精华内容
下载资源
问答
  • 什么是信道编码信道编码比较

    万次阅读 多人点赞 2018-11-23 14:24:20
    消除干扰,让无线信号更干净,这本是信道编码技术的初衷。然而,最近网络上这场“Polar码投票”闹剧,无中生有地添加杂质,与所议论的技术之本质背道而驰,若Polar码也有血肉之躯,此君情何以堪?香农前辈若在世,也...

            消除干扰,让无线信号更干净,这本是信道编码技术的初衷。然而,最近网络上这场“Polar码投票”闹剧,无中生有地添加杂质,与所议论的技术之本质背道而驰,若Polar码也有血肉之躯,此君情何以堪?香农前辈若在世,也会笑话我们吧?         

            2016年11月3GPP会议上,华为及其他55家公司(包括联想和摩托罗拉移动)基于广泛的性能评估和分析比较,联合提出Polar码作为控制信道的编码机制并获得通过,联想及其旗下摩托罗拉移动针对该方案的投票都是赞成票。如同Polar码的本质,消除杂质干扰,还一片明亮干净。我们今天就来聊一聊Turbo、LDPC、Polar等信道编码技术那些事,让我们在一段波澜壮阔的信道编码史中去找回技术的初心。

    什么是信道编码?

            当我们拿起手机刷朋友圈时,数据通过无线信号在手机和基站间传送。由于无线信号是敏感而脆弱的,易受干扰、弱覆盖等影响,发送的数据和接收到的数据有时候会不一致,比如手机发送的1 0 0 1 0,而基站接收到的却是1 1 0 1 0,为了纠错,移动通信系统就引入了信道编码技术。

            在上个世纪40年代以前,人们认为只有通过增加发射功率和重传的方式,才能减少这种通信错误。直到1948年香农提出了伟大的香农定理,人们才认识到,可以通过信道编码的方式来实现可靠通信。

            所谓信道编码,也叫差错控制编码,就是在发送端对原数据添加冗余信息,这些冗余信息是和原数据相关的,再在接收端根据这种相关性来检测和纠正传输过程产生的差错,从而对抗传输过程的干扰。

            但是,香农前辈虽然指出了可以通过差错控制码实现可靠通信的理论参考,但却没有给出具体实现的方法。于是,人们开始研究编码方案,不断逼近香农极限。

    信道编码简史

            人类在信道编码上的第一次突破发生在1949年。R.Hamming和M.Golay提出了第一个实用的差错控制编码方案——汉明码。

    汉明码每4个比特编码就需要3个比特的冗余校验比特,编码效率比较低,且在一个码组中只能纠正单个的比特错误。

    随后,M.Golay先生研究了汉明码的缺点,提出了Golay码。

    Golay码在1979~1981年间被用于美国国家航空航天局太空探测器Voyager的差错控制系统,将成百张木星和土星的彩色照片带回地球。

    Golay码之后是一种的新的分组码——RM码。在1969年到1977年之间,RM码广泛应用于火星探测,同时,其快速的译码算法非常适合于光纤通信系统。

    RM码之后人们又提出了循环码的概念,也叫循环冗余校验(CRC)码。循环码也是分组码的一种,其码字具有循环移位特性,这种循环结构大大简化了编译码结构。

    不过,以上编码方案都是基于分组码实现,分组码主要有两大缺点:一是在译码过程中必须等待整个码字全部接收到之后才能开始进行译码,二是需要精确的帧同步,从而导致时延较大、增益损失大。

    直到卷积码的出现,改善了分组码的缺点。归功于卷积码,在接下来的10年里,无线通信性能得到了跳跃式的发展。

    ▲Elias于1955年提出卷积码

            卷积码与分组码的不同在于:它充分利用了各个信息块之间的相关性。在卷积码的译码过程中,不仅从本码中提取译码信息,还要充分利用以前和以后时刻收到的码组,从这些码组中提取译码相关信息,而且译码也是连续进行的,这样可以保证卷积码的译码延时相对比较小。

    尽管卷积码让通信编码技术腾飞了10年,但终究还是遇到了瓶颈——“计算复杂性”问题。

    还好,这个世界有一个神奇的摩尔定律。得益于摩尔定律,编码技术在一定程度上解决了计算复杂性和功耗问题。而随着摩尔定律而来的是,Viterbi于1967年提出的Viterbi译码算法。

