精华内容
下载资源
问答
  • 网上有很多老铁询问什么是关键,看完以下内容,你就完全明白了。 关键的作用: 简单来说关键的作用是让原本静画面动起来。 为什么做关键功能: 我们发现很多视频或图片无法很好的突出显示画面关键...

     

    一个必须要学会的巧影功能,就是关键帧,用好它你的视频更有动感!!!

     

    网上有很多老铁询问什么是关键帧,看完以下内容,你就完全明白了。

     

    关键帧的作用:

          简单来说关键帧的作用是让原本静帧画面动起来

    为什么做关键帧功能:

         我们发现很多视频或图片无法很好的突出显示画面关键部位内容,所以我们加入关键帧,可以添加动作特效,满足用户自定义效果。

    关键帧的效果:

         我们APP支持画面动作设置,可以实现画面移动、缩小、放大、旋转、不透明度等动作特效。

    我们的APP关键帧功能怎么用:

         首先打开APP,点击视频编辑并添加素材,点击添加的视频时间轴进行选中,然后在视频头部添加第一个关键帧,然后缩小第一个关键帧的画面大小,降低画面不透明度;接着在视频尾部添加第二个关键帧,放大第二个关键帧的画面大小,增大画面不透明度;点击播放预览,这时静帧画面会在第一和第二两个关键帧点间慢慢放大画面,不透明度也慢慢加大,这就实现了动起来的效果。

     

    请看关键帧举例设置演示视频:

    蓝松科技短视频SDK关键帧演示视频

     

    展开全文
  • 同步,同步是什么意思

    千次阅读 2019-04-08 12:57:45
    同步,同步是什么意思 在数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输的。因此,群同步信号的频率很容易由位同步信号经分频而得出。但是,每个群的开头和末尾...

    帧同步,帧同步是什么意思
    在数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输的。因此,群同步信号的频率很容易由位同步信号经分频而得出。但是,每个群的开头和末尾时刻却无法由分频器的输出决定。群同步的任务就是在位同步信息的基础上,识别出数字信息群(“字”或“句”)的起止时刻,或者说给出每个群的“开头”和“末尾”时刻。
    群同步有时也称为帧同步。为了实现群同步,可以在数字信息流中插入一些特殊码字作为每个群的头尾标记,这些特殊的码字应该在信息码元序列中不会出现,或者是偶然可能出现,但不会重复出现,此时只要将这个特殊码字连发几次,收端就能识别出来,接收端根据这些特殊码字的位置就可以实现群同步。本节将主要讲述插入特殊码字实现群同步的方法。
    插入特殊码字实现群同步的方法有两种,即连贯式插入法和间隔式插入法。在介绍这两种方法以前,先简单介绍一种在电传机中广泛使用的起止式群同步法。
    起止同步法
    目前在电传机中广泛使用的同步方法,就是起止式群同步法,下面就以电传机为例,简要地介绍一下这种群同步方法的工作原理。
    电传报文的一个字由7.5个码元组成,假设电传报文传送的数字序列为10010,则其码元结构如图1所示。从图中可以看到,在每个字开头,先发一个码元的起脉冲(负值),中间5个码元是信息,字的末尾是1.5码元宽度的止脉冲(正值),收端根据正电平第一次转到负电平这一特殊规律,确定一个字的起始位置,因而就实现了群同步。由于这种同步方式中的止脉冲宽度与码元宽度不一致,就会给同步数字传输带来不便。另外,在这种同步方式中,7.5个码元中只有5个码元用于传递信息,因此编码效率较低。但起止同步的优点是结构简单,易于实现,它特别适合于异步低速数字传输方式。

    连贯式插入法
    连贯式插入法就是在每群的开头集中插入群同步码字的同步方法。作群同步码字用的特殊码字首先应该具有尖锐单峰特性的局部自相关特性,其次这个特殊码字在信息码元序列中不易出现以便识别,最后群同步识别器需要尽量简单。目前已经找到的最常用的群同步码字,就是“巴克”码。
    1.巴克码
    巴克码是一种具有特殊规律的二进制码字。它的特殊规律是:若一个n位的巴克码{X1,X2,X3,…Xn},每个码元 只可能取值+1或-1,则它必然满足条件
    式(1)中,R(j)称为局部自相关函数。从巴克码计算的局部自相关函数可以看到,它满足作为群同步码字的第一条特性,也就是说巴克码的局部自相关函数具有尖锐单峰特性,从后面的分析同样可以看出,它的识别器结构非常简单。目前人们已找到了多个巴克码字,具体情况如表1所示。表中+表示+1,–表示–1。
    以n = 7的巴克码为例,它的局部自相关函数计算结果如下

