精华内容
下载资源
问答
  • 层次分析法(AHP)详细步骤

    万次阅读 多人点赞 2019-01-07 13:01:10
    层次分析法所要解决的问题是关于最低层对最高层的相对权重的问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中做出选择或形成选择方案的原则。 2.构造判断矩阵 层次分析法中构造判断...

    1. 算法简介

    层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
    层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

    2. 算法基本原理

    例子:
    在这里插入图片描述

    2.1. 解决问题的思路

    层次分析法的基本思路是将所要分析的问题层次化;根据问题的性质和所要达成的总目标,将问题分解为不同的组成因素,并按照这些因素的关联影响及其隶属关系,将因素按不同层次凝聚组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较并排列。

    2.2. 层次分析法的步骤

    1.建立层次结构模型

    • 将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
    • 最高层: 决策的目的、要解决的问题。
      最低层: 决策时的备选方案。
      中间层: 考虑的因素、决策的准则。
    • 对相邻的两层,称高层为目标层,低层为因素层

    层次分析法所要解决的问题是关于最低层对最高层的相对权重的问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中做出选择或形成选择方案的原则。

    2.构造判断矩阵
    层次分析法中构造判断矩阵的方法是一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较;对此时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

    判断矩阵aija_{ij}的标度方法

    标度 含义
    1 表示两个因素相比,具有同样重要性
    3 表示两个因素相比,一个因素比另一个因素稍微重要
    5 表示两个因素相比,一个因素比另一个因素明显重要
    7 表示两个因素相比,一个因素比另一个因素强烈重要
    9 表示两个因素相比,一个因素比另一个因素极端重要
    2,4,6,8 上述两相邻判断的中值
    倒数 因素iijj比较的判断aija_{ij},则因素jjii比较的判断aji=1/aija_{ji}=1/a_{ij}

    3.层次单排序及其一致性检验
    对应于判断矩阵最大特征根λmax\lambda max的特征向量,经归一化(使向量中各元素之和为1)后记为WWWW的元素为同一层次元素对于上一层因素某因素相对重要性的排序权值,这一过程称为层次单排序

    定义一致性指标CI=λnn1CI=\frac {\lambda-n}{n-1}
    CI=0CI=0,有完全的一致性;
    CICI接近于0,有满意的一致性;
    CICI越大,不一致越严重。

    为了衡量CICI的大小,引入随机一致性指标RIRI

    随机一致性指标RI
    n 1 2 3 4 5 6 7 8 9 10 11
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

    定义一致性比率:CR=CIRICR=\frac{CI}{RI},一般认为一致性比率CR<0.1CR<0.1时,认为A的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aija_{ij}加以调整。

    示例:
    在这里插入图片描述在这里插入图片描述

    4.层次总排序及其一致性检验

    • 计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。
    • 这一过程是从最高层次到最低层次依次进行的。
      在这里插入图片描述
      A层mm个因素A1,A2,,Am,A_{1},A_{2},···,A_{m},对总目标Z的排序为a1,a2,,ama_{1},a_{2},···,a_{m}
      B层nn个因素对上层A中因素为AjA_{j}的层次单排序为b1j,b2j,,bnj(j=1,2,3,,m)b_{1j},b_{2j},···,b_{nj}(j=1,2,3,···,m)

    B层的层次总排序(即B层第ii个因素对总目标的权值为:j=1majbij\sum_{j=1}^{m}a_{j}b_{ij})为:
    B1:a1b11+a2b12++amb1m,B_{1}:a_{1}b_{11}+a_{2}b_{12}+···+a_{m}b_{1m},
    B2:a1b21+a2b22++amb2m,B_{2}:a_{1}b_{21}+a_{2}b_{22}+···+a_{m}b_{2m},
    ···
    Bn:a1bn1+a2bn2++ambnm,B_{n}:a_{1}b_{n1}+a_{2}b_{n2}+···+a_{m}b_{nm},