    Viterbi译码算法提出之后,卷积码在通信系统中得到了极为广泛的应用,如GSM、 IS-95 CDMA、3G、商业卫星通信系统等。

    但是,随着通信技术的飞速发展,“计算复杂性”依然是一道迈不过的墙,专家们苦苦思索,试图在可接受的计算复杂性条件下设计编码和算法,以提高效率,但其增益与香农理论极限始终都存在2~3dB的差距。

    正在专家们一筹莫展之时,奇迹出现了。

    1993年,两位当时名不见经传的法国电机工程师C.Berrou和A.Glavieux声称他们发明了一种编码方法——Turbo码,可以使信道编码效率接近香农极限。

    C.Berrou

    一开始,大家都是持怀疑态度的,甚至懒得去理睬这两个小角色,这么多数学家都没能突破,你两个小小的机电工程师也敢宣称接近香农极限?忽悠吧?

    但是,这两位法国工程师正是绕过数学理论,凭借其丰富的实际经验,通过迭代译码的办法解决了计算复杂性问题。 

    ▲Turbo码的译码器有两个分量码译码器,译码在两个分量译码器之间进行迭代译码,故整个译码过程类似涡轮(turbo)工作,所以又形象的称为Turbo码。

    Turbo码的发明又一次开创了通信编码史的革命性时代。

    随后,全世界各大公司开始聚焦于Turbo码研究。Turbo码也成为了3G/4G移动通信技术所采用的编码技术,直到今天4.5G,我们依然在采用。

    但是,由于Turbo码采用迭代解码,必然会产生时延,所以对于实时性要求很高的场合,对于即将到来的超高速率、超低时延的5G需求,Turbo码又遇到瓶颈,因此,在5G时代就出现了Polar码和LDPC码之争。

    5G:LDPC和Polar码闪亮登场

    先来看看5G KPI

    如上图,5G与4G至少有三大不同:

    ①4G面向单一的MBB场景,即手机的移动宽带业务;而5G面向eMBB、eMTC和URLLC三大场景,即5G面向万物互联,要应对AR、VR、车联网、工业4.0、智慧城市等各种应用,较之3/4G只有语音和数据业务,5G繁忙多了。

    ②4G的峰值速率为1Gbps,而5G的峰值速率高达20Gbps。

    ③4G的用户面时延为5ms,而5G的用户面时延要低至0.5ms(URLLC)。

    经过这么一对比,问题就来了。5G的峰值速率是LTE的20倍,时延是LTE的1/10,这就意味着5G编码技术需在有限的时延内支持更快的处理速度,比如20Gbps就相当于译码器每秒钟要处理几十亿bit数据,即译码器数据吞吐率比4G高得多。

    越高的译码器数据吞吐率就意味着硬件实现复杂度越高,处理功耗越大,而译码器是手机基带处理的重要组成部分,占据了近72%的基带处理硬件资源和功耗,因此,要实现5G应用落地,选择高效的信道编码技术非常重要。

    3GPP必须对编码技术的选择反复讨论,严谨把关,绝非像一些文章中所透露的那般拉选票似的顺便。

    同时,由于5G面向更多应用场景,对编码的灵活性要求更高,需支持更广泛的码块长度和更多的编码率。比如,短码块应用于物联网,长码块应用于高清视频,低编码率应用于基站分布稀疏的农村站点,高编码率应用于密集城区。如果大家都用同样的编码率,这就会造成数据比特浪费,进而浪费频谱资源。

    于是乎,两大新的优秀的编码技术进入5G编码标准的法眼:LDPC和Polar码,都是逼近香农极限的信道编码。

    LDPC码是由MIT的教授 Robert Gallager在1962年提出,这是最早提出的逼近香农极限的信道编码,不过,受限于当时环境,难以克服计算复杂性,随后被人遗忘。直到1996年才引起通信领域的关注。后来,LDPC码被WiFi标准采纳。

    LDPC有啥优势呢?LDPC基于高效的并行译码构架实现,其译码器在硬件实现复杂度和功耗方面均优于Turbo码。

    ▲Turbo码和LDPC码功耗比较,来源5G Forum

    Polar码是由土耳其比尔肯大学教授E. Arikan在2007年提出,2009年开始引起通信领域的关注。尽管Polar提出较晚,但作为已经被理论证明可达到香农极限的编码方案,自发明以来,业内已在译码算法、速率兼容编码方案和硬件实现上做了大量的研发工作。