    同样可以求出j = 3、4、5、6、7,以及j = -1、-2、-3、-4、-5、-6、-7时R(j)的值为

    根据式(2)计算出来的这些值,可以作出7位巴克码关于R(j)与j的关系曲线,如图2。由图2可以看出,自相关函数在j=0时具有尖锐的单峰特性。局部自相关函数具有尖锐的单峰特性正是连贯式插入群同步码字的主要要求之一。

    2.巴克码识别器
    巴克码识别器是比较容易实现的,这里以七位巴克码为例,用7级移位寄存器、相加器和判决器就可以组成一识别器,具体结构如图7-16所示。7级移位寄存器的1、0端输出按照1110010的顺序连接到相加器输入,接法与巴克码的规律一致。当输入数据的“1”存入移位寄存器时,“1”端的输出电平为+1,而“0”端的输出电平为-1;反之,存入数据“0”时,“0”端的输出电平为+1,“1”端的电平为-1。
    当发送端送来的码元自右向左进入时,首先考虑一个简单的情况:假设只计算巴克码(1110010)进入的几个移位寄存器的输出,此时将有巴克码进入一位,二位……七位全部进入,第一位移出尚留六位……前六位移出只留一位等13种情况。经过计算可得相加器的输出就是自相关函数,设码元进入移位寄存器数目为a,码元尚留在移位寄存器的数目是b,这是就可以得到a、b和j之间的关系式

    根据上述关系可以得到表2,它反映了相加器输出与a、b之间的关系。

    实际上述群同步码的前后都是有信息码的,具体情况如图4(a)所示,在这种情况下巴克码识别器的输出波形如图4(b)所示。

    当七位巴克码在图4中的t1时刻,正好已全部进入了7级移位寄存器,这时7个移位寄存器输出端都输出+1,相加后得最大输出+7,如图4(b)所示,而判决器输出的两个脉冲之间的数据,称为一群数据或称为一帧数据。
    当然,对于信息而言,由于其具有的随机特性,可以考察一种最不利的情况:即当巴克码只有部分码在移位寄存器时,信息码占有的其它移位寄存器的输出全部是+1,在这样一种对于群同步最不利的情况下,相加器的输出将如表3所示。由此可得到相加器的输出波形如图5所示。图中横坐标用a表示,由a、b和j之间的关系可知,a=14-b。

    由图5可以看出,如果判决电平选择为6,就可以根据a=7时相加器输出的7,大于判决电平6而判定巴克码全部进入移位寄存器的位置。此时识别器输出一个群同步脉冲,表示群的开头。一般情况下,信息码不会正好都使移位寄存器的输出均为+1,因此实际上更容易判定巴克码全部进入移位寄存器的位置。后面还要讲到如果巴克码中有误码时,只要错一个码,当a=7时相加器输出将由7变为5,低于判决器的判决电平。因此,为了提高群同步的抗干扰性能,防止漏同步,判决电平可以改为4。但改为4以后容易发生假同步,这些问题在性能分析时要进一步讨论。
    间歇式插入法
    在某些情况下,群同步码字不再是集中插入在信息码流中,而是将它分散地插入,即每隔一定数量的信息码元,插入一个群同步码字。这种群同步码字的插入方式被称为间歇式插入法。
    当然集中式插入法和间歇式插入法在实际系统当中都有应用,例如在32路数字电话PCM系统中,实际上只有30路通电话,另外两路中的一路专门作为群同步码传输,而另一路作为其它标志信号用,这就是连贯式插入法的一个应用实例。而在24路PCM系统中,群同步则采用间歇式插入法。在这个系统中,一个抽样值用8位码表示,此时24路电话都抽样一次共有24个抽样值,192(24×8=192)个信息码元。192个信息码元作为一帧,在这一帧插入一个群同步码元,这样一帧共193个码元。24路PCM系统如图7-19所示:
    由于间歇式插入法,是将群同步码元分散的插入倒信息流中,因此,群同步码码型选择有一定的要求,其主要原则是:首先要便于收端识别,即要求群同步码具有特定的规律性,这种码型可以是全“1”码、“1”“0”交替码等;其次,要使群同步码的码型尽量和信息码相区别。例如在某些PCM多路数字电话系统中,用全“0”码代表“振铃”,用全“1”码代表“不振铃”,这时,为了使群同步码字与振铃相区别,群同步码就不能使用全“1”或全“0”。
    收端要确定群同步码的位置,就必须对接收的码进行搜索检测。一种常用检测方法为逐码移位法,它是一种串行的检测方法;另一种方法是RAM帧码检测法,它是利用RAM构成帧码提取电路的一种并行检测方法。这里将介绍逐码移位法的基本原理和实现同步的过程。