    层次总排序的一致性比率为:CR=a1CI1+a2CI2++amCIma1RI1+a2RI2++amRImCR=\frac{a_{1}CI_{1}+a_{2}CI_{2}+···+a_{m}CI_{m}}{a_{1}RI_{1}+a_{2}RI_{2}+···+a_{m}RI_{m}},当CR<0.1CR<0.1时,认为层次总排序通过一致性检验。
    例子:
    在这里插入图片描述在这里插入图片描述

    3.算法总结

    • 应用领域:经济计划个管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
    • 处理问题类型:决策、评价、分析、预测等。
    • 建立层次分析结构模型是关键一步,要有主要决策层参与。
    • 构造成对比较矩阵是数量依据,应由经验丰富、判断力强的专家给出。

    4.参考

    1. 层次分析法建模——《百度文库》
    展开全文
  • 层次分析法

    万次阅读 2015-06-11 18:11:53
    层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初...
            层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
     
    应用实例编辑
    1、建立递阶层次结构;
    2、构造两两比较判断矩阵;(正互反矩阵
    购物层次分析模型                     购物层次分析模型
    对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵。
    3、针对某一个标准,计算各备选元素的权重;
    关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。
    (1)几何平均法(根法)
    计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B;
    计算矩阵每个元素的n次方根得到矩阵C;
    对矩阵C进行归一化处理得到矩阵D;
    该矩阵D即为所求权重向量。
    (2)规范列平均法(和法)
    矩阵A每一列归一化得到矩阵B;
    将矩阵B每一行元素的平均值得到一个一列n行的矩阵C;
    矩阵C即为所求权重向量。
     

    2定义

    所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。
     

    3优缺点

    优点

    1. 系统性的分析方法
    层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
    2. 简洁实用的决策方法
    这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
    3. 所需定量数据信息较少
    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。[1]

    缺点

    1. 不能为决策提供新方案
    层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。
    2. 定量数据较少,定性成分多,不易令人信服
    在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
    比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
    对于上述这样一个问题,其实也是有办法解决的。如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。这就引出了层次分析法的第三个不足之处。
    3. 指标过多时数据统计量大,且权重难以确定
    当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。[1] 
    4. 特征值和特征向量的精确求法比较复杂
    在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。
     

    4基本步骤

    建立层次结构模型
    在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。
    构造成对比较阵
    从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。
    计算权向量并做一致性检验
    对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。
    计算组合权向量并做组合一致性检验
    计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
    美国运筹学家T.L.saaty于20世纪70年代提出的层次分析法(Analytic Hierarchy Process,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。运用AHP方法,大体可分为以下三个步骤:
    步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;
    步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;
    步骤3:计算各层次对于系统的总排序权重,并进行排序。
    最后,得到各方案对于总目标的总排序。
    构造判断矩阵
    层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评定等级。记为第 和第 因素的重要性之比,表3列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵 称作判断矩阵。判断矩阵 具有如下性质:
    且 / ( =1,2,… ) 即 为正互反矩阵
    表3比例标度表
    因素 比因素
    量化值
    同等重要
    1
    稍微重要
    3
    较强重要
    5
    强烈重要
    7
    极端重要
    9
    两相邻判断的中间值
    2,4,6,8
    计算权重向量
    为了从判断矩阵中提炼出有用信息,达到对事物的规律性的认识,为决策提供出科学依据,就需要计算判断矩阵的权重向量。
    定义:判断矩阵 ,如对 … ,成立 ,则称 满足一致性,并称 为一致性矩阵。
    一致性矩阵A具有下列简单性质:
    1、 存在唯一的非零特征值 ,其对应的特征向量归一化后 记为 ,叫做权重向量,且 ;
    2、 的列向量之和经规范化后的向量,就是权重向量;
    3、 的任一列向量经规范化后的向量,就是权重向量;
    4、对 的全部列向量求每一分量的几何平均,再规范化后的向量,就是权重向量。
    因此,对于构造出的判断矩阵,就可以求出最大特征值所对应的特征向量,然后归一化后作为权值。根据上述定理中的性质2和性质4即得到判断矩阵满足一致性的条件下求取权值的方法,分别称为和法和根法。而当判断矩阵不满足一致性时,用和法和根法计算权重向量则很不精确。
    一致性检验
    判断矩阵的阶数 时,通常难于构造出满足一致性的矩阵来。但判断矩阵偏离一致性条件又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别,这就是一致性检验的内涵。
    定理:设 是正互反矩阵 的最大特征值则必有 ,其中等式当且仅当 为一致性矩阵时成立。
    应用上面的定理,则可以根据 是否成立来检验矩阵的一致性,如果 比 大得越多,则 的非一致性程度就越严重。因此,定义一致性指标
    (1)
    CI越小,说明一致性越大。考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将CI和平均随机一致性指标RI进行比较,得出检验系数CR,即
    (2)
    如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。
    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表4:
    表4 平均随机一致性指标RI标准值(不同的标准不同,RI的值也会有微小的差异)
    矩阵阶数
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    RI
    0
    0
    0.58
    0.90
    1.12
    1.24
    1.32
    1.41
    1.45
    1.49
    可见,AHP方法不仅原理简单,而且具有扎实的理论基础,是定量与定性方法相结合的优秀的决策方法,特别是定性因素起主导作用的决策问题。

