精华内容
下载资源
问答
  • 计算机网络——网络硬件和网络设备及其工作原理

    万次阅读 多人点赞 2018-10-09 01:26:36
    计算机网络——网络硬件和网络设备及其工作原理 常见的网络硬件有网卡、中继站、集线器、桥连接器、交换机、路由器。 一. 网卡: 网卡是工作在链路层的网络组件,是局域网中连接计算机和传输介质的接口,不仅能实现...

    计算机网络——网络硬件和网络设备及其工作原理

    常见的网络硬件有网卡、中继站、集线器、桥连接器、交换机、路由器。

    一. 网卡:

    网卡是工作在链路层的网络组件,是局域网中连接计算机和传输介质的接口,不仅能实现与局域网传输介质之间的物理连接和电信号匹配,还涉及帧的发送与接收、帧的封装与拆封、介质访问控制、数据的编码与解码以及数据缓存的功能等。

    简介

    计算机与外界局域网的连接是通过主机箱内插入一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡)。网络接口板又称为通信适配器或网络适配器(network adapter)或网络接口卡NIC(Network Interface Card),但是更多的人愿意使用更为简单的名称“网卡”。

    功能详解

    网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。

    在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。

    网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃而不必通知它所插入的计算机。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据包时,它就由协议栈向下交给网卡组装成帧后发送到局域网。

    随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽然各个厂家生产的网卡种类繁多,但其功能大同小异。

    主要功能:

    1. 数据的封装与解封: 发送时将上一层交下来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层。
    2. 链路管理: 主要是CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议的实现。
    3. 编码与译码 : 即曼彻斯特编码与译码。

    二. 中继站:

    中继器又叫“放大器”,起放大信号的左右,解决线路太长,而引起的信号衰减问题。缺点:放大通信信号的同时会放大噪声。它处于OSI七层模型的物理层设备,无法读懂和修改OSI的上层数据,无法完成更多的选路和优化转发的特性,只有放大信号和延长线路的作用,端口少,不是一种密集型端口的网络设备,现在已被淘汰
    在这里插入图片描述

    三. 集线器:(hub)

    集线器又叫Hub,是一种用于“星形”网络组织的中心设备。它具备中继器的特点,端口比中继器更密集,因此又把集线器叫做端口更多的中继器。集线器是一种半双工(同一时间只能接收或发送数据,不能同时既接受又发送数据)、冲突型设备, 共享带宽,放大信号的同时放大噪声,不隔离广播,不能成环,不安全,一般不建议使用。集线器工作原理如下所示。A端口给D端口发送数据时,从集线器1号端口进入的数据,会发给2,3,4三个端口,然后2,3端口发现不是发给自己的数据,所以丢弃,只有4端口的D计算机发现目标地址是自己的地址,所以就接受,发送数据以广播的形式,因此这样是一种不安全的通讯设备,容易被别人监听到数据报。同时,当A发数据的时候,B是不能发送数据的,就会发生冲突。
    在这里插入图片描述

    四. 桥连接器:

    网桥(bridge)处于OSI模型的数据链路层(链路层设备不隔离广播),作用是减少集线器因共享和半双工特性引发的网络冲突问题。网桥的性能比集线器更好,因为网桥能够基于MAC地址进行数据链路层选路,能够基于学习构造MAC地址表,对MAC地址进行控制与过滤,所以网桥可以基于MAC地址进行选路,比集线器性能更好,将冲突域划分的更小,转发行能比集线器更高。但同样是不能隔离广播,所以不能让网桥形成闭合的环路。
    网桥MAC地址自学习:在网桥的接口上记录数据报文的源MAC地址,来完成整个MAC地址表的构建。
    在这里插入图片描述

    开始,网桥的MAC地址表是空的,第一次发生数据的时候不知道目的地址在哪,同样会发广播,但此时的广播不是发送数据的广播,而是一个ARP(地址解析协议)的请求广播,这个广播不带要发送的数据(即使被监听到也是不能得到主机间通信的数据),是一个轻量的广播,可以忽略不计,这次广播的目的在于建立MAC地址表,记录源MAC地址对应的网桥端口。例如这样一次广播过程:A要给D发送数据,A先ARP广播D,A作为源主机,网桥记录了A 的MAC地址,B和C收到后不做反应,然后D收到广播后单播方式回应ARP,D回应的时候对于网桥就是源主机,就会记录D主机的MAC地址,这样就完成了一次记录。请求当MAC表构建后,网桥不在进行广播,而是利用MAC表进行快速选路并转发,所以就算网桥上装有数据分析仪也不能监听到数据,监听到的广播也是不带主机间通信的数据,而集线器每次都以广播的形式发送数据(直接将数据广播出去),所以不安全。(网桥广播和集线器广播有很大区别)
    网桥不能成环的原因:①网桥不隔离广播,所以广播不能在网桥环路中发散,从而形成广播风暴,将整个网络的正常通信资源占据。②由于网桥不能隔离广播,所以会导致MAC地址自学习错误。
    在这里插入图片描述
    对②进行解析:当主机B给主机A发送数据时,网桥B的2端口会记录主机B的MAC地址,而在网桥环路中,网桥不隔离广播,对于ARP的请求广播,网桥B又相当于一根线,所以广播会穿过网桥B到的网桥A,即主机B发送的数据会直接到网桥A的1端口,因此网桥A的1端口也会记录主机B的MAC地址,但是网桥A的1端口连接主机A,应该记录主机A的MAC地址,所以就产生了错误。但实际情况中,网桥是物理成环的,以提供冗余的路径,这又违背了网桥不能成环的原则,所以后面会讲到一种生成树协议STP来解决这个问题。

    五. 交换机:

    交换机(Switch)意为“开关”是一种用于电(光)信号转发的网络设备。它可以为接入交换机的任意两个网络节点提供独享的电信号通路。最常见的交换机是以太网交换机。其他常见的还有电话语音交换机、光纤交换机等。

    定义

    交换(switching)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术的统称。交换机根据工作位置的不同,可以分为广域网交换机和局域网交换机。广域的交换机(switch)就是一种在通信系统中完成信息交换功能的设备,它应用在数据链路层。交换机有多个端口,每个端口都具有桥接功能,可以连接一个局域网或一台高性能服务器或工作站。实际上,交换机有时被称为多端口网桥。

    在计算机网络系统中,交换概念的提出改进了共享工作模式。而HUB集线器就是一种物理层共享设备,HUB本身不能识别MAC 地址和IP地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据报头的MAC地址来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。通俗的说,普通交换机是不带管理功能的,一根进线,其他接口接到电脑上就可以了。

    在今天,交换机以更多的却是以应用需求为导向,在选择方案和产品时用户还非常关心如何有效保证投资收益。在用户提出需求后,由系统集成商或厂商来为其需求来提供相应的服务,然后再去选择相应的技术。这点是在网络方面表现尤其明显,广大用户,不论是重点行业用户还是一般的企业用户,在应用IT技术方面更加明智,也更加稳健。此外,宽带的广泛应用、大容量视频文件的不断涌现等等都对网络传输的中枢–交换机的性能提出了新的要求。

    交换机原理

    原理
    思科模拟器中的交换机
    思科模拟器中的交换机
    交换机工作于OSI参考模型的第二层,即数据链路层。交换机内部的CPU会在每个端口成功连接时,通过将MAC地址和端口对应,形成一张MAC表。在今后的通讯中,发往该MAC地址的数据包将仅送往其对应的端口,而不是所有的端口。因此,交换机可用于划分数据链路层广播,即冲突域;但它不能划分网络层广播,即广播域。

    交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在,广播到所有的端口,接收端口回应后交换机会“学习”新的MAC地址,并把它添加入内部MAC地址表中。使用交换机也可以把网络“分段”,通过对照IP地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的减少冲突域,但它不能划分网络层广播,即广播域。

    端口

    交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的物理网段(注:非IP网段),连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。总之,交换机是一种基于MAC地址识别,能完成封装转发数据帧功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

    传输

    交换机的传输模式有全双工,半双工,全双工/半双工自适应。

    交换机的全双工是指交换机在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。交换机都支持全双工。全双工的好处在于迟延小,速度快。