    逐码移位法的基本原理就是,由位同步脉冲(位同步码)经过n次分频以后的本地群码(频率是正确的,但相位不确定)与接收到码元中间歇式插入的群同步码进行远码移位比较,使本地群码与发送来的群同步码同步。其原理结构框图如图7:

    图7中异或门、延迟一位电路和禁门是专门用来扣除位同步码元以调整本地群码相位的,具体过程可以通过图8看到。
    设接收信码(波形c)中的群同步码位于画斜线码元的位置,后面依次安排各路信息码1、2、3(为简单起见,只包含三路信息码)。如果系统已经实现了群同步,则位同步码(波形a)经四次分频后,就可以使得本地群码的相位与收信码中的群同步码的相位一致。现在假设开始时如波形d图所示,本地群码的位置与波形c收信码中的群码位置相差两个码元位。为了易于看出逐码移位法的工作过程,假设群码为全“1”码,其余的信息码均与群码不同,为“0”。在第一码元时间,波形c与d不一致,原理图中的异或门有输出(波形e),经延迟一码元后,得波形f加于禁门,扣掉位同步码的第2个码元(波形b的第2个码元位置用加一叉号表示),这样分频器的状态在第2码元期间没有变化,因而分频器本地群码的输出仍保持和第1码元时相同。这时,它的位置只与收信码中的群码位置相差一位了(见波形d1)。

    类似地在第2码元时间,c又和d1进行比较,产生码形e1和f1,又在第3码元位置上扣掉一个位同步码,使本地群码的位置又往后移一位(波形d2)。至此以后,收信码中的群码与本地群码的位置就完全一致了,因而就实现了群同步。同时,也就提供了各路的定时信号。
    从图8表示的群同步建立原理来看,如果信息码中所有的码都与群码不同,那么最多只要连续经过N次调整,经过NTb的时间就可以建立同步了。但实际上信息码中“l”、“0”码均会出现,当出现“1”码时,在上面群同步过程的例子中,第1个位同步码对应的时间内信息码为“1”,图7-21中异或门输出 e=0,f=0禁门不起作用,不扣除第2位同步码,因此本地群码不会向右移展宽,这一帧调整不起作用,一直要到下一帧才有可能调整。假如下一帧本地群码d还是与信码中“1”码相对应,则调整又不起作用。当信息码中1、0码等概出现时,即P(1)=P(0)=0.5时,经过计算,群同步平均建立的时间近似为 (5)
    群同步系统的性能指标
    对于群同步系统而言,希望其建立的时间要短、建立同步以后应该具有较强的抗干扰能力。因此,在通常情况下,用以下三个性能指标来表示群同步性能的好坏,它们是:(1)漏同步概率P1;(2)假同步概率P2;(3)群同步平均建立时间ts。
    不同形式的同步系统,性能自然也不同。在此将主要分析集中插入方式的群同步系统的性能。
    1.漏同步概率P1
    由于噪声和干扰的影响,会引起群同步码字中一些码元发生错误,从而使识别器漏识别已发出的群同步码字,出现这种情况的概率称为漏识概率,用符号 来表示。以7位巴克码识别器为例,设判决门限为6,此时7位巴克码中只要有一位码发生错误,当7位巴克码全部进入识别器时,相加器输出就由7变5,小于判决门限6,这时就出现了漏同步情况,因此,只有一位码也不错才不会发生漏同步。若在这种情况下,将判决门限电平降为4,识别器就不会漏识别,这时判决器容许7位同步码字中有一个错误码元。
    在信息码中也可能出现与所要识别的群同步码字相同的码字,这时识别器会把它误认为群同步码字而出现假同步。出现这种情况的概率就被称为假同步概率,用符号P2表示。
    因此,计算假同步概率P2计算信息码元中能被判为同步码字的组合数与所有可能的码字数之比。设二进制信息码中1和0码等概出现,也就是P(1)=P(0)=0.5,则由该二进制码元组成n位码字的所有可能的码字数为2n个,而其中能被判为同步码字的组合数也与m有关,这里m表示判决器容许群同步码字中最大错码数,若m=0时,只有 个码字能识别;若M=1,则有 个码字能识别。以此类推,就可求出信息码元中可以被判为同步码字的组合数,这个数可以表示为 ,由此可得假同步概率的表达式为

