精华内容
下载资源
问答
  • 层次分析法

    万次阅读 2015-06-11 18:11:53
    层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初...
            层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和 定量分析 的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为 美国国防部 研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
     
    应用实例编辑
    1、建立递阶层次结构;
    2、构造两两比较判断矩阵;( 正互反矩阵
    购物层次分析模型                      购物层次分析模型
    对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵。
    3、针对某一个标准,计算各备选元素的权重;
    关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。
    (1)几何平均法(根法)
    计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B;
    计算矩阵每个元素的n次方根得到矩阵C;
    对矩阵C进行归一化处理得到矩阵D;
    该矩阵D即为所求权重向量。
    (2)规范列平均法(和法)
    矩阵A每一列归一化得到矩阵B;
    将矩阵B每一行元素的平均值得到一个一列n行的矩阵C;
    矩阵C即为所求权重向量。
     

    2定义

    所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造 判断矩阵 ,求出其最大 特征值 。及其所对应的 特征向量 W, 归一化 后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。
     

    3优缺点

    优点

    1. 系统性的分析方法
    层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
    2. 简洁实用的决策方法
    这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
    3. 所需定量数据信息较少
    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。[1]

    缺点

    1. 不能为决策提供新方案
    层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。
    2. 定量数据较少,定性成分多,不易令人信服
    在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
    比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
    对于上述这样一个问题,其实也是有办法解决的。如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。这就引出了层次分析法的第三个不足之处。
    3. 指标过多时数据统计量大,且权重难以确定
    当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。[1]  
    4. 特征值和特征向量的精确求法比较复杂
    在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。
     

    4基本步骤

    建立层次结构模型
    在深入分析实际问题的基础上,将有关的各个因素按照不同属性 自上而下 地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。
    构造成对比较阵
    从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用 成对比较法 和1—9比较尺度构造成对比较阵,直到最下层。
    计算权向量并做一致性检验
    对于每一个成对比较阵计算最大特征根及对应 特征向量 ,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量( 归一化 后)即为权向量:若不通过,需重新构造成对比较阵。
    计算组合权向量并做组合一致性检验
    计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
    美国运筹学家T.L.saaty于20世纪70年代提出的层次分析法(Analytic Hierarchy Process,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。运用AHP方法,大体可分为以下三个步骤:
    步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;
    步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;
    步骤3:计算各层次对于系统的总排序权重,并进行排序。
    最后,得到各方案对于总目标的总排序。
    构造判断矩阵
    层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评定等级。记为第 和第 因素的重要性之比,表3列出Saaty给出的9个重要性等级及其 赋值 。按两两比较结果构成的矩阵 称作判断矩阵。判断矩阵 具有如下性质:
    且 / ( =1,2,… ) 即 为 正互反矩阵
    表3比例标度表
    因素 比因素
    量化值
    同等重要
    1
    稍微重要
    3
    较强重要
    5
    强烈重要
    7
    极端重要
    9
    两相邻判断的中间值
    2,4,6,8
    计算权重向量
    为了从判断矩阵中提炼出有用信息,达到对事物的规律性的认识,为决策提供出科学依据,就需要计算判断矩阵的权重向量。
    定义:判断矩阵 ,如对 … ,成立 ,则称 满足一致性,并称 为一致性矩阵。
    一致性矩阵A具有下列简单性质:
    1、 存在唯一的非零特征值 ,其对应的特征向量归一化后 记为 ,叫做权重向量,且 ;
    2、 的列向量之和经规范化后的向量,就是权重向量;
    3、 的任一列向量经规范化后的向量,就是权重向量;
    4、对 的全部列向量求每一分量的几何平均,再规范化后的向量,就是权重向量。
    因此,对于构造出的判断矩阵,就可以求出最大特征值所对应的特征向量,然后归一化后作为权值。根据上述定理中的性质2和性质4即得到 判断矩阵 满足一致性的条件下求取权值的方法,分别称为和法和根法。而当 判断矩阵 不满足一致性时,用和法和根法计算权重向量则很不精确。
    一致性检验
    判断矩阵 的阶数 时,通常难于构造出满足一致性的矩阵来。但判断矩阵偏离 一致性条件 又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别,这就是一致性检验的内涵。
    定理:设 是正互反矩阵 的最大特征值则必有 ,其中等式当且仅当 为一致性矩阵时成立。
    应用上面的定理,则可以根据 是否成立来检验矩阵的一致性,如果 比 大得越多,则 的非一致性程度就越严重。因此,定义一致性指标
    (1)
    CI越小,说明一致性越大。考虑到一致性的偏离可能是由于随机原因造成的,因此在检验 判断矩阵 是否具有满意的一致性时,还需将CI和平均随机一致性指标RI进行比较,得出检验系数CR,即
    (2)
    如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。
    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表4:
    表4 平均随机一致性指标RI标准值(不同的标准不同,RI的值也会有微小的差异)
    矩阵阶数
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    RI
    0
    0
    0.58
    0.90
    1.12
    1.24
    1.32
    1.41
    1.45
    1.49
    可见,AHP方法不仅原理简单,而且具有扎实的理论基础,是定量与定性方法相结合的优秀的决策方法,特别是定性因素起主导作用的决策问题。