    5注意事项

    如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
    为保证递阶层次结构的合理性,需把握以下原则:
    1、分解简化问题时把握主要因素,不漏不多;
    2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
     
     
     
    展开全文
  • 层次分析法在matlab上的实现

    万次阅读 多人点赞 2018-06-12 10:36:17
    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题...

           层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

    计算步骤

           1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

      2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

      3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

      4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

    案例

    (1)建立层次结构模型

            层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用选拔干部为例:对三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型: 假设有三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型

    (2)构造判断矩阵

           在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较。对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

           比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。设共有 n 个元素参与比较,则A=(a_{ij})_{n\times n}称为成对比较矩阵。

      成对比较矩阵中aij的取值可参考 Satty 的提议,按下述标度进行赋值。aij在 1-9 及其倒数中间取值。

    • aij = 1,元素 i 与元素 j 对上一层次因素的重要性相同;
    • aij = 3,元素 i 比元素 j 略重要;
    • aij = 5,元素 i 比元素 j 重要;
    • aij = 7, 元素 i 比元素 j 重要得多;
    • aij = 9,元素 i 比元素 j 的极其重要;
    • aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
    • a_{ij}=\frac{1}{n},n=1,2,...,9, 当且仅当aji = n

      成对比较矩阵的特点:a_{ij}>0,a_{ij}=1,a_{ij}=\frac{1}{a_{ji}}。(备注:当i=j时候,aij = 1)

           对该例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较法,得到成对比较阵如下:

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      a14 = 5 表示品德与年龄重要性之比为 5,即决策人认为品德比年龄重要。

    (3)判断矩阵的一致性检验

           所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

           从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有

      a_{ij}a_{jk}=a_{ik},1\le i,j,k\le n.

      但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。

      由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。对成对比较矩阵 的一致性要求,转化为要求: 的绝对值最大的特征值和该矩阵的维数相差不大。

      检验成对比较矩阵A一致性的步骤如下:

    • 计算衡量一个成对比较矩阵 A (n>1 阶方阵)不一致程度的指标CI:

      CI=\frac{\lambda_{max}(A)-n}{n-1}

      RI是这样得到的:对于固定的n,随机构造成对比较阵A, 其中aij是从1,2,…,9,1/2,1/3,…,1/9中随机抽取的. 这样的A是不一致的, 取充分大的子样得到A的最大特征值的平均值

    n 1 2 3 4 5 6 7 8 9
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

      注解:

    • 从有关资料查出检验成对比较矩阵 A 一致性的标准RI:RI称为平均随机一致性指标,它只与矩阵阶数 n 有关。
    • 按下面公式计算成对比较阵 A 的随机一致性比率 CR:

      CR=\frac{CI}{RI} 。

    • 判断方法如下: 当CR<0.1时,判定成对比较阵 A 具有满意的一致性,或其不一致程度是可以接受的;否则就调整成对比较矩阵 A,直到达到满意的一致性为止。

      例如对例 2 的矩阵

      \begin{pmatrix}1&2&7&5&5\\\frac{1}{2}&1&4&3&3\\\frac{1}{7}&\frac{1}{4}&1&\frac{1}{2}&\frac{1}{3}\\\frac{1}{5}&\frac{1}{3}&2&1&1\\\frac{1}{5}&\frac{1}{3}&3&1&1\end{pmatrix}

      计算得到\lambda_{max}(A)=5.073,CI=\frac{\lambda_{max}(A)-5}{5-1}=0.018,查得RI=1.12,

      CR=\frac{CI}{RI}=\frac{0.018}{1.12}=0.016<0.1

      这说明 A 不是一致阵,但 A 具有满意的一致性,A 的不一致程度是可接受的。

      此时A的最大特征值对应的特征向量为U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。 这个向量也是问题所需要的。通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于 1。该特征向量标准化后变成U = (0.475,0.263,0.051,0.103,0.126)Z。经过标准化后这个向量称为权向量。这里它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是资历。各因素的相对重要性由权向量U的各分量所确定。

      求A的特征值的方法,可以用 MATLAB 语句求A的特征值:〔Y,D〕=eig(A),D为成对比较阵 的特征值,Y的列为相应特征向量。

      在实践中,可采用下述方法计算对成对比较阵A = (aij)的最大特征值λmax(A)和相应特征向量的近似值。

      定义

      U_k=\frac{\sum_{j=1}^{n}a_{kj}}{\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}}U=(u_1,u_2,\ldots,u_n)^z

      可以近似地看作A的对应于最大特征值的特征向量。

      计算

      \lambda=\frac{1}{n}\sum^{n}_{i=1}\frac{(AU)_i}{u_i}=\frac{1}{n}\sum^{n}_{i=1}\frac{\sum^{n}_{i=1}}\frac{\sum^n_{j=1}a_{ij}u_{j}}{u_i}

      可以近似看作A的最大特征值。实践中可以由λ来判断矩阵A的一致性

    (4) 层次总排序及决策

           现在来完整地解决例 2 的问题,要从三个候选人y1,y2,y3中选一个总体上最适合上述五个条件的候选人。对此,对三个候选人y = y1,y2,y3分别比较他们的品德(x1),才能(x2),资历(x3),年龄(x4),群众关系(x5)。

      先成对比较三个候选人的品德,得成对比较阵

      B_1=\begin{pmatrix}1&\frac{1}{3}&\frac{1}{8}\\3&1&\frac{1}{3}\\8&3&1\end{pmatrix}

      经计算,B1的权向量

      ωx1(Y) = (0.082,0.236,0.682)z

      \lambda_{max}(B_1)=3.002,CI=0.001,\frac{CI}{RI}=\frac{0.001}{0.58}<0.1

      故B1的不一致程度可接受。ωx1(Y)可以直观地视为各候选人在品德方面的得分。

      类似地,分别比较三个候选人的才能,资历,年龄,群众关系得成对比较阵

      B_2=\begin{pmatrix}1&2&5\\\frac{1}{2}&1&2\\\frac{1}{5}&\frac{1}{2}&1\end{pmatrix}   B_3=\begin{pmatrix}1&1&3\\1&1&3\\\frac{1}{3}&\frac{1}{3}&1\end{pmatrix}