    从式(6)和式(7)可以看到,随着m的增大,也就是随着判决门限电平降低,P1减小,但P2将增大,所以这两项指标是相互矛盾的。所以,判决门限的选取要兼顾漏同步概率和假同步概率。
    3.群同步平均建立时间ts
    对于连贯式插入的群同步而言,设漏同步和假同步都不发生,也就是P1 = 0和P2 = 0。在最不利的情况下,实现群同步最多需要一群的时间。设每群的码元数为N(其中m位为群同步码),每码元时间为Tb,则一群码的时间为NTb。考虑到出现一次漏同步或一次假同步大致要多花费 的时间才能建立起群同步,故群同步的平均建立时间大致为:

    群同步的保护
    1.连贯式插入法中的群同步保护
    连贯式插入法中的群同步保护电路如图9。在群同步尚末建立时,系统处于捕捉态,状态触发器C的Q端为低电平,群同步码字识别器的判决门限电平较高,因而就减小了假同步概率P2。这时在保护电路中,由于把判决门限电平调高,假同步的概率已很小,故保护电路中的n分频器被置零,禁止位同步n分频后输出。这里的n表示一帧数据的长度,因此,在置零信号无效时,位同步n分频后可以输出一个与群同步同频的信号,但脉冲位置不能保证与群同步脉冲位置相同,而这个脉冲位置也正是需要捕捉态确定的。

    从图9可以看到,为了减小假同步的概率,必须连续 次接收的码元与本地群码相一致,才被认为是建立了同步,采用这种方法可使假同步的概率大大减小。
    状态触发器C在同步末建立时处于“捕捉态”(此时Q端为低电平)。本地群码和收码只有连续n1次一致时,n1计数电路才输出一个脉冲使状态触发器的Q端由低电平变为高电平,群同步系统就由捕捉态转为维持态,表示同步已经建立。这样收码就可通过与门1加至解调器。偶然的一致是不会使状态触发器改变状态的,因为 次中只要有一次不一致,就会使计数电路置“0”。
    同步建立以后,可以利用状态触发器C和n2计数电路,来防止漏同步以提高同步系统的抗干扰能力。一旦转为维持状态以后,触发器C的Q反端变为低电乎,将与门2封闭。这时即使由于某些干扰使e有输出,也不会调整本地群码的相位。如果是真正的失步,e就会不断地将输出加到n2计数电路,同时e的反也不断将 计数电路置“0”。这时n1计数电路也不会再有输出加到n2计数电路的置“0”端上,而当n2计数电路输入脉冲的累计数达到n2时,就输出一个脉冲使状态触发器由维持态转为捕捉态,C触发器的Q反端转为高电平。这样,一方面与门2打开,群同步系统又重新进行逐码移位,另一方面封闭与门1,使解调器暂停工作。由此可以看出,将逐码移位法群同步系统划分为捕捉态和维持态后,既提高了同步系统的可靠性,又增加了系统的抗干扰能力。

    展开全文
  • B、I和P是什么意思? I 对此画面的内容进行完整压缩,只有此的数据完全记载此画面的内容。此类似于JPEG。   P 与其前面的I的比较差分, P只记录了差分信息。相对于I具有较高的压缩率。...
    什么是B帧、I帧和P帧?B帧、I帧和P帧是什么意思?