    5注意事项

    如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
    为保证递阶层次结构的合理性,需把握以下原则:
    1、分解简化问题时把握主要因素,不漏不多;
    2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
     
     
     
    展开全文
  • 数学建模:层次分析法实例以及代码

    万次阅读 多人点赞 2020-11-22 22:06:09
    目录层次分析法的思想层次分析法步骤具体案例(市政工程项目建设决策)1.问题提出2.建立递阶层次结构3.构造判断矩阵(成对比较阵)并赋值4.层次单排序(计算权向量)与检验(一致性检验)计算权向量一致性检验5.层次总...

    博主联系方式:
    QQ:1540984562
    微信:wxid_nz49532kbh9u22 QQ交流群:892023501

    层次分析法的思想

    层次分析法的思想:将所有要分析的问题层次化
    根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型
    最后,对问题进行优劣比较排序.

    层次分析法步骤

    1、找准各因素之间的隶属度关系,建立递阶层次结构
    2、构造判断矩阵,并赋值
    3、层次单排序(计算权向量)与检验(一致性检验)
    4、层次总排序(组合权向量)与检验(一致性检验)
    5、结果分析

    具体案例(市政工程项目建设决策)

    1.问题提出

    市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

    2.建立递阶层次结构

    1、明确决策目标:“合理建设市政工程,使综合效益最高”。

    2、为了实现这一目标,需要考虑的主要准则有三个,即经济效益社会效益环境效益
    还必须考虑直接经济效益间接经济效益方便日常出行方便假日出行减少环境污染改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

    3、解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

    这样递阶层次就形成了:
    在这里插入图片描述

    3.构造判断矩阵(成对比较阵)并赋值

    1、构造判断矩阵的方法:
    每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行第一列
    如下图所示:
    在这里插入图片描述
    2、如何对判断矩阵进行赋值:
    向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
    (可以类比模糊PID中的隶属程度,都是人为设定的,也是被人诟病的一个地方)
    在这里插入图片描述
    设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质:

    (1) aij>0
    (2) aji=1/ aji
    (3) aii=1

    判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
    在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik .
    当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
    对于上述的例子,可以构造出下面的判断矩阵:
    在这里插入图片描述

    4.层次单排序(计算权向量)与检验(一致性检验)

    计算权向量

    对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
    层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
    这里简要介绍和法:
    对于一致性判断矩阵,每一列归一化后就是相应的权重。
    对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

    公式: 在这里插入图片描述
    在层层排序中,要对判断矩阵进行一致性检验。判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。

    但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

    因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

    一致性检验

    第一步,计算一致性指标CI
    在这里插入图片描述
    第二步,查表确定相应的平均随机一致性指标RI
    据判断矩阵不同阶数查下表,得到平均随机一致性指标RI:
    在这里插入图片描述
    第三步,计算一致性比例CR并进行判断:
    在这里插入图片描述
    当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

    图1
    图2
    可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

    5.层次总排序(组合权向量)与检验(一致性检验)

    总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。这一权重的计算采用从上而下的方法,逐层合成。
    文字性描述公式如下:
    在这里插入图片描述