      B_4=\begin{pmatrix}1&3&4\\\frac{1}{3}&1&1\\\frac{1}{4}&1&1\end{pmatrix}

      B_5=\begin{pmatrix}1&4&\frac{1}{4}\\1&1&\frac{1}{4}\\4&1&1\end{pmatrix}

      通过计算知,相应的权向量为

       \omega_{x_2}(Y)=(0.606,0.265,0.129)^z

       \omega_{x_3}(Y)=(0.429,0.429,0.143)^z

       \omega_{x_4}(Y)=(0.636,0.185,0.179)^z

       \omega_{x_5}(Y)=(0.167,0.167,0.667)^z

      它们可分别视为各候选人的才能分,资历分,年龄分和群众关系分。经检验知B2,B3,B4,B5的不一致程度均可接受。

      最后计算各候选人的总得分。y1的总得分

       \omega_z(y_1)=\sum{5}{j=1}u_j\omega_{xj}(y_1)=0.457\times 0.082+0.263\times 0.606+0.051\times 0.429+0.104\times 0.6366+0.162\times 0.1670.306

      从计算公式可知,y1的总得分ω(y1)实际上是y1各条件得分ωx1(y1) ,ωx2(y1) ,...,ωx5(y1) ,的加权平均, 权就是各条件的重要性。同理可得y2,Y3 的得分为

      ωz(y2) = 0.243,ωz(y3) = 0.452

      0.457 0.263 0.051 0.103 0.126 总得分
    Y1 0.082 0.606 0.429 0.636 0.167 0.305
    Y2 0.244 0.265 0.429 0.185 0.167 0.243
    Y3 0.674 0.129 0.143 0.179 0.667 0.452

      即排名:Y3 > Y1 > Y2

      比较后可得:候选人y3是第一干部人选。

    优缺点

    (一)优点

    1. 系统性的分析方法:

           层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。

    2. 简洁实用的决策方法:

           这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来。

    3. 所需定量数据信息较少:

    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。

    (二)缺点

    1. 不能为决策提供新方案:

           层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。

    2. 定量数据较少,定性成分多,不易令人信服:

           在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。

    3. 指标过多时数据统计量大,且权重难以确定:

           当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。

    4. 特征值和特征向量的精确求法比较复杂:

           在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。

    注意事项

           如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。

      为保证递阶层次结构的合理性,需把握以下原则:

      1、分解简化问题时把握主要因素,不漏不多;

      2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。

    四层AHP

          上面例子是只有目标层、准则层、方案层,下面的结构多了子准则层,并且准则层对应不同的子准则层

    如果对你有帮助,请点下赞,予人玫瑰手有余香!

    时时仰望天空,理想就会离现实越来越近!

     

    展开全文
  • 层次分析法建模

    千次阅读 2015-08-07 16:34:40
    层次分析法建模 1:他针对 的问题是:适合解决定性的问题, 适合为多目标,多准则而无结构特性的复杂问题作出决策。它主要是利用利用较少的定量信息使决策的思维过程数学化。 2:利用层次分析法建模最重要的得到成对...

    层次分析法建模

    1:他针对 的问题是:适合解决定性的问题,    适合为多目标,多准则而无结构特性的复杂问题作出决策。它主要是利用利用较少的定量信息使决策的思维过程数学化。

    2:利用层次分析法建模最重要的得到成对比较矩阵,这个矩阵元素的由来,数据的合理性,首先要保证数据在1~9之间,或者1/1,1/2

    1/3,1/5等等,不能出现3/5这些用结果得到的结果的数据。

    3:层次分析法所要解决的问题是关于最低层对最高层的相对权重问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中作出选择或形成选择方案的原则。

    下面是层次建模的步骤:

    1:建立层次结构模型   :

    将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。

            最高层:决策的目的、要解决的问题。

             最低层:决策时的备选方案。

            中间层:考虑的因素、决策的准则。

    2:构造判断(成对比较)矩阵


    考虑完全一致的情况:


    一致阵性质:

    1:A的秩为1,A的唯一非零特征根为n

    2:非零特征根n所对应的特征向量归一化后可作为权向量

    考虑不完全一致的情况:

    对于不一致(但在允许范围内)的成对比较阵A, Saaty等人建议用对应于最大特征根的特征向量作为权向量w ,即

    Aw=w

    3. 层次单排序及其一致性检验

                  对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。
      W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。
      能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。