    提到全双工,就不能不提与之密切对应的另一个概念,那就是“半双工”,所谓半双工就是指一个时间段内只有一个动作发生,举个简单例子,一条窄窄的马路,同时只能有一辆车通过,当有两辆车对开,这种情况下就只能一辆先过,等到头儿后另一辆再开,这个例子就形象的说明了半双工的原理。早期的对讲机、以及早期集线器等设备都是实行半双工的产品。随着技术的不断进步,半双工会逐渐退出历史舞台。

    六. 路由器:

    在这里插入图片描述

    路由器(Router),是连接因特网中各局域网、广域网的设备,它会根据信道的情况自动选择和设定路由,以最佳路径,按前后顺序发送信号。 路由器是互联网络的枢纽,“交通警察”。目前路由器已经广泛应用于各行各业,各种不同档次的产品已成为实现各种骨干网内部连接、骨干网间互联和骨干网与互联网互联互通业务的主力军。路由和交换机之间的主要区别就是交换机发生在OSI参考模型第二层(数据链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换机在移动信息的过程中需使用不同的控制信息,所以说两者实现各自功能的方式是不同的。
    路由器(Router)又称网关设备(Gateway)是用于连接多个逻辑上分开的网络,所谓逻辑网络是代表一个单独的网络或者一个子网。当数据从一个子网传输到另一个子网时,可通过路由器的路由功能来完成。因此,路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,路由器只接受源站或其他路由器的信息,属网络层的一种互联设备。

    路由器原理

    传输介质

    路由器分本地路由器和远程路由器,本地路由器是用来连接网络传输介质的,如光纤、同轴电缆、双绞线;远程路由器是用来连接远程传输介质,并要求相应的设备,如电话线要配调制解调器,无线要通过无线接收机、发射机。

    路由器是互联网的主要结点设备。路由器通过路由决定数据的转发。转发策略称为路由选择(routing),这也是路由器名称的由来(router,转发者)。作为不同网络之间互相连接的枢纽,路由器系统构成了基于TCP/IP 的国际互联网络Internet 的主体脉络,也可以说,路由器构成了Internet的骨架。它的处理速度是网络通信的主要瓶颈之一,它的可靠性则直接影响着网络互连的质量。因此,在园区网、地区网、乃至整个Internet研究领域中,路由器技术始终处于核心地位,其发展历程和方向,成为整个Internet研究的一个缩影。在当前我国网络基础建设和信息建设方兴未艾之际,探讨路由器在互连网络中的作用、地位及其发展方向,对于国内的网络技术研究、网络建设,以及明确网络市场上对于路由器和网络互连的各种似是而非的概念,都有重要的意义。
    出现了交换路由器产品,从本质上来说它不是什么新技术,而是为了提高通信能力,把交换机的原理组合到路由器中,使数据传输能力更快、更好。

    结构

    • 电源接口(POWER):接口连接电源。 usb
    • 复位键(RESET):此按键可以还原路由器的出厂设置。
    • 猫(MODEM)或者是交换机与路由器连接口(WAN):此接口用一条网线与家用宽带调制解调器(或者与交换机)进行连接。
    • 电脑与路由器连接口(LAN1~4):此接口用一条网线把电脑与路由器进行连接。

    需注意的是:WAN口与LAN口一定不能接反。

    家用无线路由器和有线路由器的IP地址根据品牌不同,主要有192.168.1.1和192.168.0.1两种。

    启动过程

    路由器里也有软件在运行,典型的例如H3C公司的Comware和思科公司的IOS,可以等同的认为它就是路由器的操作系统,像PC上使用的Windows系统一样。路由器的操作系统完成路由表的生成和维护。
    同样的,作为路由器来讲,也有一个类似于我们PC系统中BIOS一样作用的部分,叫做MiniIOS。MiniIOS可以使我们在路由器的FLASH中不存在IOS时,先引导起来,进入恢复模式,来使用TFTP或X-MODEM等方式去给FLASH中导入IOS文件。所以,路由器的启动过程应该是这样的:
    路由器在加电后首先会进行POST。Power On Self Test (上电自检,对硬件进行检测的过程)。
    POST完成后,首先读取ROM里的BootStrap程序进行初步引导。
    初步引导完成后,尝试定位并读取完整的IOS镜像文件。在这里,路由器将会首先在FLASH中查找IOS文件,如果找到了IOS文件的话,那么读取IOS文件,引导路由器。
    如果在FLASH中没有找到IOS文件的话,那么路由器将会进入BOOT模式,在BOOT模式下可以使用TFTP上的IOS文件。或者使用TFTP/X-MODEM来给路由器的FLASH中传一个IOS文件(一般我们把这个过程叫做灌IOS)。传输完毕后重新启动路由器,路由器就可以正常启动到CLI模式。
    当路由器初始化完成IOS文件后,就会开始在NVRAM中查找STARTUP-CONFIG文件,STARTUP-CONFIG叫做启动配置文件。该文件里保存了我们对路由器所做的所有的配置和修改。当路由器找到了这个文件后,路由器就会加载该文件里的所有配置,并且根据配置来学习、生成、维护路由表,并将所有的配置加载到RAM(路由器的内存)里后,进入用户模式,最终完成启动过程。
    如果在NVRAM里没有STARTUP-CONFIG文件,则路由器会进入询问配置模式,也就是俗称的问答配置模式,在该模式下所有关于路由器的配置都可以以问答的形式进行配置。不过一般情况下我们基本上是不用这样的模式的。我们一般都会进入CLI [1] (Comman Line Interface)命令行模式后对路由器进行配置。

    工作原理示例

    (1)工作站A将工作站B的地址12.0.0.5连同数据信息以数据包的形式发送给路由器1。
    (2)路由器1收到工作站A的数据包后,先从包头中取出地址12.0.0.5,并根据路径表计算出发往工作站B的最佳路径:R1->R2->R5->B;并将数据包发往路由器2。
    (3)路由器2重复路由器1的工作,并将数据包转发给路由器5。
    (4)路由器5同样取出目的地址,发现12.0.0.5就在该路由器所连接的网段上,于是将该数据包直接交给工作站B。
    (5)工作站B收到工作站A的数据包,一次通信过程宣告结束。

    路由器的作用及功能

    1、连通不同的网络

    从过滤网络流量的角度来看,路由器的作用与交换机和网桥非常相似。但是与工作在网络物理层,从物理上划分网段的交换机不同,路由器使用专门的软件协议从逻辑上对整个网络进行划分。例如,一台支持IP协议的路由器可以把网络划分成多个子网段,只有指向特殊IP地址的网络流量才可以通过路由器。对于每一个接收到的数据包,路由器都会重新计算其校验值,并写入新的物理地址。因此,使用路由器转发和过滤数据的速度往往要比只查看数据包物理地址的交换机慢。但是,对于那些结构复杂的网络,使用路由器可以提高网络的整体效率。路由器的另外一个明显优势就是可以自动过滤网络广播。总体上说,在网络中添加路由器的整个安装过程要比即插即用的交换机复杂很多。

    2、信息传输

    有的路由器仅支持单一协议,但大部分路由器可以支持多种协议的传输,即多协议路由器。由于每一种协议都有自己的规则,要在一个路由器中完成多种协议的算法,势必会降低路由器的性能。路由器的主要工作就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据--路径表(Routing Table),供路由选择时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路径表可以是由系统管理员固定设置好的。

    • 静态路由表:由系统管理员事先设置好固定的路径表称之为静态(static)路径表。
    • 动态路由表:动态(Dynamic)路径表是路由器根据网络系统的运行情况而自动调整的路径表。

    路由器是一种多端口设备,它可以连接不同传输速率并运行于各种环境的局域网和广域网,也可以采用不同的协议。路由器属于O S I 模型的第三层–网络层。指导从一个网段到另一个网段的数据传输,也能指导从一种网络向另一种网络的数据传输。

    • 第一,网络互连:路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;
    • 第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;
    • 第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。

    所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router,是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读懂”对方的数据,从而构成一个更大的网络。
      
      为了完成“路由”的工作,在路由器中保存着各种传输路径的相关数据--路由表(Routing Table),供路由选择时使用。路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。在路由器中涉及到两个有关地址的名字概念,那就是:静态路由表和动态路由表。由系统管理员事先设置好固定的路由表称之为静态(static)路由表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。动态(Dynamic)路由表是路由器根据网络系统的运行情况而自动调整的路由表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。

    参考文章:

    1、网络硬件设备工作原理:https://blog.csdn.net/u010757264/article/details/50748336

    展开全文
  • 计算机网络 | 一文搞懂什么是TCP/IP协议

    万次阅读 多人点赞 2019-10-28 12:48:16
    计算机网络设备之间如果要相互通信,双方就必须基于相同的方法.比如如何探测到通信目标.由哪一边先发起通信,使用哪种语言进行通信,怎样结束通信等规则都需要事先确定.不同的硬件,操作系统之间的通信,所有这一切都...