    计算过程如下,更好理解过程:
    P(C1/A) = P(C1/B1) * P(B1/A) = 0.5 * 0.1429 = 0.07145
    CR(C1/A) = CR(C/B) * CR(B/A) = 0 * 0 = 0
    P(D1/A) = P(D1/C1) * P(C1/B1) * P(B1/A)
    + P(D1/C2) * P(C2/B1) * P(B1/A)
    + P(D1/C3) * P(C3/B2) * P(B2/A)
    + P(D1/C4) * P(C4/B2) * P(B2/A)
    + P(D1/C5) * P(C5/B3) * P(B3/A)
    + P(D1/C6) * P(C6/B3) * P(B3/A)
    =0.8333 * 0.5 * 0.1429
    +0.75 * 0.5 * 0.1429
    +0.1667 * 0.75 * 0.4286
    +0.8750 * 0.25 * 0.4286
    +0.1667 * 0.75 * 0.4286
    +0.8333 * 0.25 * 0.4286

    在这里插入图片描述

    6.结果分析

    从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
    根据层次排序过程分析决策思路:

    1、对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益
    2、对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出
    3、从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

    由此我们可以分析出决策思路:
    即决策比较看重的是社会效益和环境效益,不太看重经济效益;(总结准则层B)
    因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,(总结准则层C)由此,最终的方案选择建地铁也就顺理成章了。

    7.层次分析法的优缺点

    优点:
    (1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
    (2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。
    (3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

    缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。当然,采取专家群体判断的办法是克服这个缺点的一种途径。

    层次分析法的代码实现(matlab)

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    使用示例:
    将上面代码保存名为test1,并在点运行的时候添加到路径;
    输入的A矩阵是要以向量的形式输入的;
    之后按下回车即可,可以看到和之前的第4步得到的结果是一样的。
    在这里插入图片描述
    通过不断的使用这个式子计算相应矩阵(准则层B到准则层C、准则层C到方案层D)的权向量,最后可以得到最终的结果。
    简单的修改上面的程序,传入参数为矩阵,免得每次都要打。

    function w= test1(A)
    % disp('请输入判断矩阵A(n阶)');
    % A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    输入:

    Array1=[1 1/3 1/3;3 1 1;3 1 1];
    Array2=[1 1;1 1];
    Array3=[1 3;1/3 1];
    Array4=[1 3;1/3 1];
    Array5=[1 5;1/5 1];
    Array6=[1 3;1/3 1];
    Array7=[1 1/5;5 1];
    Array8=[1 7;1/7 1];
    Array9=[1 1/5;5 1];
    Array10=[1 1/3;7 1];
    
    A=test1(Array1);
    B1=test1(Array2);
    B2=test1(Array3); 
    B3=test1(Array4);
    C1=test1(Array5);
    C2=test1(Array6);
    C3=test1(Array7);
    C4=test1(Array8);
    C5=test1(Array9);
    C6=test1(Array10);
    

    得到相应的矩阵:
    在这里插入图片描述

    展开全文
  • 层次分析法在matlab上的实现

    万次阅读 多人点赞 2018-06-12 10:36:17
    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题...

           层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

    计算步骤

           1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

      2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

      3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

      4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

    案例

    (1)建立层次结构模型

            层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用选拔干部为例:对三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型: 假设有三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型

    (2)构造判断矩阵

           在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较。对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

           比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。设共有 n 个元素参与比较,则A=(a_{ij})_{n\times n}称为成对比较矩阵。

      成对比较矩阵中aij的取值可参考 Satty 的提议,按下述标度进行赋值。aij在 1-9 及其倒数中间取值。

    • aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;
    • aij = 3,元素 i 比元素 j 略重要;
    • aij = 5,元素 i 比元素 j 重要;
    • aij = 7, 元素 i 比元素 j 重要得多;
    • aij = 9,元素 i 比元素 j 的极其重要;
    • aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
    • a_{ij}=\frac{1}{n},n=1,2,...,9, 当且仅当aji = n

      成对比较矩阵的特点:a_{ij}>0,a_{ij}=1,a_{ij}=\frac{1}{a_{ji}}。(备注:当i=j时候,aij = 1)

           对该例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较法,得到成对比较阵如下:

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      a14 = 5 表示品德与年龄重要性之比为 5,即决策人认为品德比年龄重要。

    (3)判断矩阵的一致性检验

           所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

           从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有

      a_{ij}a_{jk}=a_{ik},1\le i,j,k\le n.