    定理:n 阶一致阵的唯一非零特征根为n

    定理:n 阶正互反阵A的最大特征根 >=n, 当且仅当 =n时A为一致阵。

    有定理得:λ 比n 大的越多,A  的不一致性越严重。

    定义一致性指标:CI = ( -n)/(n-1);

                CI=0,有完全的一致性
                CI接近于0,有满意的一致性
                CI 越大,不一致越严重

    为衡量CI 的大小  随机一致性指标 RI。

    如何引入随机性指标:方法

        随机构造500个成对比较矩阵        则可得一致性指标          


       

    结果如下:


    说明:n是阶数,当n=4时,就会随机产生500个成对比矩阵,测出CI,求平均值,作为衡量标准

    定义一致性比率 :

    一般,当一致性比率 有满意的一致性,通过一致性检验。

    否则要重新构造成对比较矩阵A,对 aij  加以调整。

    以下是简化计算

    说明:这个简化计算,先算最大特征根对应的特征向量,在算特征根,算完之后才进行一致性检验。

    4. 层次总排序及其一致性检验 

    计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。
    这一过程是从最高层次到最低层次依次进行的


    B层的层次总排序为:

    即 B  层第 i 个因素对总目标


    其实可以写成矩阵的乘积。

    则层次总排序的一致性比率为:


    说明:设  B   层  B1,B2,,,,Bn;     对上层A层(A1,A2,,,,Am)中因素                 
    的层次单排序一致性指标为  CI(i),随机一致性指为 RI(i);

    当    CR<0.1时,认为层次总排序通过一致性检验。层次总排序具有满意的一致性,否则需要重新调整那些一致性比率高(除了B层对A层外,还有A层对目标层)的判断矩阵的元素取值。

         若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率     较大的成对比较矩阵。




    展开全文
  • 数学建模--层次分析法

    千次阅读 2020-07-19 22:36:09
    层次分析法所要解决的问题是关于最低层对最高层的相对权重的问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中做出选择或形成选择方案的原则。 2.列出权重表格 分别由方案、考虑因素、...
  • MATLAB-层次分析法

    千次阅读 2019-08-23 11:35:47
    AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家T. L. Saaty教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。常被运用于多目标、多准则、多要素...
  • 层次分析法的缺点和改进

    万次阅读 2019-07-04 09:00:43
    一、层次分析法的缺点 和一般的评价过程, 特别是模糊综合评价相比, AHP客观性提高, 但当因素多 (超过9个) 时, 标度工作量太大, 宜引起标度专家反感和判断混乱. 对标度可能取负值的情况考虑不够.标度确实需要负数...
  • 层次分析法(AHP)基础概念整理+步骤总结

    万次阅读 多人点赞 2019-07-08 17:29:17
    层次分析法是用来根据多种准则,或是说因素从候选方案中选出最优的一种数学方法 递阶层次的建立与特点 一般分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层。 最顶层是我们的目标,比如说选...
  • 2)重复步骤1,完成中间层要素、备选方案的添加(非破解版中间层要素只能添加3个) 3)连结各个组件:鼠标选中下级指标,连结两个组件蓝色的小点 4)重复步骤,按层次分析法连接所有组件,在这里要注意三个原则 原则...
  • 模糊层次分析法的基本思想和步骤与AHP的步骤基本一致,但仍有以下两方面的不同点:  (1)建立的判断矩阵不同:在AHP中是通过元素的两两比较建立判断一致矩阵;而在FAHP中通过元素两两比较建立模糊一致判断矩阵...
  • 文末资源:层次分析法常用软件,破解版yaahp软件,中间层个数可达99个,方案层个数可达99个,免费版的中间层、方案层个数只有3个哦,内含教程,永久使用:(浏览器输入/点击网址获取) 层次分析法之yaahp软件,中间...
  • 8.1 系统评价决策模型概论 8.1.1 问题的引入 8.1.2 系统评价决策模型的基本概念 8.1.3 系统评价决策模型的要素 8.1.4 系统评价决策模型的...8.2 案例分析-汽车选购 8.2.1 问题引入 8.2.2 决策矩阵的规范化 ...
  • 主成分分析法