    Polar码有啥优势呢?Polar码兼具较低的编码和译码复杂度,不存在错误平层(error floor)现象,误帧率(FER)比Turbo低得多,Polar码还支持灵活的编码长度和编码速率,各方面证明比Turbo码具备更优的性能。

    ▲Turbo码和Polar码FER比较,来源5G Forum

    因此,最后3GPP在5G时代抛弃了Turbo码,选择了LDPC为数据信道编码方案,Polar为广播和控制信道编码方案。

    那么,为何3GPP同时选择了LDPC码和Polar码呢?这背后有“不把鸡蛋放在同一个篮子”的因素,也有“One code does not fit all”的因素。

    首先,华为不会孤注一掷投入Polar码,高通也不会孤注一掷投入LDPC码,各家公司都会在不同的候选技术上投入,不会把鸡蛋放在同一个篮子里。其次,各种编码方案的优缺点不同,需对其硬件实现复杂度、功耗、灵活性、成熟度等进行综合考量,One code does not fit all,没有“一刀切”的处方。

    让技术回归技术,少一点杂音,我们的5G才会走得更稳。

    展开全文
  • 信源编码与信道编码

    千次阅读 2019-12-19 22:29:39
    信源编码:信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换(百度百科)。通俗理解压缩编码,假设信源发送的11111111和00000000这个码字,如果不...

    信源编码:信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换(百度百科)。通俗理解压缩编码,假设信源发送的11111111和00000000这个码字,如果不做压缩编码,发送端需要发送8个bit。现在以一个bit 1111 1111  = 1;0000 0000 = 0,这样发送端只需要发送一个bit,即可将源bit信息表示出来。这就是信源编码,用尽可能少的bit将信息表示出来。例如霍夫曼编码

    信道编码:通过信道编码器和译码器实现的用于提高信道可靠性的理论和方法。通俗理解,提高接收端解码正确率,这就和信源编码反过来了,需要给原比特添加冗余bit。冗余bit作用,增加信号纠错能力,在接收端解码时,差1-2个bit也没问题。举例,发送端只发送一个1个bit,0 or 1。接收端一不留神就可能解错,现在对信源编码后的bit信息进行信道编码,1 = 1111 1111 ;0 = 0000 0000 ,1/8编码,通常不会这么夸张,熟知的咬尾卷积码,turbo码都是1/3码率。假设源信息经信道传输至接收侧,经译码后结果为 1111 1100 ,这个结果我们认为发送端发的是1,0010 0000 这个结果我们认为是 0。这也就是纠错编码技术。

    有的同学可能会比较混乱,一会儿又让短一会儿又让长,这不麻烦吗?充分理解这两个概念的作用,就好记忆了。信源编码作用就是想利用有限长bit,传输最多的信息。信道编码是为了让bit传输到接收端,接收端能正确译码。

     

     

    展开全文
  • 信道编码理论_32.rar

    2020-04-18 11:01:46
    信道编码理论基础教学PPT【基本概念、近世代数、线性分组、卷积码、LDPC、Turbo码】
  • 信道冲击响应数据的误码率作为分析基础,设计了一种引进正交频分复用及多天线技术概念进行改良的多载波MFSK 编码方案,并验证了在多径衰落条件下的频谱使用效率及误码率,从而证明了该方案在提高频谱效率方面的...
  • 信道编码理论

    2014-05-29 23:53:54
    用于学习信道编码理论,以及对该课程复习引言(介绍信道编码技术六十多年的发展 历程及关键人物) (2课时) 基本概念与近世代数 (4课时) 线性分组码 (4课时) 卷积码与turbo码 (8课时) LDPC码 (2课时) 有限...
  • 信源编码和信道编码

    千次阅读 2018-12-06 15:14:59
    信源编码和信道编码的发展历程 信源编码:  最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损...