      但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。

      由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。对成对比较矩阵 的一致性要求,转化为要求: 的绝对值最大的特征值和该矩阵的维数相差不大。

      检验成对比较矩阵A一致性的步骤如下:

    • 计算衡量一个成对比较矩阵 A (n>1 阶方阵)不一致程度的指标CI:

      CI=\frac{\lambda_{max}(A)-n}{n-1}

      RI是这样得到的:对于固定的n,随机构造成对比较阵A, 其中aij是从1,2,…,9,1/2,1/3,…,1/9中随机抽取的. 这样的A是不一致的, 取充分大的子样得到A的最大特征值的平均值

    n123456789
    RI000.580.901.121.241.321.411.45

      注解:

    • 从有关资料查出检验成对比较矩阵 A 一致性的标准RI:RI称为平均随机一致性指标,它只与矩阵阶数 n 有关。
    • 按下面公式计算成对比较阵 A 的随机一致性比率 CR:

      CR=\frac{CI}{RI} 。

    • 判断方法如下: 当CR<0.1时,判定成对比较阵 A 具有满意的一致性,或其不一致程度是可以接受的;否则就调整成对比较矩阵 A,直到达到满意的一致性为止。

      例如对例 2 的矩阵

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      计算得到\lambda_{max}(A)=5.073,CI=\frac{\lambda_{max}(A)-5}{5-1}=0.018,查得RI=1.12,

      CR=\frac{CI}{RI}=\frac{0.018}{1.12}=0.016<0.1

      这说明 A 不是一致阵,但 A 具有满意的一致性,A 的不一致程度是可接受的。

      此时A的最大特征值对应的特征向量为U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。 这个向量也是问题所需要的。通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于 1。该特征向量标准化后变成U = (0.475,0.263,0.051,0.103,0.126)Z。经过标准化后这个向量称为权向量。这里它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是资历。各因素的相对重要性由权向量U的各分量所确定。

      求A的特征值的方法,可以用 MATLAB 语句求A的特征值:〔Y,D〕=eig(A),D为成对比较阵 的特征值,Y的列为相应特征向量。

      在实践中,可采用下述方法计算对成对比较阵A = (aij)的最大特征值λmax(A)和相应特征向量的近似值。

      定义

      U_k=\frac{\sum_{j=1}^{n}a_{kj}}{\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}}U=(u_1,u_2,\ldots,u_n)^z

      可以近似地看作A的对应于最大特征值的特征向量。

      计算

      \lambda=\frac{1}{n}\sum^{n}_{i=1}\frac{(AU)_i}{u_i}=\frac{1}{n}\sum^{n}_{i=1}\frac{\sum^{n}_{i=1}}\frac{\sum^n_{j=1}a_{ij}u_{j}}{u_i}

      可以近似看作A的最大特征值。实践中可以由λ来判断矩阵A的一致性

    (4) 层次总排序及决策

           现在来完整地解决例 2 的问题,要从三个候选人y1,y2,y3中选一个总体上最适合上述五个条件的候选人。对此,对三个候选人y = y1,y2,y3分别比较他们的品德(x1),才能(x2),资历(x3),年龄(x4),群众关系(x5)。

      先成对比较三个候选人的品德,得成对比较阵

      B_1=\begin{pmatrix}1&\frac{1}{3}&\frac{1}{8}\\3&1&\frac{1}{3}\\8&3&1\end{pmatrix}