    I 帧 对此画面的内容进行完整压缩,只有此帧的数据完全记载此画面的内容。此帧类似于JPEG。
      
    P 帧 与其前面的I帧的比较差分, P帧只记录了差分信息。相对于I帧具有较高的压缩率。
      
    B 帧 与其前后的I, P帧的比较差分,B帧只记录了差分信息。与P帧比较则具有更高的压缩率。


    在实际压缩时,会采取各种算法减少数据的容量,其中IPB就是最常见的。

    I表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)

    P表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)

    如果你明白P的意思,那么B就比较好理解了。

    B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况,但我这样说简单些,有兴趣可以看看我上面提供的资料),换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。

    以下是他们的显示顺序:

    I B B B P B B B P B B B....

    其中I 帧 基本的压缩率很低, 而p帧是由I帧或P帧预测, B帧由I和P共同预测出来.   从而P和B帧实际只是相邻两帧的差值.

    但是在传输时的顺序却和显示顺序不一致:

    I P B B B P B B B P B B B...



    B 帧在 MPEG-4 中有四种参考模式,如果是同时参考前后的画面压缩,则记录的是 和 (前画面 pixel 值 + 后画面 pixel 值)/2 的差值,也就是 和 「前后画面的平均」的差值。所以记录的差值个数和 P 帧一样,只有一个,没有增加。


    而因为 B 帧位于前后画面的中间,以「前后画面的平均」,也就是「前后画面的中间值」来作为预测数值(预测 B 帧的 pixel 数值为多少?如果有误差,再记录差值),这样这个预测数值会比单独使用前一个画面来预测,更接近目前真正的 B 帧的数值,可想而知,如此所需要记录的差值就会很小甚至可以根本不用记录,所以便可以省下很多的 bits,提高压缩率。


    例如 亮度变化 -> I B P  7 8 9


    如果 B 只参考前一个画面压缩,则需记录差值 1。如果以 (I + P)/2 压缩,则差值为 0,不需记录差值。(虽然要记录两个矢量,不过矢量也可以再做进一步预测压缩,总的来说,还是会比单独参考前一个画面压缩来得小很多)如果画面不是这样变化怎么办?通常来讲画面都会是这样变化,如果不是这样变化我们就不使用 B 帧就算变化不是如此规则,换个方式想,B 帧可以参考的画面还是比 P 帧多,再怎么找,也还是 B 帧可以找到误差更小的方块来使用的机率大(因为可以选择、参考的对象较多),所以 B 帧还是比 P 帧的压缩率来得高。(而且高很多,差距非常大)


    除了压缩率以外,B 帧对画质的影响.....是有的,因为 B 帧这种参考前后画面的特性,等于有内插(interpolation)的效果,所以可以减少噪讯。


    MPEG-4 中的 B 帧,也是非常具有威力的,除了以前的三种参考模式,还有 Direct Mode,连矢量的纪录都省了。虽然 MPEG-4 之中有 4MV 的功能,可以记录四个矢量,不过编码器在压缩的时候会判断,到底是使用 4MV 压出来的结果小,还是使用传统的方法压出来的结果小?


    如果使用传统的方法压出来的结果小,便使用传统的方法记录,如果使用 4MV 压出来的结果小,才使用 4MV 来记录。


    (ps. 4MV 不会用在 backward 预测)


    您可以观察 VirtualDub 压缩时画面上显示的蓝线,您会发现蓝线和蓝线之间通常会有很短的蓝线插在中间,造成空隙,而且差距很大,这个就是夹在 P 之间的 B 在发挥压缩威力如果是用 DivX 5 更明显,因为 DivX 5 只能够使用 IBPBPBPB... 这种一个 B 接一个 P 的形式,所以画面上的蓝线就是「一长一短、一长一短」这样排列。


    关键帧和过渡帧的联系与区别


    1、两个关键帧的中间可以没有过渡帧(如逐帧动画),但过渡帧前后肯定有关键帧,因为过渡帧附属于关键帧;


    2、关键帧可以修改该帧的内容,但过渡帧无法修改该帧内容。


    3、关键帧中可以包含形状、剪辑、组等多种类型的元素或诸多元素,但过渡帧中对象只能是剪辑(影片剪辑、图形剪辑、按钮)或独立形状
    展开全文
  • IPB以及IDR

    千次阅读 2015-07-23 14:11:12
     P是向前搜索的意思。B是双向搜索。 他们都是基于I来压缩数据。 I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面)P表示的是这一跟之前的一个关键