    什么是TCP/IP协议?

    计算机与网络设备之间如果要相互通信,双方就必须基于相同的方法.比如如何探测到通信目标.由哪一边先发起通信,使用哪种语言进行通信,怎样结束通信等规则都需要事先确定.不同的硬件,操作系统之间的通信,所有这一切都需要一种规则.而我们就将这种规则称为协议 (protocol).

    image-20191027150025587

    也就是说,TCP/IP 是互联网相关各类协议族的总称。

    TCP/IP 的分层管理

    TCP/IP协议里最重要的一点就是分层。TCP/IP协议族按层次分别为 应用层,传输层,网络层,数据链路层,物理层。当然也有按不同的模型分为4层或者7层的。

    为什么要分层呢?

    把 TCP/IP 协议分层之后,如果后期某个地方设计修改,那么就无需全部替换,只需要将变动的层替换。而且从设计上来说,也变得简单了。处于应用层上的应用可以只考虑分派给自己的任务,而不需要弄清对方在地球上哪个地方,怎样传输,如果确保到达率等问题。

    image-20191027150352733

    如上图所示,我们将TCP/IP分为5层,越靠下越接近硬件。我们由下到上来了解一下这些分层。

    1. 物理层

      该层负责 比特流在节点之间的传输,即负责物理传输,这一层的协议既与链路有关,也与传输的介质有关。通俗来说就是把计算机连接起来的物理手段。

    2. 数据链路层

      控制网络层与物理层之间的通信,主要功能是保证物理线路上进行可靠的数据传递。为了保证传输,从网络层接收到的数据被分割成特定的可被物理层传输的帧。帧是用来移动数据结构的结构包,他不仅包含原始数据,还包含发送方和接收方的物理地址以及纠错和控制信息。其中的地址确定了帧将发送到何处,而纠错和控制信息则确保帧无差错到达。如果在传达数据时,接收点检测到所传数据中有差错,就要通知发送方重发这一帧。

    3. 网络层

      决定如何将数据从发送方路由到接收方。网络层通过综合考虑发送优先权,网络拥塞程度,服务质量以及可选路由的花费等来决定从网络中的A节点到B节点的最佳途径。即建立主机到主机的通信。

    4. 传输层

      该层为两台主机上的应用程序提供端到端的通信。传输层有两个传输协议:TCP(传输控制协议)和 UDP(用户数据报协议)。其中,TCP是一个可靠的面向连接的协议,udp是不可靠的或者说无连接的协议

    5. 应用层

      应用程序收到传输层的数据后,接下来就要进行解读。解读必须事先规定好格式,而应用层就是规定应用程序的数据格式。主要的协议有:HTTP.FTP,Telent等。

    TCP与UDP

    TCP/UDP 都是传输层协议,但是两者具有不同的特效,同时也具有不同的应用场景。

    image-20191027212512703

    面向报文

    面向报文的传输方式是应用层交给UDP多长的报文,UDP发送多长的报文,即一次发送一个报文。因此,应用程序必须选择合适大小的报文。

    面向字节流

    虽然应用程序和TCP的交互是一次一个数据块(大小不等),但TCP把应用程序看成是一连串的无结构的字节流。TCP有一个缓冲,当应该程序传送的数据块太长,TCP就可以把它划分短一些再传送。

    TCP的三次握手与四次挥手

    具体过程如下:

    • 第一次握手:建立连接。客户端发送连接请求报文段,并将syn(标记位)设置为1,Squence Number(数据包序号)(seq)为x,接下来等待服务端确认,客户端进入SYN_SENT状态(请求连接);

    • 第二次握手:服务端收到客户端的 SYN 报文段,对 SYN 报文段进行确认,设置 ack(确认号)为 x+1(即seq+1 ; 同时自己还要发送 SYN 请求信息,将 SYN 设置为1, seq为 y。服务端将上述所有信息放到 SYN+ACK 报文段中,一并发送给客户端,此时服务器进入 SYN_RECV状态。

      SYN_RECV是指,服务端被动打开后,接收到了客户端的SYN并且发送了ACK时的状态。再进一步接收到客户端的ACK就进入ESTABLISHED状态。

    • 第三次握手:客户端收到服务端的 SYN+ACK(确认符) 报文段;然后将 ACK 设置为 y+1,向服务端发送ACK报文段,这个报文段发送完毕后,客户端和服务端都进入ESTABLISHED(连接成功)状态,完成TCP 的三次握手。

    上面的解释可能有点不好理解,用《图解HTTP》中的一副插图 帮助大家。

    img

    当客户端和服务端通过三次握手建立了 TCP 连接以后,当数据传送完毕,断开连接就需要进行TCP的四次挥手。其四次挥手如下所示:

    • 第一次挥手

      客户端设置seq和 ACK ,向服务器发送一个 FIN(终结)报文段。此时,客户端进入 FIN_WAIT_1 状态,表示客户端没有数据要发送给服务端了。

    • 第二次挥手

      服务端收到了客户端发送的 FIN 报文段,向客户端回了一个 ACK 报文段。

    • 第三次挥手

      服务端向客户端发送FIN 报文段,请求关闭连接,同时服务端进入 LAST_ACK 状态。

    • 第四次挥手

      客户端收到服务端发送的 FIN 报文段后,向服务端发送 ACK 报文段,然后客户端进入 TIME_WAIT 状态。服务端收到客户端的 ACK 报文段以后,就关闭连接。此时,客户端等待 2MSL(指一个片段在网络中最大的存活时间)后依然没有收到回复,则说明服务端已经正常关闭,这样客户端就可以关闭连接了。

    最后再看一下完整的过程:

    img

    如果有大量的连接,每次在连接,关闭都要经历三次握手,四次挥手,这显然会造成性能低下。因此。Http 有一种叫做 长连接(keepalive connections) 的机制。它可以在传输数据后仍保持连接,当客户端需要再次获取数据时,直接使用刚刚空闲下来的连接而无需再次握手。

    img

    一些问题汇总:

    1. 为什么要三次握手?

    为了防止已失效的连接请求报文突然又传送到了服务端,因为产生错误。

    具体解释: “已失效的连接请求报文段”产生情况:

    client 发出的第一个连接请求报文段并没有丢失,而是在某个网络节点长时间滞留,因此导致延误到连接释放以后的某个时间才到达 service。如果没有三次握手,那么此时server收到此失效的连接请求报文段,就误认为是 client再次发出的一个新的连接请求,于是向 client 发出确认报文段,同意建立连接,而此时 client 并没有发出建立连接的情况,因此并不会理会服务端的响应,而service将会一直等待client发送数据,因此就会导致这条连接线路白白浪费。

    如果此时变成两次挥手行不行?

    这个时候需要明白全双工与半双工,再进行回答。比如:

    • 第一次握手: A给B打电话说,你可以听到我说话吗?
    • 第二次握手: B收到了A的信息,然后对A说: 我可以听得到你说话啊,你能听得到我说话吗?
    • 第三次握手: A收到了B的信息,然后说可以的,我要给你发信息啦!

    在三次握手之后,A和B都能确定这么一件事: 我说的话,你能听到; 你说的话,我也能听到。 这样,就可以开始正常通信了,如果是两次,那将无法确定。

    2. 为什么要四次挥手?