      经计算,B1的权向量

      ωx1(Y) = (0.082,0.236,0.682)z

      \lambda_{max}(B_1)=3.002,CI=0.001,\frac{CI}{RI}=\frac{0.001}{0.58}<0.1

      故B1的不一致程度可接受。ωx1(Y)可以直观地视为各候选人在品德方面的得分。

      类似地,分别比较三个候选人的才能,资历,年龄,群众关系得成对比较阵

      B_2=\begin{pmatrix}1&2&5\\\frac{1}{2}&1&2\\\frac{1}{5}&\frac{1}{2}&1\end{pmatrix}   B_3=\begin{pmatrix}1&1&3\\1&1&3\\\frac{1}{3}&\frac{1}{3}&1\end{pmatrix}

      B_4=\begin{pmatrix}1&3&4\\\frac{1}{3}&1&1\\\frac{1}{4}&1&1\end{pmatrix}

      B_5=\begin{pmatrix}1&4&\frac{1}{4}\\1&1&\frac{1}{4}\\4&1&1\end{pmatrix}

      通过计算知,相应的权向量为

       \omega_{x_2}(Y)=(0.606,0.265,0.129)^z

       \omega_{x_3}(Y)=(0.429,0.429,0.143)^z

       \omega_{x_4}(Y)=(0.636,0.185,0.179)^z

       \omega_{x_5}(Y)=(0.167,0.167,0.667)^z

      它们可分别视为各候选人的才能分,资历分,年龄分和群众关系分。经检验知B2,B3,B4,B5的不一致程度均可接受。

      最后计算各候选人的总得分。y1的总得分

       \omega_z(y_1)=\sum{5}{j=1}u_j\omega_{xj}(y_1)=0.457\times 0.082+0.263\times 0.606+0.051\times 0.429+0.104\times 0.6366+0.162\times 0.1670.306

      从计算公式可知,y1的总得分ω(y1)实际上是y1各条件得分ωx1(y1) ,ωx2(y1) ,...,ωx5(y1) ,的加权平均, 权就是各条件的重要性。同理可得y2,Y3 的得分为

      ωz(y2) = 0.243,ωz(y3) = 0.452

     0.4570.2630.0510.1030.126总得分
    Y10.0820.6060.4290.6360.1670.305
    Y20.2440.2650.4290.1850.1670.243
    Y30.6740.1290.1430.1790.6670.452

      即排名:Y3 > Y1 > Y2

      比较后可得:候选人y3是第一干部人选。

    优缺点

    (一)优点

    1. 系统性的分析方法:

           层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。

    2. 简洁实用的决策方法:

           这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来。

    3. 所需定量数据信息较少:

    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。

    (二)缺点

    1. 不能为决策提供新方案:

           层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。

    2. 定量数据较少,定性成分多,不易令人信服:

           在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。

    3. 指标过多时数据统计量大,且权重难以确定:

           当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。

    4. 特征值和特征向量的精确求法比较复杂:

           在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。

    注意事项

           如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。

      为保证递阶层次结构的合理性,需把握以下原则:

      1、分解简化问题时把握主要因素,不漏不多;

      2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。

    四层AHP

          上面例子是只有目标层、准则层、方案层,下面的结构多了子准则层,并且准则层对应不同的子准则层

    如果对你有帮助,请点下赞,予人玫瑰手有余香!

    时时仰望天空,理想就会离现实越来越近!

     

    展开全文
  • 层次分析法原理和matlab代码

    千次阅读 2020-06-15 21:16:56
    文章目录一、层次分析法简述二、求解过程1、建立层次结构模型2、构造成对比较矩阵3、计算权向量并做一致性检验4、计算组合权向量并做组合一致性检验三、参考文献 一、层次分析法简述 层次分析法(The analytic ...

    一、层次分析法简述

    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

    适用于解决多个备选方案决策以及在选择过程中各个因素的重要性比较。 比如说经常举的例子:选择旅游地,有3个选择方案,苏杭、北戴河和桂林,选择过程需要考虑多个因素,比如景色、费用、居住、饮食和旅途。江苏省2019年研究生数模比赛B题,高校学生选择高铁还是火车回家,在里程、时长、个人可支配收入、舒适度等多个因素中分析主要因素。

    二、求解过程

    1、建立层次结构模型

    在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

    以旅游问题为例,我们就可以建立如下模型:
    在这里插入图片描述

    2、构造成对比较矩阵

    从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1-9比较尺度构造成对比较阵,直到最下层。

    成对比较法是指,不把所有因素放在一起比较,而是两两相互比较。并且为了方便定量分析,把比较的结果用1-9进行标识。如果用 a i j a_{ij} aij表示因素i与因素j对上一层因素的重要程度,1-9比较尺度的含义如下:

    在这里插入图片描述
    两两因素比较的结果可用成对比较矩阵表示:
    A = ( a i j ) n × n , a i j > 0 , a j i = 1 a i j A=(a_{ij})_{n\times n}, a_{ij}>0, a_{ji}=\frac{1}{a_{ij}} A=(aij)n×n,aij>0,aji=aij1

    其中n是参与对比的元素的个数。

    成对比较矩阵因没有专门的数据,往往具有很强的主观性,为了增强数据的科学性(尤其是参加比赛)可以:

    1. 查找相关资料和文献,确定主要因素(定性)以及哪个因素更重要(减少问卷问题数量);
    2. 设置调查问卷(定量);

    旅游问题中,成对比较矩阵示例:

    A=[ 1 1/2 4 3 3;
    2 1 7 5 5;
    1/4 1/7 1 1/2 1/3;
    1/3 1/5 2 1 1;
    1/3 1/5 3 1 1]
    

    如果只分析景色等因素对于选择旅游地的重要程度(往上一层,准则–>目标),那么只用各因素的成对比较矩阵A即可。如果是想要确定最终去哪个目的地,还得确定方案层对准则层的重要程度,即把苏杭、北戴河和桂林作为比较因素,生成对景色和费用等的比较矩阵,分别记为 B 1 B 2 … B 5 B_{1}B_{2}…B_{5} B1B2B5,示例如下:

    #三个城市作为比较因素,所以n(矩阵维度)=3
    #因为要分析城市对景色、费用、居住、饮食和旅途各自的重要程度,所以就有5个比较矩阵
    B1=[ 1 2 5;
    1/2 1 2;
    1/5 1/2 1]
    
    B2=[1 1/3 1/8;
    3 1 1/3;
    8 3 1]
    
    B3=[1 1 3;
    1 1 3;
    1/3 1/3 1]
    
    B4=[1 3 4;
    1/3 1 1;
    1/4 1 1]
    
    B5=[1 1 1/4;
    1 1 1/4;
    4 4 1]
    

    3、计算权向量并做一致性检验

    对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

    所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

    如果A是完全一致的成对比较矩阵,应该有:
    a i j a j k = a i k , 1 ≤ i , j , k ≤ n a_{ij}a_{jk}=a_{ik}, 1\le i,j,k \le n aijajk=aik,1i,j,kn

    但由于客观事物的复杂性、人们认识上的多样性和片面性, 即使有九级标度, 也不能保证每个判断矩阵具有完全一致性。因此, 为了保证层次分析法 的结论基本合理, 还必须对形成的判断矩阵进行一致性检验。方法是:

    1. 先计算比较矩阵的最大特征值 λ m a x \lambda_{max} λmax, 然后计算一致性指标: C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n1λmaxn
    2. 如果 C I = 0 CI=0 CI=0, 则表明该判断矩阵具有完全一致性, 检验结束,否则进行下一步;
    3. 计算随机一致性比率, C R = C I R I CR=\frac{CI}{RI} CR=RICI,如果 C R < 0.1 CR<0.1 CR<0.1,就认为一致性可以接受,否则重新设定比较矩阵,重新验证一致性。

    其中矩阵的平均随机一致性指标RI(rand index),只与矩阵阶数n有关,常用的如下:
    在这里插入图片描述
    计算一致性的matlab代码:

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);y=ones(n,100);m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp('w=');disp(w);
    %以下是一致性检验
    CI=(t-n)/(n-1);
    RI=[0 0 0.52 0.89 1.12 1.26 1.36  1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.1
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    else
        disp('此矩阵的一致性不可以接受!');
    end
    

    matlab的运行过程和结果:

    >> ahp
    请输入判断矩阵A(n阶)
    A=[ 1 1/2 4 3 3;
    2 1 7 5 5;
    1/4 1/7 1 1/2 1/3;
    1/3 1/5 2 1 1;
    1/3 1/5 3 1 1]
    w=
        0.2636
        0.4758
        0.0538
        0.0981
        0.1087
    