           视频压缩中,每帧代表一幅静止的图像。而在实际压缩时,会采取各种算法减少数据的容量,其中IPB就是最常见的。 

            简单地说,I帧是关键帧,属于帧内压缩。就是和AVI的压缩是一样的。 P是向前搜索的意思。B是双向搜索。

    他们都是基于I帧来压缩数据。 I帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况),换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。

            B帧压缩率高,但是解码时CPU会比较累~。
            从上面的解释看,我们知道I和P的解码算法比较简单,资源占用也比较少,I只要自己完成就行了,P呢,也只需要解码器把前一个画面缓存一下,遇到P时就使用之前缓存的画面就好了,如果视频流只有I和P,解码器可以不管后面的数据,边读边解码,线性前进,大家很舒服。但网络上的电影很多都采用了B帧,因为B帧记录的是前后帧的差别,比P帧能节约更多的空间,但这样一来,文件小了,解码器就麻烦了,因为在解码时,不仅要用之前缓存的画面,还要知道下一个I或者P的画面(也就是说要预读预解码),而且,B帧不能简单地丢掉,因为B帧其实也包含了画面信息,如果简单丢掉,并用之前的画面简单重复,就会造成画面卡(其实就是丢帧了),并且由于网络上的电影为了节约空间,往往使用相当多的B帧,B帧用的多,对不支持B帧的播放器就造成更大的困扰,画面也就越卡。

            一般平均来说,I的压缩率是7(跟JPG差不多),P是20,B可以达到50,可见使用B帧能节省大量空间,节省出来的空间可以用来保存多一些I帧,这样在相同码率下,可以提供更好的画质。


    IDRInstantaneous Decoding Refresh--即时解码刷新。 

            I:帧内编码帧是一种自带全部信息的独立帧,无需参考其它图像便可独立进行解码,视频序列中的第一个帧始终都是I帧。 

           IIDR帧都是使用帧内预测的。它们都是同一个东西而已,在编码和解码中为了方便,要首个I帧和其他I区别开,所以才把第一个首个I帧叫IDR,这样就方便控制编码和解码流程。 IDR帧的作用是立刻刷新,使错误不致传播,IDR帧开始,重新算一个新的序列开始编码。而I帧不具有随机访问的能力,这个功能是由IDR承担。 IDR会导致DPBDecodedPictureBuffer 参考帧列表——这是关键所在)清空,而I不会。IDR图像一定是I图像,但I图像不一定是IDR图像。一个序列中可以有很多的I图像,I图像之后的图像可以引用I图像之间的图像做运动参考。一个序列中可以有很多的I图像,I图像之后的图象可以引用I图像之间的图像做运动参考。 

            对于IDR帧来说,在IDR帧之后的所有帧都不能引用任何IDR帧之前的帧的内容,与此相反,对于普通的I-帧来说,位于其之后的B-P-帧可以引用位于普通I-帧之前的I-帧。从随机存取的视频流中,播放器永远可以从一个IDR帧播放,因为在它之后没有任何帧引用之前的帧。但是,不能在一个没有IDR帧的视频中从任意点开始播放,因为后面的帧总是会引用前面的帧 。

           收到 IDR 帧时,解码器另外需要做的工作就是:把所有的 PPS 和 SPS 参数进行更新。

           对IDR帧的处理(I帧的处理相同)(1) 进行帧内预测,决定所采用的帧内预测模式。(2) 像素值减去预测值,得到残差。(3) 对残差进行变换和量化。(4) 变长编码和算术编码。(5) 重构图像并滤波,得到的图像作为其它帧的参考帧。