    一.信源编码和信道编码的发展历程

    信源编码:

        最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。

    相对地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。

    信道编码:

    1948年Shannon极限理论

    →1950年Hamming码

    →1955年Elias卷积码

    →1960年 BCH码、RS码、PGZ译码算法

    →1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码

    →1965年B-M译码算法

    →1967年RRNS码、Viterbi算法

    →1972年Chase氏译码算法

    →1974年Bahl MAP算法

    →1977年IMaiBCM分组编码调制

    →1978年Wolf 格状分组码

    →1986年Padovani恒包络相位/频率编码调制

    →1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM

    →1989年Hagenauer SOVA算法

    →1990年Koch Max-Lg-MAP算法

    →1993年Berrou Turbo码

    →1994年Pyndiah 乘积码准最佳译码

    →1995年 Robertson Log-MAP算法

    →1996年 Hagenauer TurboBCH码

    →1996MACKay-Neal重新发掘出LDPC码

    →1997年 Nick Turbo Hamming码

    →1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码

    →1999年删除型Turbo码

         虽然经过这些创新努力,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对高斯信道传输时已与Shannon极限仅有0.27dB相差,但人们依然不会满意,因为时延、装备复杂性与可行性都是实际应用的严峻要求,而如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本身就已预示以接近无限的时延总容易找到一些方法逼近Shannon极限。因此,信道编码和/或编码调制理论与技术在向Shannon极限逼近的创新过程中,其难点是要同时兼顾考虑好编码及交织等处理时延、比特误码率门限要求、系统带宽、码率、编码增益、有效吞吐量、信道特征、抗衰落色散及不同类别干扰能力以及装备复杂性等要求。从而,尽管人们普遍公认Turbo码确是快速逼近Shannon极限的一种有跃变性改进的码类,但其时延、复杂性依然为其最严峻的挑战因素,看来,沿AlaMouti的STB方式是一种看好的折衷方向。同样,实际性能可比Turbo码性能更优良的LDPC码,从1962年Gallager提出, 当时并未为人们充分理解与重视,至1996年为MACKay—Neal重新发现后掀起的另一股推进其研究、应用热潮, 此又为另一明显示例。LDPC码是一类可由非常稀疏的奇偶校验矩阵或二分图(Bi-PartiteGrapg)定义的线性分组前向纠错码,它具有更简单的结构描述与硬件复杂度,可实现完全并行操作,有利高速、大吞吐能力译码,且译码复杂度亦比Turbo码低,并具更优良的基底(Floor)残余误码性能,研究表明,最好的非正则(Irregular)LDPC码,其长度为106时可获得BER=10-6时与Shannon极限仅相差0.13dB;当码长为107、码率为1/2,与Shannon极限仅差0.04dB;与Turbo码结构不同,这是由另一种途径向“Shannon极限条件”的更有效与更逼真的模拟,从而取得比Turbo码更好的性能。因此,“学习、思考、创新、发展”这一永恒主题中持续“创新”最为关键,MIMO-STC及Turbo/LDPC码的发展历程亦充分证实了这一发展哲理。

     

    二.信源编码和信道编码远离的简要介绍

    信源编码:

    一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换。为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。

      数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

      提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。

        基于层次树的集分割(SPIHT)信源编码方法是基于EZW而改进的算法,它是有效利用了图像小波分解后的多分辨率特性,根据重要性生成比特流的一个渐进式编码。这种编码方法,编码器能够在任意位置终止编码,因此能够精确实现一定目标速率或目标失真度。同样,对于给定的比特流,解码器可以在任意位置停止解码,而仍然能够恢复由截断的比特流编码的图像。而实现这一优越性能并不需要事先的训练和预存表或码本,也不需要任何关于图像源的先验知识。

      数字电视中常用的纠错编码,通常采用两次附加纠错码的前向纠错(FEC)编码。RS编码属于第一个FEC,188字节后附加16字节RS码,构成(204,188)RS码,这也可以称为外编码。第二个附加纠错码的FEC一般采用卷积编码,又称为内编码。外编码和内编码结合一起,称之为级联编码。级联编码后得到的数据流再按规定的调制方式对载频进行调制。  

      前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好。所以在广播系统(单向传输系统)都采用这种信道编码方式。以下是纠错码的各种类型:

     

        既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。当然,这些都是广义的信源编码。  

    一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀化。

    第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。

     

    信道编码:

        数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

    提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。

    码率兼容截短卷积(RCPC)信道编码,就是一类采用周期性删除比特的方法来获得高码率的卷积码,它具有以下几个特点:

    (1)截短卷积码也可以用生成矩阵表示,它是一种特殊的卷积码;

    (2)截短卷积码的限制长度与原码相同,具有与原码同等级别的纠错能力;                                            (3)截短卷积码具有原码的隐含结构,译码复杂度降低;

