=0.26360.5954+0.47580.0819+0.05380.0981+0.09810.6337+0.10870.1667=0.2815;
    去北戴河的概率=0.2636
    0.2764+0.47580.2363+0.05380.4268+0.09810.1919+0.10870.1667=0.2452;
    去桂林的概率=0.26360.1283+0.47580.6817+0.05380.1429+0.09810.1744+0.1087*0.6667=0.4554

    权重矩阵:
    在这里插入图片描述

    注:0.2815+0.2452+0.4554=0.9821不等于1,是因为精度,如果写论文,逻辑自洽,去桂林的概率最好改为1-0.2815-0.2452=0.4733

    所以选择去桂林

    三、参考文献

    [1][1] 洪志国, 李焱, 范植华,等. 层次分析法中高阶平均随机一致性指标(RI)的计算[J]. 计算机工程与应用, 2002, 038(012):45-47,150.

    其它参考内容:
    层次分析法
    matlab-层次分析法

    展开全文
  • 机器学习 | AHP层次分析法

    千次阅读 多人点赞 2019-05-15 20:39:47
    聊聊AHP层次分析法1 什么是AHP层次分析法?2 这个方法是干吗呢?在什么场景使用?3 AHP层次分析法的实现3.1 步骤3.2 实际的例子3.2.1 背景3.2.2 Step1 构建层次结构模型3.2.3 Step2 构造成对比较矩阵3.2.4 Step3 ...
  • 层次分析法

    千次阅读 2012-04-13 18:59:49
    层次分析法 层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法 么是层次分析法  层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·...
  • 层次分析法(AHP)

    万次阅读 2018-09-09 14:54:12
    层次分析法应用领域:决策问题,例如旅游,买衣服,居住等问题的决策,这是一种 定性加定量相结合的,系统化,层次化的分析方法。 层次分析法的基本步骤: 例如:某人打算假期去旅游,假如有p1,p2,p3 3个旅游...
  • 层次分析法(AHP)原理以及应用

    千次阅读 多人点赞 2021-02-12 18:36:02
    博主现大三参与四次数学建模大赛,本人专业为大数据方向,由于以后或许从事数据分析行业,其实数学建模和大数据分析有很多相似之处,可以说差不多是共通的。经历了这么多次比赛个人总结一些建模必备的数据分析方法是...
  • 层次分析法 AHP

    千次阅读 2019-04-22 15:49:37
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出...
  • 层次分析法---python实现

    万次阅读 2018-11-14 11:00:09
    层次分析法(The analytic hierarchy process)简称AHP 在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题...
  • 层次分析法(Analytic Hierarchy Process)

    万次阅读 2015-05-23 10:47:04
    层次分析法(Analytic Hierarchy Process ,简称 AHP )AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家Saaty教授于二十世纪80年代提出的一种实用的多方案或多目标的决策方法。其主要特征是,它合理地将...
  • 层次分析法(小白必看&手机查看)

    千次阅读 2021-01-07 21:45:38
    本周我主要学习了层次分析法(AHP)的基本原理及其在企业资金分配方案、太阳镜产品质量评价等案例中的应用,并学习使用visio绘制所需图形以及了解maltab基础语法知识,并编程实现了一些功能。 01层次分析法概述 层次...
  • 数学建模中的层次分析法

    千次阅读 2018-07-25 16:20:00
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模 糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。 层次分析法的基本原理与步骤 人们在进行社会的、经济...
  • 层次分析法(The analytic hierarchy process)简称AHP,它是将与决策有关的因素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。 本文为简明AHP学习笔记,并通过Python实践构建多层权重...
  • AHP层次分析法计算权重

    千次阅读 2010-05-27 14:57:07
    AHP层次分析法介绍 层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法, 它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于...
  • 数学评价模型(一):层次分析法

    千次阅读 2020-04-05 19:09:11
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出...
  • 运用层次分析法建模,大体上可按下面四个步骤进行: 建立递阶层次结构模型; 构造出各层次中的所有判断矩阵; 层次单排序及一致性检验; 层次总排序及一致性检验。 2 层次结构模型 层次分析法是用来根据多种准则,...
  • 03层次分析法的步骤和方法 04结合企业应用案例,深入学习层次分析法 某企业年末又留成,希望将这笔资金用于以下几个领域:发奖金、福利事业和引进设备,但是再利用企业留成是需考虑以下及各方面:调动员工积极性、...
  • AHP(层次分析法)  层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(TLsaaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它...
  • 8.1 系统评价决策模型概论 8.1.1 问题的引入 8.1.2 系统评价决策模型的基本概念 8.1.3 系统评价决策模型的要素 8.1.4 系统评价决策模型的...8.2 案例分析-汽车选购 8.2.1 问题引入 8.2.2 决策矩阵的规范化 ...
  • 数学建模-层次分析模型

    千次阅读 2019-01-18 20:57:02
    层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序...
  • 激光雷达应用领域

    万次阅读 2017-03-06 15:20:26
    传统的仪器分析技术,如分光光度、荧光分光光度和色谱分析,虽然精度能满足要求,但这些方法依靠逐点采样测量的方式,且分析速度很慢,故很难应用于大面积水域的现场探测。海洋激光雷达是进行叶绿素浓度测量的...
  • 2019年涵盖大数据分析预测、领域知识图谱及NLP应用的大数据智能市场规模约为106.6亿元,预计2023年将突破300亿元,年复合增长率为30.8%,其中2019年市场中以金融领域和公安领域应用份额占比最大。 随着整体市场数据...
  • 主成分分析法

    千次阅读 2015-08-11 12:57:34
    主成分分析法的基本原理及应用 什么是主成分分析法  主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。  在统计学中,主成分分析(principal components analysis,PCA)是一种...
  • 自然语言处理研究的内容包括但不限于如下分支领域:文本分类、信息抽取、自动摘要、智能问答、话题推荐、机器翻译、主题词识别、知识库构建、深度文本表示、命名实体识别、文本生成、文本分析(词法、句法、语法)、...
  • 使用过程CLUSTER实现层次 SAS共提供11种层次,这些方法可以通过指定PROC CLUSTER中的选项来实现。过程CLUSTER的一般形式为: ... DATA = 指定输入数据集,... METHOD= 用来指定做层次分析的具体方法,可供选
  • 大数据分析应用技术创新平台

    万次阅读 2018-11-15 16:54:48
    大数据分析应用技术创新平台   张平文, 鄂维南, 袁晓如, 傅毅明 北京大学数学科学学院,北京 100871  北京大学大数据科学研究中心,北京 100871   北京大学信息科学技术学院,北京 100871   北京...
  • 深度学习已成功应用于这三大领域

    万次阅读 2017-07-31 14:20:28
    在本章中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络的实现。接着,我们将回...
  • Hanlp自然语言处理应用领域: Hanlp已经被广泛应用于Lucene、Solr、ElasticSearch、hadoop、android、Resin等平台,有大量开源作者开发各种查件与拓展,并且被包装或移植到Python、C#、R、JavaScript等语言上去。 ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 32,998
精华内容 13,199
关键字:

层次分析法应用领域