        H264是新一代的编码标准,以高压缩高质量和支持多种网络的流媒体传输著称,在编码方面,我理解的他的理论依据是:参照一段时间内图像的统计结果表明,在相邻几幅图像画面中,一般有差别的像素只有10%以内的点,亮度差值变化不超过2%,而色度差值的变化只有1%以内。所以对于一段变化不大图像画面,我们可以先编码出一个完整的图像帧A,随后的B帧就不编码全部图像,只写入与A帧的差别,这样B帧的大小就只有完整帧的1/10或更小!B帧之后的C帧如果变化不大,我们可以继续以参考B的方式编码C帧,这样循环下去。这段图像我们称为一个序列(序列就是有相同特点的一段数据),当某个图像与之前的图像变化很大,无法参考前面的帧来生成,那我们就结束上一个序列,开始下一段序列,也就是对这个图像生成一个完整帧A1,随后的图像就参考A1生成,只写入与A1的差别内容。
        在H264协议里定义了三种帧,完整编码的帧叫I帧,参考之前的I帧生成的只包含差异部分编码的帧叫P帧,还有一种参考前后的帧编码的帧叫B帧。
        H264采用的核心算法是帧内压缩和帧间压缩,帧内压缩是生成I帧的算法,帧间压缩是生成B帧和P帧的算法。
     
    ----------------------
    序列的说明
    ----------------------
        在H264中图像以序列为单位进行组织,一个序列是一段图像编码后的数据流,以I帧开始,到下一个I帧结束。
        一个序列的第一个图像叫做 IDR 图像(立即刷新图像),IDR 图像都是 I 帧图像。H.264 引入 IDR 图像是为了解码的重同步,当解码器解码到 IDR 图像时,立即将参考帧队列清空,将已解码的数据全部输出或抛弃,重新查找参数集,开始一个新的序列。这样,如果前一个序列出现重大错误,在这里可以获得重新同步的机会。IDR图像之后的图像永远不会使用IDR之前的图像的数据来解码。
        一个序列就是一段内容差异不太大的图像编码后生成的一串数据流。当运动变化比较少时,一个序列可以很长,因为运动变化少就代表图像画面的内容变动很小,所以就可以编一个I帧,然后一直P帧、B帧了。当运动变化多时,可能一个序列就比较短了,比如就包含一个I帧和3、4个P帧。
    -----------------------
    三种帧的说明
    -----------------------
    I帧:帧内编码帧 ,I帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)

    I帧特点:
    1.它是一个全帧压缩编码帧。它将全帧图像信息进行JPEG压缩编码及传输;
    2.解码时仅用I帧的数据就可重构完整图像;
    3.I帧描述了图像背景和运动主体的详情;
    4.I帧不需要参考其他画面而生成;
    5.I帧是P帧和B帧的参考帧(其质量直接影响到同组中以后各帧的质量);
    6.I帧是帧组GOP的基础帧(第一帧),在一组中只有一个I帧;
    7.I帧不需要考虑运动矢量;
    8.I帧所占数据的信息量比较大。

    P帧:前向预测编码帧。P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)

    P帧的预测与重构:P帧是以I帧为参考帧,在I帧中找出P帧“某点”的预测值和运动矢量,取预测差值和运动矢量一起传送。在接收端根据运动矢量从I帧中找出P帧“某点”的预测值并与差值相加以得到P帧“某点”样值,从而可得到完整的P帧。
    P帧特点:
    1.P帧是I帧后面相隔1~2帧的编码帧;
    2.P帧采用运动补偿的方法传送它与前面的I或P帧的差值及运动矢量(预测误差);
    3.解码时必须将I帧中的预测值与预测误差求和后才能重构完整的P帧图像;
    4.P帧属于前向预测的帧间编码。它只参考前面最靠近它的I帧或P帧;
    5.P帧可以是其后面P帧的参考帧,也可以是其前后的B帧的参考帧;
    6.由于P帧是参考帧,它可能造成解码错误的扩散;
    7.由于是差值传送,P帧的压缩比较高。

    B帧:双向预测内插编码帧。B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况,但我这样说简单些),换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。B帧压缩率高,但是解码时CPU会比较累。
     
    B帧的预测与重构
    B帧以前面的I或P帧和后面的P帧为参考帧,“找出”B帧“某点”的预测值和两个运动矢量,并取预测差值和运动矢量传送。接收端根据运动矢量在两个参考帧中“找出(算出)”预测值并与差值求和,得到B帧“某点”样值,从而可得到完整的B帧。
    B帧特点
    1.B帧是由前面的I或P帧和后面的P帧来进行预测的;
    2.B帧传送的是它与前面的I或P帧和后面的P帧之间的预测误差及运动矢量;
    3.B帧是双向预测编码帧;
    4.B帧压缩比最高,因为它只反映丙参考帧间运动主体的变化情况,预测比较准确;
    5.B帧不是参考帧,不会造成解码错误的扩散。