    此矩阵的一致性可以接受!
    CI=
        0.0180
    
    CR=
        0.0161
    

    得到权向量:

    W=[0.2636,0.4758,0.0538,0.0981,0.1087]
    

    至于说RI取值不同 [ 1 ] _{[1]} [1],差别没那么大,应该是精度和随机数取值的问题。

    4、计算组合权向量并做组合一致性检验

    计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

    一致性检验的方法和前面的一样,不再赘述,计算出各自权重。

    w1=[0.5954,0.2764,0.1283]
    w2=[0.0819,0.2363,0.6817]
    w3=[0.4286,0.4286,0.1429]
    w4=[0.6337,0.1919,0.1744]
    w5=[0.1667,0.1667,0.6667]
    

    去苏杭的概率=0.26360.5954+0.47580.0819+0.05380.0981+0.09810.6337+0.10870.1667=0.2815;
    去北戴河的概率=0.2636
    0.2764+0.47580.2363+0.05380.4268+0.09810.1919+0.10870.1667=0.2452;
    去桂林的概率=0.26360.1283+0.47580.6817+0.05380.1429+0.09810.1744+0.1087*0.6667=0.4554

    权重矩阵:
    在这里插入图片描述

    注:0.2815+0.2452+0.4554=0.9821不等于1,是因为精度,如果写论文,逻辑自洽,去桂林的概率最好改为1-0.2815-0.2452=0.4733

    所以选择去桂林

    三、参考文献

    [ 1 ] [1] [1] 洪志国, 李焱, 范植华,等. 层次分析法中高阶平均随机一致性指标(RI)的计算[J]. 计算机工程与应用, 2002, 038(012):45-47,150.

    其它参考内容:
    层次分析法
    matlab-层次分析法

    展开全文
  • 层次分析法 AHP

    千次阅读 2019-04-22 15:49:37
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出...
  • 数学建模之层次分析法及其应用

    千次阅读 多人点赞 2020-07-28 23:57:16
    层次分析法在数学建模中是非常常见的,其原理、应用场景及实例本文里都有。希望能对数学建模爱好者、挑战者提供一些帮助。如有不清楚或错误的地方还望指出。
  • 层次分析法(AHP)——matlab代码实现

    万次阅读 多人点赞 2019-04-17 10:02:45
    层次分析法(AHP)的主要思想是根据研究对象的性质将要求达到的目标分解为多个组成因素,并按组成因素间的相互关系,将其层次化,组成一个层次结构模型,然后按层分析,最终获得最高层的重要性权值。层次分析法把一...
  • 针对土城煤矿运煤上山围岩软弱变形及控制困难的问题,通过现场调研、理论分析、数值模拟等研究手段,揭示软岩巷道的变形破坏特征及...基于此,运用层次分析法建立评价指标体系,提出 2种工程类比支护方案,采用 FLAC
  • 数学建模--层次分析法

    千次阅读 2020-07-19 22:36:09
    层次分析法的求解步骤 1.建立层次结构模型 模型分为三层。分别为最高层(决策问题最终要解决什么,即决策的目的)、中间层(考虑的因素,决策的准则。比如买衣服要考虑价格、尺寸、款式等因素)和最低层(决策时的...
  • 数学建模中的层次分析法

    千次阅读 2018-07-25 16:20:00
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模 糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。 层次分析法的基本原理与步骤 人们在进行社会的、经济...
  • 层次分析法步骤

    千次阅读 2011-11-14 15:35:09
    同一层次的因素作为准则对下一层次的某些因素起支配作用,同时,它又受上一个层次因素的支配。这种从上到下的支配关系形成了一个递阶层次结构,处于最上层的是目标层,一般是分析问题的预定目标,本文中即以经济承载...
  • 数学建模day1 层次分析法与TOPSIS方法

    千次阅读 2020-01-29 16:24:45
    层次分析法(Analytic Hierarchy Process ,简称 AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪 70 年代初期提出...
  • 层次分析法(matlab实现)

    千次阅读 2017-07-29 18:15:37
    层次分析:层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复...
  • 数学评价模型(一):层次分析法