    TCP 协议是一种面向连接,可靠,基于字节流的传输层通信协议。TCP 是全双工模式(同一时刻可以同时发送和接收),这就意味着,当主机1发出 FIN 报文段时,只是表示主机1已结没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回 ACK报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会中断这次TCP连接。

    3.为什么要等待 2MSL

    MSL:报文段最大生存时间,它是任何报文段被丢弃前在网络内的最长时间

    原因如下:

    • 保证TCP协议的全双工连接能够可靠关闭
    • 保证这次连接的重复数据从网络中消息

    第一点: 如果主机1直接 关闭,由于IP协议的不可靠性或者其他网络原因,导致主机2没有收到主机1最后回复的 ACK。那么主机2就会在超时之后继续发送 FIN,此时由于主机1已经关闭,就找不到与重发的 FIN 对应的连接。所以,主机1 不是直接进入 关闭,而是TIME_WAIT 状态。当再次收到 FIN 的时候,能够保证对方收到 ACK ,最后正确关闭连接。

    第二点:如果主机1直接 关闭,然后又再向主机 2 发起一个新连接,我们不能保证这个新连接与刚才关闭的连接端口是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但还是有特殊情况出现;假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中( Lost Duplicate ),那些延迟数据在建立新连接之后才到达主机2,由于新连接和老连接的端口号是一样的,TCP 协议就认为哪个延迟的数据时属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接要在 TIME_WAIT 状态等待两倍 MSL ,保证本次连接的所有数据都从网络中消失。




    参考内容

    <图解HTTP>
    <Android进阶之光-网络篇>
    知乎-TCP 为什么是三次握手,而不是两次或四次?

    展开全文
  • 计算机网络——4.入门思科网络设备

    千次阅读 2016-03-01 17:38:29
    本文主要讲解思科的网络通讯设备,包括:如何构建思科网络设备的配置平台、理解思科网络设备的相关配置模式等,通过本章的学习可以具备思科网络设备配置能力,为后续的核心技术学习做好准备。

    入门思科网络设备

    本文主要讲解思科的网络通讯设备,包括:如何构建思科网络设备的配置平台、理解思科网络设备的相关配置模式等,通过本章的学习可以具备思科网络设备配置能力,为后续的核心技术学习做好准备。

    (1)认识思科网络设备

    (2)网络设备的配置

     

    1.    认识思科的网络设备

    (1) 路由器

    ①思科800系列路由器:为小型机构提供宽带接入、安全保证、无线接入,以集成多业务路由器系列为基础。

    ②思科2900系列路由器:提供四种平台2901、2911、2921和2951集成多业务路由器(路由、语音、支持VPN、支持防火墙、入侵检测等功能集成到一起),应用于小型环境。提供嵌入式硬件加密加速、支持语音和视频数字信号处理插槽、可选择性防火墙、入侵检测、呼叫处理、语音信箱以及应用程序服务等。

    ③思科3900系列路由器:提供3925和3945两种平台集成多业务路由器,一般用于中小型到中大型环境。

    ④思科7200系列路由器:应用于大型环境。

    ⑤思科12000系列路由器:应用于运营商。

    路由器背板和常规接口

     

    控制口(console):使用该接口连接控制台配置路由器。

    辅助控制口(AUX):主要用于带外管理(独立于业务网络的管理网络,当业务网络瘫痪后,仍然不影响管理)与远程配置路由器,也用于拨号连接,还可通过收发器与MODEM进行连接。支持硬件控制,AUX接口与console接口常放一起来完成路由器的配置与管理工作。

    设备集成的以太网接口:提供以太网连接的网络接口,在用户只购买了路由器没有购买某个功能的接口模块时,通常设备机箱会集成一个网络接口,该接口与路由器面板集成固化,不以模块化形式体现。

    以太网模块:可以理解为可“插拔”的以太网接口卡。

     

    (2)    交换机

    思科交换机主要有2918系列交换机、2900系列交换机、3750系列交换机、4500系列交换机、6500系列交换机,他们的性能可以在诉苦官网上查询:www.cisco.com

    (3)    思科模块及编号原则

    为什么设备方案做成模块化形式而不是相关功能固化到设备载体上?因为网络需求差异大,企业需求各异,组网时要求灵活性高。灵活的组网模块使得供应商和用户的性价比都提高。

    以太网(Ethernet)编号原则:下图中使用了两个以太网模块0和1,以太网0号模块的第一个物理接口就是E0/0,因此,编号中第一个数字表示以太网模块号,第二个数字表示物理接口编号。

     

    2.    网络设备的配置

    1)网络设备的配置平台

    一般情况,有两种方法来配置网络设备。

    ①通过本地接口(console口)来完成配置。被配置的网络设备在管理员的本地范围类,基本构架由三部分组成:执行配置的主机、被配置的网络设备和控制线。


    ②是通过网络进行远程配置,没有距离的限制,如Telnet等

     

    2)网络设备的配置模式

    一般用户模式:通常网络设备名称后有一个尖角符号>,这种模式只能查看配置信息,不能对设备进行配置的,这是访问设备的最低权限。

    特权用户模式:一般用户模式下输入enable,进入特权用户模式,这时网络设备名称后有一个#号,这个模式下可以访问网络设备,修改配置命令,重启路由器和查看配置文件运行状态等。输入disable可以退回到一般用户模式。

    全局配置模式:特权配置模式下,输入configureterminal进入全局配置模式,这是网络设备名后有(config)#标记号。全局模式好比园中园,进了动物园后想看具体的珍贵动物还得买门票才能进去。

    接口配置模式:全局模式下,输入interface +接口(ethernet 1/0),进入接口配置模式,这是网络设备名后有(config- if)#标记号,这里的配置只针对这个接口生效。

    路由配置模式:全局模式下,输入router +路由协议,进入路由配置模式,这是网络设备名后有(config- router)#标记号,

    线路配置模式:全局模式下,输入line +线路号,进入接口配置模式,这是网络设备名后有(config-line)#标记号,

     

    路由器配置命令参考资料:http://www.utosee.com/post/575.html

     

     

    展开全文
  • 计算机网络》复习笔记

    万次阅读 多人点赞 2018-01-05 21:20:48
    计算机网络》复习笔记 本复习笔记基于谢希仁的《计算机网络》第五版教材整理。 计算机网络复习笔记 绪论 1 计算机网络 2 因特网概述 3 互联网的组成 P8 4 计算机网络的类别 P17 5 计算机网络的体系结构 P25 ...

    《计算机网络》复习笔记

    本文同时发布在我的个人博客: https://wiki.hushhw.cn/posts/415999f5.html

    说明:

    • 本复习笔记基于谢希仁的《计算机网络》第五版教材整理。
    • 由于这篇复习笔记只是我本科考试前做的总结,所以水平非常有限,并且因为时间不够所以后面并没有继续整理。
    • 编辑这篇文章时是我第一次直接使用 markdown 编辑文章,所以导致排版语法有一些错误,见谅。
    • 我也没想到,这篇复习笔记忽然就热度起来了。。。

    后来考研复习时的复习PPT可以作为补充计算机网络笔记
    后来考研复习时的复习PPT可以作为补充计算机网络笔记
    后来考研复习时的复习PPT可以作为补充计算机网络笔记

    绪论

    1.1 计算机网络

    1. 计算机网络向用户提供的两个最重要的功能:
    • 连通性
    • 共享

    1.2 因特网概述

    1. 因特网发展的三个阶段:
    • 第一阶段:从单个网络 ARPANET 向互联网发展的过程。1983 年 TCP/IP 协议成为 ARPANET 上的标准协议。
    • 第二阶段:建成三级结构的因特网:主干网、地区网和校园网(或企业网)。
    • 第三阶段:形成多层次的ISP(Internet Service Provider 因特网服务提供者)结构的因特网
    1. Internet 和 Internet 的区别:
    • internet:通用名词,它泛指由多个计算机网络互连而成的网络。
    • Internet:专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用 TCP/IP 协议族作为通信的规则,且其前身是美国的 ARPANET。