       (4)改变比特删除模式,可以实现变码率的编码和译码。

     

    三.信源编码和信道编码的区别

        信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。信源译码是信源编码的逆过程。1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。增量调制(ΔM):将差值编码传输,同样可传输模拟信号所含的信息。此差值又称“增量”,其值可正可负。这种用差值编码进行通信的方式,就称为“增量调制”,缩写为DM或ΔM,主要用于军方通信中。信源编码为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列.信道编码的目的:信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。信道编码的实质:信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。信源编码很好理解,比如你要发送一个图形,必须把这个图像转成0101的编码,这就是信源编码。

        信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。信道编码是针对无线信道的干扰太多,把你要传送的数据加上些信息,来纠正信道的干扰。信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。

    信源编码信号:例如语音信号(频率范围300-3400Hz)、图象信号(频率范围0-6MHz)……基带信号(基带:信号的频率从零频附近开始)。在发送端把连续消息变换成原始电信号,这种变换由信源来完成。

    信道编码信号:例如二进制信号、2PSK信号……已调信号(也叫带通信号、频带信号)。这种信号有两个基本特征:一是携带信息;二是适应在信道中传输,把基带信号变换成适合在信道中传输的信号完成这样的变换是调制器。

    信源编码是对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包。信道编码是在数据中加入验证码,并且把加入验证码的数据进行调制。两者的作用完全不一样的。信源编码是指信号来源的编码,主要是指从那个接口进来的。信道编码是说的信号通道的编码,一般是指机内的电路。总的来说吧:信源编码是对视频, 音频, 数据进行的编码,即对信息进行编码以便处理,而信道编码是指在信息传输的过程中对信息进行的处理。

     

    四.信源编码和信道编码在现代社会的应用

    1.在现代无线通信中的应用:

        通信的任务是由一整套技术设备和传输媒介所构成的总体——通信系统来完成的。电子通信根据信道上传输信号的种类可分为模拟通信和数字通信。最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成。实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。数字通信系统设备多种多样,综合各种数字通信系统,其构成如图所示:

     

     

        信源编码是以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。

    信道,通俗地说是指以传输媒质为基础的信号通路。具体地说,信道是指由有线或无线电线路提供的信号通路。信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。

    信道编码是以提高信息传输的可靠性为目的的编码。通常通过增加信源的冗余度来实现。采用的一般方法是增大码率或带宽。与信源编码正好相反。在计算机科学领域,信道编码(channel code)被广泛用作表示编码错误监测和纠正的术语,有时候也可以在通信和存储领域用作表示数字调制方式。信道编码用来在数据传输的时候保护数据,还可以在出现错误的时候来恢复数据。

    2.在超宽带信道中的应用

    超宽带(Ultra Wideband,以下简称UWB) [1][2]系统具有高传输速率、低功耗、低成本等独特优点,是下一代短距离无线通信系统的有力竞争者。它是指具有很高带宽比射频(带宽与中心频率之比)的无线电技术。近年来,超宽带无线通信在图像和视频传输中获得了越来越广泛的应用,它具有极高的传输速率以及很宽的传输频带,可以提供高达1Gbit/s的数据传输速率,可用在数字家庭网络或办公网络中,实现近距离、高速率数据传输。例如,利用UWB技术可以在家用电器设备之间提供高速的音频、视频业务传输,在数字办公环境中,应用UWB技术可以减少线缆布放的麻烦,提供无线高速互联。  

        联合信源信道编码(Joint Source Channel Coding,以下简称JSCC)[3][4]近几年来日益受到通信界的广泛重视,主要原因是多媒体无线通信变得更加重要。根据Shannon信息论原理,通信系统中信源编码和信道编码是分离的[5],然而,该定理假设信源编码是最优的,可以去掉所有冗余,并且假设当比特率低于信道容量时可纠正所有误码。在不限制码长的复杂性和时延的前提下,可以得到这样的系统。而在实际系统中又必须限制码长的复杂性和时延,这必然会导致性能下降,这和香农编码定理的假设是相矛盾的。因此,在许多情况下,采用独立编码技术并不能获得满意的效果,例如有严重噪声的衰落信道和(移动通信信道),采用独立编码技术不能满足要求。因此需要将信源编码和信道编码联合考虑,在实际的信道条件中获得比信源和信道单独进行编码更好的效果。其中不等差错保护是联合信源信道编码的一种, 是相对于同等差错保护而言的。在网络资源有限的情况下,同等差错保护方案使得重要信息得不到足够的保护而使解码质量严重下降。而不等差错保护根据码流的不同部分对图像重建质量的重要性不同, 而采用不同的信道保护机制, 是信源信道联合编码的一个重要应用。