    千次阅读 2015-08-11 12:57:34
    主成分分析法的基本原理及应用 什么是主成分分析法  主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。  在统计学中,主成分分析(principal components analysis,PCA)是一种...
  • 数据分析:SWOT分析法

    千次阅读 2020-08-23 15:57:48
    SWOT分析法(也称TOWS分析法、道斯矩阵)即态势分析法,20世纪80年代初由美国旧金山大学的管理学教授韦里克提出,经常被用于企业战略制定、竞争对手分析等场合。SWOT分析有其形成的基础。按照企业竞争战略的完整概念...
  •  网络分析法(ANP)是美国匹兹堡大学的T.L.Saaty教授于1996年提出的一种适应非独立的递阶层次结构的决策方法,它是在层次分析法(Analytic Hierarchy Process,简称AHP)的基础上发展而形成的一种新的实用决策方法。...
  • 冯 · 诺依曼计算机工作原理及计算机层次结构详解
  • 产品需求分析与市场分析方法汇总(SWOT+PDCA+波士顿矩阵BCG+5W2H分析法+STAR关键事件分析法+目标管理SMART+时间管理紧急重要矩阵+WBS任务分解法) 产品需求分析与市场分析方法汇总 ... 一、KANO模型 ...
  • MECE分析法(Mutually ExclusiveCollectively Exhaustive) 目录 1什么是MECE分析法? 2 MECE分析法的步骤 3 MECE的原则 4 MECE的主要内容 5 MECE法的适用性 什么是MECE分析法?  MECE,是Mutually ...
  • 由浅入深聚类分析·算法原理及核心步骤
  • 主成分分析法 主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法。通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分...
  • 分析问题的黄金法则——MECE分析法

    千次阅读 2007-12-26 13:13:00
    什么是MECE分析法? MECE,是Mutually Exclusive Collectively Exhaustive,中文意思是“相互独立,完全穷尽”。 也就是对于一个重大的议题,能够做到不重叠、不遗漏的分类,而且能够借此有效把握问题的核心,并...
  • 层次划分(系统软件,应用软件) 系统软件与硬件关系最 密切 按组织划分 商业软件 开源软件 ​ 按结构划分 ​ 单机软件,分布式软件 软件缺陷的由来 Bug (虫子) Defect 计算机软件第一夫人:Grace Hopper 发明了...
  • 产品读书《原则:生活和工作》

    千次阅读 2018-12-07 21:24:55
    一直以来,自己做事更多是凭感觉,”用战术上的...而建立原则,是在探究并认识你大脑“高层”,要学会引导你的大脑,进入深层次的思考,进入由你主导的阶段,这确实很难,但值得投入,接下来我们一起来看看《原则...
  • 抽象层次

    千次阅读 多人点赞 2017-08-17 21:03:34
    抽象层次 抽象层次是面向对象方法中极其重要,但是又非常难以掌握的技巧。学 会站在不同的抽象层次考虑问题是建立好模型的基础,所以笔者不能不在这里说一些与技术无关的“废话”。 首先,抽象层次越高,具体...
  •  3在面向过程的开发语言中分析和设计,总是创建一些高层模块去调用低层模块、策略依赖于细节的软件结构。 实际上这种方法的目的就是要定义子程序层次结构,该结构 描述了高层模块怎样调用低层模块。而设计良好...
  • (6) 信誉评级:银行内部根据企业的实际情况人工评定的,银行对信誉评级为D的企业原则上不予放贷。 (7) 客户流失率:因为贷款利率等因素银行失去潜在客户的比率。 二、分享 需要附件数据请移步 2020数学建模国赛A-E...
  • 为何人类的动耳肌退化了(正确问是:为何耳朵能懂的人被淘汰了)?因为凡是在进化中有浪费行为的生物最终都被淘汰了。名人名言说“如果每天能进步 1% ,三个月后就能进步两倍”( 1.01 的 70 次方等于 2 ),换到...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 32,223
精华内容 12,889
关键字:

层次分析法的原则