    1.3 互联网的组成 P8

    • 边缘部分:有所有连接在因特网上的主机组成。这部分由用户直接使用,用来进行通信和资源共享。
    • 核心部分 : 由大量的网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。
    1. 处于边缘部分的用户通信方式 P9-P10
    • 客户服务器方式(C/S方式):即Client/Server方式。(客户是服务的请求方,服务器是服务的提供方)

    • 对等方式(P2P方式):即Peer-to-Peer方式。(对等连接中的每一个主机既是客户又同时是服务器)

    1. 核心部分的交换技术 P11-15
    • 电路交换 的三个阶段:建立连接——通话——释放连接
      在通话时,两用户之间占用端到端的资源,而由于绝大部分时间线路都是空闲的,所以线路的传输速率往往很低。
    • 分组交换 的组成:报文、首部、分组。采用存储转发技术,即收到分组——存储分组——查询路由(路由选择协议)——转发分组。优点:高效、灵活、迅速、可靠。缺点:时延、开销。关键构件:路由器。
    • 报文交换 整个报文传送到相邻结点,全部存储下来之后查询转发表,转发到下一个结点。
      图片来源:blog.csdn.net/hcbbt/article/details/18271491
      这里写图片描述

    1.4 计算机网络的类别 P17

    1. 分类
    • 按通信距离分:广域网、局域网、城域网

    • 按信息交换方式分:电路交换网、分组交换网、总和交换网

    • 按网络拓扑结构分:星型网、树型网、环型网、总线网

    • 按通信介质分:双绞线网、同轴电缆网、光纤网、卫星网

    • 按传输带宽分:基带网、宽带网

    • 按使用范围分:公用网、专用网

    • 按速率分:高速网、中速网、低速网

    • 按通信传播方式分:广播式、点到点式

    1. 性能指标(P18):速率、带宽、时延
    • 速率:指连接在计算机网络上的主机在数字信道上传送数据的速率。b/s(bps) 如100M以太网,实际是指100Mb/s。往往是指额定速率或标称速率。

    • 带宽:数字信道所能传送的最高速率。b/s(bps)

    • 吞吐量:单位时间内通过某个网络(或信道、接口)的实际数据量。其绝对上限值等于带宽。

    • 时延:数据(一个报文或分组、甚至比特)从网络(或链路)的一段传送到另一端的时间,也称延迟。
        ① 发送时延:主机或路由器发送数据帧所需的时间,也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。也成传输时延。
      发送时延 = 数据帧长度(b) / 信道带宽(b/s)
       ② 传播时延:电磁波在信道中传输一定距离所需划分的时间。
      传播时间 = 信道长度(m) / 传输速率(m/s)
       ③ 处理时延:主机或路由器处理收到的分组所花费的时间。
       ④ 排队时延:分组在输入队列中等待处理的时间加上其在输出队列中等待转发的时间。
      综上:总时延 = 发送时延 + 传播时延 + 处理时延 + 排队时延。
      注:对于高速网络链路,提高的是发送速率而不是传播速率。

    • 时延带宽积:传播时延 * 带宽。表示链路的容量。

    • 往返时间RTT:从发送方发送数据开始,到发送发收到接收方的确认为止,所花费的时间。

    • 利用率:某信道有百分之几是被利用的(有数据通过)。而信道或网络利用率过高会产生非常大的时延。
      当前时延=空闲时时延/(1-利用率)

    1.5 计算机网络的体系结构 P25

    1. 网络协议:简称协议,是为了进行网络中的数据交换而建立的规则、标准或约定。
    2. 网络协议的三要素
    • 语法:数据与控制信息的结构或格式
    • 语义:需要发出何种控制信息,完成何种动作以及做出何种响应
    • 同步:事件实现顺序的详细说明
    1. 体系结构(architecture)是计算机网络的各层及其协议的集合
    2. 五层协议的体系结构
    • 物理层:物理层的任务就是透明地传送比特流。(注意:传递信息的物理媒体,如双绞线、同轴电缆、光缆等,是在物理层的下面,当做第0 层。)物理层还要确定连接电缆插头的定义及连接法。
    • 数据链路层:将网络层交下来的IP数据报组装成帧,在两个相邻结点间的链路上”透明“的传送以帧为单位的数据。每一帧包括数据和必要的控制信息。在收到数据时,控制信息使收到端直到哪个帧从哪个比特开始和结束。
    • 网络层:选择合适的路由,使发送站的运输层所传下来的分组能够正确无误地按照地址找到目的站,并交付给目的站的运输层。网络层将运输层产生的报文或用户数据报封装成分组(IP数据报)或包进行传送。
    • 运输层:向上一层的进行通信的两个进程之间提供一个可靠的端对端服务,使它们看不见运输层以下的数据通信的细节。(TCP、UDP)
    • 应用层:直接为用户的应用进程提供服务(HTTP、FTP等)
    1. OSI体系结构:物理层、数据链路层、网络层、运输层、会话层、表示层、应用层
    2. TCP/IP体系结构:网络接口层、网际层IP、运输层、应用层
      图片来源网络

    物理层

    2.1 物理层下的传输媒体

    图片来源网络

    1. 导向传输媒体
      1.1. 双绞线
      双绞线已成为局域网中的主流传输媒体
    • 屏蔽双绞线 STP (Shielded Twisted Pair)
    • 无屏蔽双绞线 UTP (Unshielded Twisted Pair)

    1.2. 同轴电缆

    • 细缆(适合短距离,安装容易,造价低)
    • 粗缆(适合较大局域网,布线距离长,可靠性好)

    1.3. 光纤
    光纤有很好的抗电磁干扰特性和很宽的频带,主要用在环形网中

    • 多模光纤(用发光二极管,便宜,定向性较差)
    • 单模光纤(注入激光二极管,定向性好)
    1. 非导向传输媒体
      微波、红外线、激光、卫星通信

    2.2 关于信道的几个基本概念

    1. 通信方式
    • 单向通信(单工)
    • 双向交替通信(半双工)
    • 双向同时通信(全双工)
    1. 基带信号:来自信源的信号。 带通信号:经过载波条之后的信号。基本带通调制方法:调幅(AM)、调频(FM)、调相(PM)

    2.3 信道复用技术

    这部分掌握码分复用计算即可

    • 频分复用FDM (Frequency Division Multiplexing):所有用户在同样的时间占用不同的频率带宽资源。
    • 时分复用TDM(Time Division Multiplexing)则是将时间划分为一段段等长的时分复用帧(TDM 帧)。
    • 统计时分复用 STDM(Statistic TDM)是改进的时分复用,明显地提高信道的利用率。
    • 波分复用 WDM (Wavelength Division Multiplexing):光的频分复用
    • 码分复用 CDM (Code Division Multiplexing)常用的名词是码分多址 CDMA:有很强的抗干扰能力。

    码分多址的计算靠一个例题就基本会了:
    课后习题

    数据链路层

    数据链路层使用的信道主要有以下两种类型:

    • 点对点信道
    • 广播信道

    3.1 使用点对点信道的数据链路层

    1. 链路 :从一个结点到相邻结点的一段物理线路

    2. 数据链路 :把实现这些协议的硬件和软件加载链路上
      现在最常用的方法是使用适配器(即网卡)来实现这些协议的硬件和软件。一般的适配器都包括了数据链路层和物理层这两层的功能。

    3. 三个基本问题:

    • 封装成帧
      就是在一段数据的前后分别添加首部(帧开始符SOH 01)和尾部(帧结束符EOT 04),然后就构成了一个帧。(数据部分<=长度限制MTU)首部和尾部的一个重要作用就是进行帧定界。
      帧定界是分组交换的必然要求
    • 透明传输
      为了达到透明传输(即传输的数据部分不会因为包含SOH和EOT而出错),在数据中出现控制字符“SOH”或“EOT”的前面插入一个转义字符“ESC”(十六进制1B)
      透明传输避免消息符号与帧定界符号相混淆
    • 差错检测
      现实通信链路中比特在传输中会产生差错,传输错误的比特占比称为误码率BER,为了保证可靠性,通常通过循环冗余检验CRC来做差错检测。
      差错检测防止无效数据帧浪费后续路由上的传输和处理资源