    不等差错保护(Unequal Error Protection,以下简称UEP)的信源编码主要采用嵌入式信源编码,如SPIHT(Set Partitioning In Hierarchical Trees) [6],EZW,JPEG2000等,信源输出码流具有渐进特性,信道编码采用RCPC[7],RCPT等码率可变的信道编码。文章[8]中研究了在AWGN信道下的不等差错保护的性能; 文章[9]中研究了有反馈的移动信道下的多分辨率联合信源信道编码;文章[10]研究了无线信道下的图像传输,信源编码采用SPIHT,信道编码采用多码率Turbo coder的不等差错保护方案;文章[11]中研究了DS-CDMA多径衰落信道下信源编码为分层视频图像编码,信道编码采用RCPC,解决了在信源编码,信道编码以及各个层之间的码率最优分配; 文章[12]研究了3G网络下MPEG-4视频流的传输,信道编码采用 Turbo编码,提出了用TCP传输非常重要的MPEG-4流,而用UDP传输MPEG-4 audio/video ES (Elementary Streams),并且对UDP传输的码流进行UEP的方案;文章[13]研究在无线频率选择性衰落信道中将MIMO-OFDM和adaptive wavelet pretreatment(自适应小波预处理)结合在一起的联合信源信道编码图像传输。据我们的了解, 现在并无文章研究超宽带无线信道下不等差错保护方案,本文将不等差错保护联合信源信道编码应用于超宽带无线通信中, 信源部分采用基于小波SPIHT 的编码方法,而信道部分采用RCPC编码( Rate Compatible Punctured Convolutional codes) 对SPIHT输出码流按重要程度进行不等错误保护,并基于DS-UWB[14]方案提出双重不等差错保护方案, 研究了不等差错保护给图像在超宽带无线通信中的图像传输所带来性能增益。  

    采用标准LENA256×256图像进行仿真实验, 信源编码采用SPIHT算法,SPIHT 编码速率为0.5bpp, 信道编码采用码率自适应截短卷积码RCPC, 对实验图像进行同等差错保护信道编码( EEP) 和不等差错保护信道编码(UEP), 对于EEP编码采用1/ 2 码率;对于UEP 编码,其重要信息(包括头部语法及图像重要数据) 采用1/ 3码率,对图像次重要数据采用1/ 2码率进行编码,对图像非重要数据不进行编码。信道编码输出码流经过一个(Ns,1)重复编码器,对重要信息Ns取30,次重要数据Ns取20,非重要数据Ns取为10,再用一个周期为Np=Ns的伪随机DS码序列对重复编码器输出序列进行编码,最后对编码输出进行PAM调制和脉冲成形从而形成DS-UWB发送信号波形,其中脉冲参数设置为平均发射功率为-30,抽样频率为50e9,平均脉冲重复时间为2e-9,冲激响应持续时间为0.5e-9,脉冲波形形成因子为0.25e-9。DS-UWB信号经过IEEE802.15.3a CM1信道模型,接收端采用Rake接收机对接收信号进行解调,解调后的码流经过RCPC信道译码和SPIHT信源译码恢复出原始图像。

     

               CMI信道模型下Double-UEP与UEP,EEP的性能比较

    图中给出了IEEE802.15.3a CM1信道模型下双重不等差错保护(Double-UEP)与传统不等差错保护(UEP)与同等差错保护(EEP)的性能比较,其中横轴为超宽带信道中的信噪比Eb/N0,纵轴为重建图像的峰值信噪比PSNR(Peek Signal Noise Ratio)。

      由图可见,在UWB信道中,不等差错保护的性能普遍好于同等差错保护的性能,尤其是在低信噪比的时候,采用不等差错保护能够获得更大的性能增益。在高信噪比时,由于此时信道质量较好,误码率较低,图像中的重要码流基本不会产生误码,此时不等差错保护和同等差错保护性能趋于一致;而在低信噪比时,由于不等差错保护方案对图像的重要信息加入了更多的冗余,从而在不增加传输速率的情况下使图像得以更可靠的传输,提升重建图像的质量。

     