    千次阅读 2020-04-05 19:09:11
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出...
  • 层次分析法(AHP)详解

    千次阅读 2015-01-13 15:35:37
    层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初...
  • 层次分析法 [ 定义] [ 步骤] [ 优点介绍] [ 缺点介绍] [程序 ] 1:定义 所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多...
  • 基于层次分析法与熵权法的主客观组合赋权模型 组合赋权大家可以尝试进行改变,一个主观一个客观。(原创:小青龙) 简介 ​ 权重是用来衡量总体中各单位标志值在总体中作用大小的数值, 用来描述单因子在因子集体系...
  • 数学建模算法:层次分析法之如何选择旅游目的地

    万次阅读 多人点赞 2019-02-19 00:32:36
    世界那么大,我们都想...本文通过层次分析法来,综合考虑以上所有因素选择出一个也许并不完美,但最合适你的旅游目的地 一:层次分析法的应用 二:层析分析法的实现步骤 三:层析分析法代码 四:代码输出结果分...
  • AHP(层次分析法)的全面讲解及python实现

    千次阅读 多人点赞 2020-05-09 13:58:30
    一、层次分析法的使用流程: 1. 建立层次结构模型 首先绘出层次结构图,正常三层是比较常见的:决策的目标、考虑的决策准则因素和决策对象。按它们之间的相互关系分为最高层、中间层和最低层(如下图是四层结构的...
  • 层次分析法(AHP)原理以及应用

    千次阅读 多人点赞 2021-02-12 18:36:02
    博主现大三参与四次数学建模大赛,本人专业为大数据方向,由于以后或许从事数据分析行业,其实数学建模和大数据分析有很多相似之处,可以说差不多是共通的。经历了这么多次比赛个人总结一些建模必备的数据分析方法是...
  • 清风老师数学建模视频课程第1讲层次分析法

    万次阅读 多人点赞 2019-08-17 12:41:10
    一道引出层次分析法的例题 23 / 94  填好志愿后,小明同学想出去旅游。在查阅了网上的攻略后,他初步选择 了苏杭、北戴河和桂林三地之一作为目标景点。 请你确定评价指标、形成评价体系来为小明同学选择最佳的...
  • 8.1 系统评价决策模型概论 8.1.1 问题的引入 8.1.2 系统评价决策模型的基本概念 8.1.3 系统评价决策模型的要素 8.1.4 系统评价决策模型的...8.2 案例分析-汽车选购 8.2.1 问题引入 8.2.2 决策矩阵的规范化 ...
  • 文末资源:层次分析法常用软件,破解版yaahp软件,中间层个数可达99个,方案层个数可达99个,免费版的中间层、方案层个数只有3个哦,内含教程,永久使用:(浏览器输入/点击网址获取) 层次分析法之yaahp软件,中间...
  • 模糊层次综合分析法Python实践及相关优缺点分析

    千次阅读 多人点赞 2020-09-08 21:20:48
    模糊综合评价(FCE)是一种根据模糊数学隶属度理论把定性评价转化为定量评价的方法,它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。我们先看模糊综合评价...
  • 层次分析模型

    千次阅读 2019-07-16 21:18:27
    层次模型(AHP)是一种定性与定量相结合的、系统化、层次化的分析方法。 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个互相关联、相互制约的众多元素构成复杂而往往缺少定量数据的...
  • 数学建模-层次分析模型

    千次阅读 2019-01-18 20:57:02
    层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序...
  • 主成分分析法

    千次阅读 2015-08-11 12:57:34
    主成分分析法的基本原理及应用 什么是主成分分析法  主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。  在统计学中,主成分分析(principal components analysis,PCA)是一种...
  • CNN神经网络层次分析

    万次阅读 多人点赞 2015-04-07 08:59:12
    归一化实际上先计算每一个特征 maps 在同一个空间位置的邻域的加权和的值,然后取所有特征 maps 这个值的均值,然后每个特征 map 该位置的值被重新计算为该点的值除以 max (那个均值,该点在该 map 的邻域的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 45,973
精华内容 18,389
关键字:

层次分析法的主要作用