    CRC校验在计算机组成与结构中学过不做解释
    会做课后习题7、8题即可

    3.2点对点协议 PPP P70

    1. PPP协议的组成部分
    • 一个将 IP 数据报封装到串行链路的方法
    • 链路控制协议 LCP (Link Control Protocol)
    • 网络控制协议 NCP (Network Control Protocol)
    1. PPP协议的帧格式
      图片来源:blog.csdn.net/cainv89/article/details/50614218
      首部:
    • 首部中的标志字段F(Flag),规定为0x7E(符号0x表示它后面的字符是用十六进制表示的。十六进制的7E的二进制表示是01111110),标志字段表示一个帧的开始。
    • 首部中的地址字段A规定为0xFF(即11111111)。
    • 首部中的控制字段C规定为0x03(即00000011)。
    • 首部中的2字节的协议字段:
      (1)当协议字段为0x0021时,PPP帧的信息字段就是IP数据报。
      (2)当协议字段为0xC021时,PPP帧的信息字段就是PPP链路控制协议LCP的数据。
      (3)当协议字段为0x8021时,PPP帧的信息字段就是网络层的控制数据。

    尾部:

    • 尾部中的第一个字段(2个字节)是使用CRC的帧检验序列FCS。
    • 尾部中的标志字段F(Flag),规定为0x7E(符号0x表示它后面的字符是用十六进制表示的。十六进制的7E的二进制表示是01111110),标志字段表示一个帧的结束。
    1. 透明传输的实现方法
      当信息字段中出现和标志字段一样的比特(0x7E)组合时,就必须采取一些措施使这种形式上和标志字段一样的比特组合不出现在信息字段中。
    • 字节填充——PPP使用异步传输
      当 PPP 用在异步传输时,就使用一种特殊的字符填充法:将每一个 0x7E字节变为(0x7D, 0x5E),0x7D转变成为(0x7D, 0x5D)。ASCII 码的控制字符(即数值小于 0x20 的字符),则在前面要加入0x7D,同时将该字符的编码加以改变。

    • 零比特填充——PPP使用同步传输
      只要发现有5个连续的1,则立即填入一个0
      图片来源:blog.csdn.net/cainv89/article/details/50614218

    这部分考题很简单:见课后习题10

    1. PPP 协议的工作状态:
      链路静止-建立物理层-链路建立-pc发LCP-NCP分配IP地址-链路打开,网络层建立。(释放时倒过来)

    3.3 使用广播信道的数据链路层 P76

    广播信道是一种一对多的通信,局域网使用的就是广播信道

    1. 局域网的数据链路层(局域网的数据链路层被拆分为了两个子层)
    • 逻辑链路控制LLC子层:与传输媒体无关
    • 媒体接入控制MAC子层:和局域网都对LLC子层来说是透明的
    1. CSMA/CD 协议
      以太网采用CSMA/CD协议的方式来协调总线上各计算机的工作。在使用CSMA/CD协议的时候,一个站不可能同时进行发送和接收,因此使用CSMA/CD协议的以太网不可能进行全双工通信而只能进行双向交替通信(半双工)。

    CSMA/CD是载波监听多点接入/碰撞检测(Carrier Sense Multiple Access with Collision Detection)的缩写,下面是CSMA/CD协议的要点:

    • **“多点接入”**就是计算机以多点接入(动态媒体接入控制)的方式连接在一根总线上。

    • **“载波监听”**就是”发送前先监听”,即每一个站在发送数据前先要检测一下总线是否有其他站在发送数据,如有则暂时不要发送数据,要等到信道为空闲。

    • **“碰撞检测”**就是“边发送边监听”,即适配器边发送数据边检测信道上的信号电压的变化情况。当一个站检测到的信号电压摆动值超过一定的门限值时,就认为总线上至少有两个站同时在发送数据,表明产生了碰撞,就要立即停止发送,免得继续浪费网络资源,然后等待一段随机时间后再次发送。

      把总线上的单程端到端传播时延记为τ,A 发送数据后,最迟要经过2τ才能知道自己发送的数据和其他站发送的数据有没有发生碰撞。

    3.4 以太网的MAC层

    1. MAC地址
      “MAC地址”又叫做硬件地址或物理地址,实际上就是适配器地址或适配器标识符EUI-48。高位24位:厂家,低位24位由厂家自行指派

    2. MAC帧的格式
      常用的以太网MAC帧格式有两种标准 : DIX Ethernet V2 标准IEEE 的 802.3 标准。V2使用较多,如图:
      图片来源:见水印blog.csdn.net/ftxc_blog/article/details/12811235
      以太网V2的MAC帧较为简单,有五个字段组成。
      前两个字段分别为6字长的目标地址和源地址字段。第三个字段是2字节的类型字段,用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。后面数据字段46~1500字节,FCS字段4个字节。

    3.5 扩展的以太网

    1. 在物理层扩展—集线器 P91
      现在,双绞线以太网成为以太网的主流类型,扩展主机和集线器之间的距离的一种简单方法就是使用光纤(通常是一对光纤)和一对光纤调制解调器。

    光纤调制解调器的作用,是进行电信号和光信号的转换。

    1. 在数据链路层扩展—网桥(自学习算法)P94
      注:在数据链路层扩展以太网要使用网桥
      网桥工作在数据链路层,它根据MAC帧的目的地址对收到的帧进行转发或过滤。当网桥收到一个帧时,并不是向所有的接口转发这个帧,而是检查此帧的目的MAC地址,然后再确定将该帧转发到哪一个接口,或者是把它丢弃(即过滤)。

    具体可以参考这篇博客:
    http://blog.csdn.net/cainv89/article/details/50651489

    1. 虚拟局域网-交换机P98
      多接口网桥即交换式集线器常称为以太网交换机。利用以太网交换机可以很方便地 实现虚拟局域网,虚拟局域网协议允许在以太网的帧格式中插入一个 4 字节的标识符,称为 VLAN 标记。

    网络层

    4.1 网际协议IP

    网际协议IP是TCP/IP体系中两个最重要的协议之一,也是最重要的因特网标准协议之一。与IP协议配套是用的四个协议:
    1.地址解析协议ARP:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。
    2.逆地址解析协议RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。
    3.网际控制报文协议ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会
    4.网际组管理协议IGMP::用于探寻、转发本局域网内的组成员关系。

    图片来源网络

    4.1.1 虚拟互连网络

    因为没有一种单一的网络能够适应所有的用户需求,所以网络互连也变得困难,所以需要一些中间设备:

    • 物理层中间设备:转发器(repeater)
    • 数据链路层中间设备:网桥或桥接器(bridge)
    • 网络层中间设备:路由器(router)
    • 网络层以上的中间设备:网关(gateway)

    具体各层的设备说明可以看这篇博客“网络设备”部分:
    http://blog.csdn.net/hushhw/article/details/78489470

    4.1.2 分类的IP地址 P113

    IP 地址就是给每个连接在因特网上的主机(或路由器)分配一个在全世界范围是唯一的 32 位的标识符。由因特网名字与号码指派公司ICANN进行分配。

    IP地址编制方法的三个阶段:

    • 分类的IP地址
    • 子网的划分
    • 构成超网

    每一类地址都由 网络号 net-id和 主机号 host-id组成
    主机号中全0表示网络地址,全1表示广播地址

    图片来源网络
    图片来源网络

    • A类
    1. 由1字节的网络地址和3字节主机地址组成
    2. 网络地址的最高位必须是“0“,可指派的网络数为128-2,减2的原因是0.0.0.0对应“本网络”,另外一个是127.0.0.1是本地软件的回环地址,用于测试自己电脑IP地址是否可用。
    3. 地址范围1.0.0.0到126.255.255.255
    4. 最大主机数为2563-2=16777214台,减2的原因是全0的主机号字段代表该IP地址是"本主机“,全1表示”所有的“,表示该网络上的所有主机
    • B类
    1. 由2字节的网络地址和2字节主机地址组成
    2. 网络地址的最高位必须是“10”,可指派的网络数为 214 -1,因为最高位为10,所以不存在全0全1的情况,但是B类网络地址128.0.0.0是不指派的,可指派最小网络地址是128.1.0.0
    3. 地址范围128.0.0.0-191.255.255.255
    4. 最大主机数为2562-2=65534台,减2同样是全0全1情况。
    • C类
    1. 由3字节的网络地址和1字节主机地址组成
    2. 网络地址的最高位必须是“110”,可指派的网络数为221-1,192.0.0.0不指派,最小可指派网络地址是192.0.1.0
    3. 地址范围192.0.0.0-223.255.255.255
    4. 最大主机数为256-2=254台,减2同样是全0全1情况。
    • D类是多播地址,“lll0”开始