    五.信源编码与信道编码的发展前景

    信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。

    移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是近几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素,3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。

    移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。

     

    结论:

    从文中我们可以清楚的认识到信源编码和信道编码的发展布满艰辛,今天的成就来之不易。随着今天移动通信技术的不断发展和创新,信源编码与信道编码的应用也越来越广泛,其逐步的应用于各个领域,在通信系统中扮演着非常重要的角色,起到了至关重要的作用。但是,现有信息理论也存在一定的缺陷,具体表现在以下几个方面:

    1.现有信息理论体系中缺乏核心的 “实有信息”概念。

    2.适用于复杂信息系统的理论比较少。目前的狭义与广义信息论大多是起源和立足于简单系统的信息理论,即用简单通讯信息系统的方法来类比复杂系统的信息现象,将复杂性当成了简单性来处理。而涉及生命现象和人的认识论层次的信息是很复杂的对象,其中信宿主体内信息的语义歧义和信息创生问题是难点,用现有信息理论难以解释。

    3.对产生和构成信息存在的基本要素、对象及关系区分不清。如将对象的直接存在(对象的物质、能量、相互作用、功能等存在)当成信息存在;将信息的载体存在当成信息存在;将信息与载体的统一体当成信息存在;把信宿获得的“实得信息”当成唯一的信息存在,这是主观信息论。或者把信源和信道信息当成唯一的信息存在,称之为客观信息论。这二种极端的信息理论正是忽略了信息在关系中产生、在关系中存在的复杂本质。忽略了信息存在至少涉及三个以上对象及复杂关系。

    4.现有信息理论不能很好地解释信息的创生和语义歧义问题。

    5.现有信息理论对信宿实得信息的理解过于简单,没有将直接实得信息与间接实得信息区别开来。

    6.信息对象的层次区分没有得到重视。不少研究者将本体论层次的信息与认识论层次的信息混为一谈,将普适性信息范畴与具体科学,特别是技术层次(如通信、控制、计算等)的信息概念混为一谈。抓住信息的某一层次或某一方面当成信息对象的总体。

        因此,在科学技术飞速发展的今天,我们应该加强对信源编码与信道编码的了解和认识,这能让在以后的生活和学习过程中不断完善和改进现有信息论存在的缺陷,更好的应用和了解我们的专业知识,更好更快的做好自己的工作,让自己能从各方面得到满意的结果。

    展开全文
  • 5G新空口关键技术之--信道编码

    千次阅读 2020-06-16 11:00:00
    信道编码 概念   信道编码过程包括添加循环冗余校验码(CRC,Cyclic Redundancy Check)、码块分割(Code Block Segmentation)、纠错编码Forward Error CorrectingCoding)、速率适配(Rate Matching)、码块...

    信道编码
    概念
      信道编码过程包括添加循环冗余校验码(CRC,Cyclic Redundancy Check)、码块分割(Code Block Segmentation)、纠错编码Forward Error CorrectingCoding)、速率适配(Rate Matching)、码块连接(Code Block Concatenation)、数据交织(Interleave)、数据加扰(Scrambling)等组成部分。其中纠错编码 最重要。纠错编码是通过尽可能小的冗余开销确保接收端能自动地纠正数据传输中所发生的差错。在同样的误码率下,所需要的开销越小,编码的效率也就越高。

    Turbo、LDPC、Polar编码比较
      Turbo
      为了达到香农公式所定义的信道容量的极限,各种信道编码技术称为研究的热点。其中Turbo 码的性能优异,可以非常逼近香农理论的极限。在 3G 和 4G 中广泛使用。Turbo 码编码器基本原理如图1 所示。其编码器的结构包括两个并联的相同的递归系统卷积码编码器(Recursive Systematic Convolutional Code),二者之间用一个内部交织器(Interleaver)分隔。编码器 1 直接对信源的信息序列分组进行编码,编码器 2 为经过交织器交织后的信息序列分组进行编码。信息位一路直接进入复用器,另一路经两个编码器后得到两个信息冗余序列,再经恰当组合,在信息位后通过信道。
    在这里插入图片描述
    在这里插入图片描述
    Turbo码解码的迭代次数越多,其解码的准确度也越高,但是在到达某个迭代次数的时候,误码率会趋于稳定。
      Turbo总结
      Turbo 码的编码相对简单,它在码长、码率的灵活度和码率兼容自适应重传等方面有一些优势。但是其解码器由于需要迭代解码,相对比较复杂,需要较大的计算能力,并且解码时由于迭代的需要会产生时延。所以对于实时性要求很高的场合,Turbo 码的直接应用会受到一定限制。此外,Turbo 码采用次优的译码算法,有一定的错误平层。Turbo 码比较适合码长较长的应用,但是码长越长,其解码的复杂度和时延也越大,这就限制了它的实用性。总的来说,Turbo 码性能优异,编码构造比较简单,但是它的解码复杂度较高。该码是3G 和 4G 商用的关键技术之一,它的研究和应用已经十分成熟。