    注:I、B、P各帧是根据压缩算法的需要,是人为定义的,它们都是实实在在的物理帧。一般来说,I帧的压缩率是7(跟JPG差不多),P帧是20,B帧可以达到50。可见使用B帧能节省大量空间,节省出来的空间可以用来保存多一些I帧,这样在相同码率下,可以提供更好的画质。
    --------------------------------
    压缩算法的说明
    --------------------------------
    h264的压缩方法:
    1.分组:把几帧图像分为一组(GOP,也就是一个序列),为防止运动变化,帧数不宜取多。
    2.定义帧:将每组内各帧图像定义为三种类型,即I帧、B帧和P帧;
    3.预测帧:以I帧做为基础帧,以I帧预测P帧,再由I帧和P帧预测B帧;
    4.数据传输:最后将I帧数据与预测的差值信息进行存储和传输。

    展开全文
  • 视频压缩:I、P、B 关键

    千次阅读 2019-07-31 11:27:38
    P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。 I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面) P表示的是这一跟之前的一个关键(或...
  • 最近在看一个关于偏移的论文,但是不是很能理解偏移的意思。想问下各位大神: 第一 啥是偏移 第二 求偏移的基本思路是啥 跪谢~
  • I、P、B 关键详解

    千次阅读 2019-11-30 20:29:33
    P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。 I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面) P表示的是这一跟之...
  • 什么是I,P,B

    万次阅读 多人点赞 2011-06-30 18:53:00
     P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。   I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面) P表示的是这一
  • 视频中I P B以及IDR解释

    千次阅读 2018-04-12 15:19:48
    P是向前搜索的意思。B是双向搜索。 他们都是基于I来压缩数据。 I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面)P表示的是这一跟之前的一个关键...
  • 视频I/P/B

    千次阅读 2016-01-21 17:50:22
    P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。  I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面)  P表示的是这一跟之
  • IBP是什么?

    千次阅读 2016-09-19 10:05:09
    在了解IBP之前,先聊聊什么是编码过程中的内预测和间预测1. 内预测编码内编码用来缩减图像的空间冗余。为了提高H.264内编码的效率,在给定中充分利用相邻宏块的空间相关性,相邻的宏块通常含有...
  • 视频图像的I、P、B详解

    千次阅读 2019-07-28 21:43:36
    1、I 内编码,又称Intra-Picture。I通常是每个GOP(MPEG所使用的一种视频压缩技术)的第一个,经过适度的压缩,可以当成图像。I实际上就是完整的图像经过压缩后的数据。 I特点: 它是一个全...
  • 视频流中的 I P B .

    千次阅读 2016-08-28 08:23:40
    视频流中的I,P,B介绍 首先我们需要理解,每一个都代表着一个静止的图像。在我们实际传输视频流中,我们会想尽办法,通过各种算法来减少数据的容量,这里最为常见的为IPB(Intra coded frames, Predicted ...
  • P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。  I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面)  P表示的是这一跟之
  • I,P,B简介

    2015-11-26 15:52:44
     P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。  I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面) P表示的是这一跟之前的一个关键...
  • I ,B,P,IDR的区别

    千次阅读 2013-11-02 09:06:53
    I:内编码 I特点: 1.它是一个全压缩编码。它将全图像信息进行JPEG压缩编码及传输; 2.解码时仅用I的数据就可重构完整图像; 3.I描述了图像背景和运动主体的详情; 4.I不需要参考其他画面而生成...
  • 以太网最小长与最大

    万次阅读 多人点赞 2016-11-13 10:58:11
    以太网的开销是18字节,是“目的MAC(6)+源MAC(6)+Type(2)+CRC(4)”。以太网最小长为64字节,那么IP报文最小为46字节,而局域网规定IP最大传输单元1500字节,实际上加上以太网的18字节,就是1518...
  • P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面)P表示的是这一跟之前的一个关键(或P...
  • I,P,B 压缩率对比

    千次阅读 2015-06-16 11:25:09
    视频压缩中,每代表一幅... P是向前搜索的意思。B是双向搜索。他们都是基于I来压缩数据。   I表示关键,你可以理解为这一画面的完整保留;解码时只需要本数据就可以完成(因为包含完整画面) P

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 61,297
精华内容 24,518
关键字:

帧的意思