    • E类地址保留为今后使用,“llll0”开头

    4.1.3 IP地址与硬件地址

    硬件地址是数据链路层和物理层使用的地址
    IP地址是网络层和以上各层使用的地址,是一种逻辑地址

    IP地址放在IP数据报的首部,而硬件地址放在MAC帧的首部。当数据报放入数据链路层的MAC帧中后,整个IP数据报就成为MAC帧的数据,因而在数据链路层看不见数据报的IP地址。

    4.1.4 地址解析协议ARP

    ARP是解决同一个局域网上的主机或路由器的 IP 地址和硬件地址的映射问题。

    每一个主机都设有一个ARP高速缓存(ARP cache),里面有所在的局域网上的各主机和路由器的 IP 地址到硬件地址的映射表。
    如果所要找的主机和源主机不在同一个局域网上,那么就要通过 ARP 找到一个位于本局域网上的某个路由器的硬件地址,然后把分组发送给这个路由器,让这个路由器把分组转发给下一个网络。

    4.1.5 IP数据报

    1. IP数据报格式
      一个IP数据报由首部(20 字节+可选字段)和数据两部分组成
      图片来源网络
      图片来源网络

    2. 分组转发
      (1) 从数据报的首部提取目的主机的 IP 地址 D, 得出目的网络地址为 N。
      (2) 若网络 N 与此路由器直接相连,则把数据报直接交付目的主机 D;否则是间接交付,执行(3)。
      (3) 若路由表中有目的地址为 D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
      (4) 若路由表中有到达网络 N 的路由,则把数据报传送给路由表指明的下一跳路由器;否则,执行(5)。
      (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)
      (6) 报告转发分组出错。

    4.2 划分子网 P128

    1. 两级IP地址缺陷:

    2. IP 地址空间的利用率有时很低。

    3. 给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。

    4. 两级的 IP 地址不够灵活

    5. 子网划分的基本思路:

    6. 划分子网纯属一个单位内部的事情,单位对外仍然表现为没有划分子网的网络。

    7. 划分子网的方法是从主机号借用若干个位作为子网号。

    8. 路由器在收到IP数据报后,按目标网络号和子网号定位目标子网

    9. 子网掩码
      子网掩码是一个网络或一个子网的重要属性

    这里要会已知IP地址,子网掩码,求网络地址

    4.3 构造超网(无分类编址CIDR)

    1. **CIDR(无分类域间路由选择)**的主要特点:
    • CIDR消除了传统的A、B、C类地址以及划分子网的概念,用网络前缀代替网络号和子网号,后面的部分指明主机。因此,CIDR使IP地址从三级编址(使用子网掩码),又回到了两级编址,但这已是无分类的两级编址。
    • CIDR把网络前缀相同的连续的IP地址组成一个”CIDR地址块”只要知道CIDR地址块中的任何一个地址,就可以知道这地址块的起始地址(即最小地址)和最大地址,以及地址块中的地址数。
    1. 地址掩码:是一连串的1和0组成,而1的个数救赎网络前缀长度。在斜线记法中。斜线后面的数字就是地址掩码中1的个数。

    2. 构成超网:由于一个CIDR地址块中含有很多地址,所以在路由表中就利用CIDR地址块来查找目标网络,这种地址的聚合常称为路由聚合,也称构成超网。

    4.4 网际控制报文协议ICMP

    为了更有效地转发IP数据报和提高交付成功的机会,在网际层使用了ICMP,ICMP允许主机或路由器报告差错情况和提供有关异常情况的报告。

    1. ICMP报文的种类
    • ICMP差错报告报文
    • ICMP询问报文
    1. ICMP 差错报告报文共有 5 种:
    • 终点不可达
    • 源点抑制(Source quench)
    • 时间超过
    • 参数问题
    • 改变路由(重定向)(Redirect)
    1. ICMP 询问报文有两种:
    • 回送请求和回答报文
    • 时间戳请求和回答报文

    4.5 路由选择协议

    1. 两大类路由选择协议:
    • 内部网关协议 IGP:一个自治系统内部使用的路由选择协议。有多种协议,如 RIP 和OSPF 协议。
    • 外部网关协议EGP:一个自治系统的边界,将路由选择信息传递到另一个自治系统中。目前使用的就是BGP

    RIP协议的优缺点:

    • RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。
    • RIP 协议最大的优点就是实现简单,开销较小。
    • RIP 限制了网络的规模,它能使用的最大距离为 15(16 表示不可达)。
    • 路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。

    书上例题P149 例4-5
    更新路由表

    RIP是一种分布式的基于距离向量的路由选择协议,其主要特点:
    (1)仅和相邻路由器交换信息。
    (3)按固定的时间间隔交换路由信息,例如,每隔30秒。

    OSPF最主要的特征就是使用分布式的链路状态协议,其主要特点:
    (1)使用洪泛法向本自治系统中所有路由器发送信息。
    (2)发送的信息是与本路由器相邻的所有路由器的链路状态。
    (3)只有当链路状态发生变化时,路由器才用洪泛法向所有路由器发送此信息。

    BGP是不同自治系统的路由器之间交换路由信息的协议,它采用路径向量路由选择协议,其主要特点:
    (2)自治系统AS之间的路由选择必须考虑有关策略。
    (3)BGP只能力求寻找一条能够到达目的网络且比较好的路由,而并非要寻找一条最佳路由。

    运输层

    5.1 运输层协议概述

    1. 运输层功能
    • 运输层为应用进程之间提供端到端的逻辑通信(但网络层是为主机之间提供逻辑通信)
    • 运输层还要对收到的报文进行差错检测
    • 运输层需要有两种不同的运输协议,即面向连接的 TCP 和无连接的 UDP
    1. 运输层的两个主要协议
      TCP/IP 的运输层有两个不同的协议:
    • 用户数据报协议 UDP(User Datagram Protocol)
    • 传输控制协议 TCP(Transmission Control Protocol)

    UDP 在传送数据之前不需要先建立连接。对方的运输层在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 是一种最有效的工作方式。

    TCP 则提供面向连接的服务。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销。这不仅使协议数据单元的首部增大很多,还要占用许多的处理机资源。

    图片来源网络

    1. 运输层的端口
      TCP/IP的运输层的端口用一个 16 位端口号进行标志
      端口号只具备本地意义,即端口号只是为了标志本计算机应用层中的各进程。

    客户发起通讯请求时,必须先知道对方服务器的IP地址和端口号,运输层的端口号分为下面三大类:

    • 熟知端口号,数值一般为 0~1023。
      一些常用的数值端口号:
      FTP 21
      LELNET 23
      SMTP 25
      DNS 53
      TFTP 69
      HTTP 80
      SNMP 161
      SNMP(trap) 162

    • 登记端口号,数值为1024~49151,为没有熟知端口号的应用程序使用的。

    • 客户端口号或短暂端口号,数值为49152~65535,留给客户进程选择暂时使用。

    5.2 用户数据报协议 UDP

    1. UDP的主要特点:
    • UDP 是无连接的,即发送数据之前不需要建立连接。
    • UDP 使用尽最大努力交付,即不保证可靠交付,同时也不使用拥塞控制
    • UDP 是面向报文的
    • UDP 没有拥塞控制,很适合多媒体通信的要求。
    • UDP 支持一对一、一对多、多对一和多对多的交互通信
    • UDP 的首部开销小,只有 8 个字节

    5.3 传输控制协议 TCP

    1. TCP的主要特点:
    • TCP 是面向连接的运输层协议
    • 每一条 TCP 连接只能有两个端点(endpoint),每一条 TCP 连接只能是点对点的(一对一)
    • TCP 提供可靠交付的服务
    • TCP 提供全双工通信
    • 面向字节流

    5.4 可靠运输的工作原理

    展开全文
  • 计算机网络谢希仁第七版 课后答案

    万次阅读 多人点赞 2019-09-03 23:13:25
    谢希仁计算机网络第七版课后答案 第一章 概述 1-01 计算机网络向用户可以提供那些服务?答: 连通性和共享 1-02 简述分组交换的要点。答:(1)报文分组,加首部(2)经路由器储存转发(3)在目的地合并 1-03 试从多...
  • 计算机网络 OSI 网络模型的分布:
  • 计算机三级网络技术考过指南

    万次阅读 多人点赞 2018-03-10 19:18:36
    计算机三级网络技术考过指南 原文链接:计算机三级网络技术考过指南 题库下载链接(50积分是CSDN上调的,不是我上传时设置的。更新版本请大家自行搜索):计算机三级网络技术无纸化考试模拟软件(2018.3) 用...
  • 本文主要对网络通讯中的硬件组网设备,如中继器、集线器、网桥、二层交换机、路由器和三层交换机的原理进行分析。组网设备是网络通讯的基础,了解组网设备是学习计算机网络不可缺少的环节。
  • 计算机网络试题库 1单项选择题 1.1以下属于物理层的设备是(A) A.中继器 B.以太网交换机 C.桥 D.网关 1.2在以太网中,是根据_(B)__地址来区分不同的设备的. A. LLC地址 B. MAC地址 C. IP地址D. IPX地址 1.3下面...
  • 计算机网络

    千次阅读 2017-10-06 18:36:33
    1发展 编辑 ...近两年,随着我国国民经济的快速发展以及国际金融危机的逐渐消退,计算机网络设备制造行业获得良好发展机遇,中国已成为全球计算机网络设备制造行业重点发展市场。  根据《 20
  • 计算机网络由哪些硬件设备组成?

    千次阅读 2020-02-07 05:01:39
    网络是计算机或类似计算机网络设备的集合,它们之间通过各种传输介质进行连接。无论设备之间如何连接,网络都是将来自于其中一台网络设备上的数据,通过传输介质传输到另外一台网络设备上。本节将基...
  • 计算机网络知识点汇总(谢希仁 第七版)

    万次阅读 多人点赞 2018-09-18 17:34:34
    三网——电信网络,有线电视网络,计算机网络 网络融合——将三种网络的功能融合在一起 计算机网络:也是一种通信基础设施,与其他两种网络不同的是计算机网络的端设备是功能强大的计算机 计算机网络的两个重要的...
  • 计算机网络中,有几个通信设备或者说网络设备名词出现的频率相当的高,它们是:中继器、集线器、网桥、交换机、路由器和网关。现在梳理一下它们各自的含义和作用,以及它们之间的联系。这些网络设备对于实际工作中并...
  • 计算机网络笔记Part1 概述

    万次阅读 多人点赞 2020-06-26 21:04:54
    计算机网络中,指的是网络设备所支持的最高速度,单位同速率,是理想条件下最高速率 吞吐量 指的是单位时间内通过某个网络的数据总量 个人理解 速率就是实际网速,带宽是理论网速(长城宽带警告),吞吐量是一个或...
  • 计算机网络常见硬件设备

    万次阅读 2018-07-22 18:31:22
    转自:https://blog.csdn.net/trochiluses/article/details/21070807?locationNum=2原文有错误,在交换机哪里 1.中继器  信号在传输过程中会不断... 试想,如果每个设备只有一个对外接口,那么意味着只能建立一...
  • 计算机网络核心知识点总结&面试笔试要点

    万次阅读 多人点赞 2019-08-21 22:22:23
    计算机网络之基础篇 一、计算机网络概述  1.什么是计算机网络   计算机网络主要由一些通用的、可编程的硬件互连而成,通过这些硬件,可以传送不同类型的数据,并且可以支持广泛和日益增长的应用。  2.计算机网络...
  • 《王道计算机网络》学习笔记总目录+思维导图

    万次阅读 多人点赞 2020-03-07 21:47:00
    本篇文章是对《2021王道计算机网络》所有知识点的笔记总结归档,会一直更新下去 之后我也会写操作系统、计算机网络、数据结构与算法、Java、Linux等底层和应用层的技术文章,并总结目录 希望在自己可以复习的同时,...
  • 计算机网络的 89 个核心概念

    万次阅读 多人点赞 2021-06-28 09:51:56
    Hey guys,这里是 cxuan,欢迎你...主机:计算机网络上任何一种能够连接网络的设备都被称为主机或者说是端系统,比如手机、平板电脑、电视、游戏机、汽车等,随着 5G 的到来,将会有越来越多的终端设备接入网络。 通
  • 计算机网络实验

    万次阅读 多人点赞 2017-06-16 00:54:44
    计算机网络实验报告
  • 计算机网络1

    千次阅读 2016-11-14 16:37:05
    网络协议是为了使计算机网络中的不同的设备进行数据通信而预先制定一套通信双方相互了解和共同遵守的格式约定,网络协议是一系列规定和约定的规范性的描述,定义了网络设备之间如何进行信息交换。网络协议是计算机...
  • 计算机网络基础知识总结

    万次阅读 多人点赞 2020-10-20 07:40:54
    如果说计算机把我们从工业时代带到了信息时代,那么计算机网络就可以说把我们带到了网络时代。随着使用计算机人数的不断增加,计算机也经历了一系列的发展,从大型通用计算机 -> 超级计算机 -> 小型机 -> ...
  • 第一层 (物理层) 集线器 中继器 第二层 (数据链路层) 二层交换机 网桥  第三层 (网络层) 路由器 三层交换机
  • 计算机网络题库

    万次阅读 2020-03-09 09:38:04
    计算机网络试题库 1单项选择题 1.1 以下属于物理层的设备是(A) A. 中继器   B. 以太网交换机  C. 桥  D. 网关 1.2 在以太网中,是根据_(B)__地址来区分不同...
  • 计算机网络---网络互连与常用设备

    千次阅读 2018-08-27 21:20:30
     网络互连是为了将两个以上具有独立自治能力、同构或异构的计算机网络连接起来,实现数据流通,扩大资源共享的范围,或者容纳更多的用户。网络互连包括局域网与局域网的互连、局域网与广域网的互连、广域网与广域网...
  • 计算机网络协议——通信协议综述

    万次阅读 多人点赞 2019-09-03 23:20:58
    通信协议综述概述一、为什么学习网络协议1.1 常见的网络协议二、网络分层的真正含义2.1 为什么网络要分层?2.2 浏览点击请求过程2.3 揭秘层与层之间的关系三、ifconfig 命令行的由来3.1 ip地址3.2 无类型域间选路...
  • 计算机网络是一个将分散的、具体独立功能的计算机系统,通过通信设备与线路连接起来,由功能完善的软件实现资源共享与信息传递的系统。(计算机网络是互连的、自治的计算机集合) 互连:互联互通,通信链路 自治:...
  • 计算机网络数据是如何传输的?

    万次阅读 2019-05-28 17:33:29
    计算机网络是个非常复杂的系统,两个相互通信的计算机必须要能高度协调工作。而且不同网络体系结构的用户都需要通信,而且要做到在全世界范围的计算机都可以高效进行通信。于是OSI(Open Systems Interconnection ...
  • 计算机网络原理(第一章)课后题答案

    万次阅读 多人点赞 2020-09-13 14:45:54
    1.什么是计算机网络计算机网络是互联、自治的计算机集合 自治:计算机系统彼此独立,不存在主从或控制与被控制的关系 互联:利用通信线路链接,连接相互独立的计算机系统 2.网络协议的三要素是什么?每个要素...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 387,568
精华内容 155,027
关键字:

属于计算机网络设备的是