      LDPC
       LDPC是一种具有稀疏校验矩阵的线性分组纠错码,其特点是它的奇偶校验矩阵(H 矩阵)具有低密度。由于它的 H 矩阵具有稀疏性,因此产生了较大的最小距离(dmin),同时也降低了解码的复杂性。该码的性能同样可以非常逼近香农极限。已有研究结果表明,实验中已找到的最好 LDPC 码的性能距香农理论限仅相差 0.0045dB。
      与Turbo相比,LDPC的优势
      (1)LDPC 码的解码可以采用基于稀疏矩阵的低复杂度并行迭代解码算法,运算量要低于 Turbo 码解码算法。并且由于结构并行的特点,在硬件实现上比较容易,解码时延小。因此更适合于高速率和大文件包的情况。
      (2)LDPC 码的码率可以任意构造,有更大的灵活性。
      (3)LDPC 码具有更低的错误平层,可以应用于有线通信、深空通信以及磁盘存储业等对误码率要求非常高的场合。
      目前,LDPC 码已应用于 802.11n、802.16e、DVB-S2 等通信系统中。在 3GPP R15 的讨论过程中,全球多家公司在统一的比较准则下达成共识,将 LDPC 码确定为 5G eMBB 场景数据信道的编码方案。
      Polar
      它是基于信道极化理论提出的一种线性分组码,是针对二元对称信道(BSC,Binary Symmetric Channel)的严格构造码。理论上,它在较低的解码复杂度下能够达到理想信道容量且无误码平层,而且码长越大,其优势就越明显。Polar 码是目前为止唯一能够达到香农极限的编码方法。
      Polar工作原理
      包括信道组合、信道分解和信道极化 3 部分,其中,信道组合和信道极化在编码时完成,信道分解在解码时完成。Polar 编码理论的核心是信道极化理论。其原理过程如图3所示,它的编码是通过以反复迭代的方式对信道进行线性的极化转换来实现的。
    在这里插入图片描述
      Polar选择那部分趋于完全无噪声比特信道发送信源输出的信息比特,而在容量为0全噪声比特信道上发送冻结比特(已知比特,如0).通过这种编码构造方式,保证了信息集中在较好的比特信道中传输,从而降低了信息在信道传输过程中出现错误的可能性,保证了信息传输的正确性。Polar码就是以此种方式实现编码的。当编码长度 N 趋向无穷大时,Polar 码可以逼近理论信道容量.其编解码的复杂度正比于 N log N。
      Polar码的优势
      (1)相比 Turbo 码具有更高的增益,在相同误码率的前提下,实测 Polar码对信噪比的要求要比 Turbo 码低 0.5~1.2dB;
      (2)Polar 码没有误码平层,可靠性比 Turbo 码高,对于未来 5G URLLC 等应用场景(如远程医疗、自动驾驶、工业控制和无人驾驶等)能真正实现高可靠性;
       (3)Polar 码的编解码复杂度较低,可以通过采用基于 SC(SuccessiveCancellation)或 SCL(SC List)的解码方案,以较低的解码复杂度为代价,获得接近最大似然解码的性能。

      Polar码的劣势
      (1)它的最小汉明距离较小,可能在一定程度上影响解码性能。
      (2)SC 译码的时延较长,采用并行解码的方法则可以缓解此问题。
    总的来说,Polar 码较好地平衡了性能和复杂性,在中短码长的情形下比较有优势。它的码率调整机制颗粒度很精细,即它的信息块长度可以按比特增减。此外,它的复杂度、吞吐量、解码时延也都具有较好的指标。

      5G NR中的信道编码(R15)
      在 5G NR 中,信道编码的操作对象主要是传输信道(TrCH)和控制信息的数据块。3GPP 在 R15 中定义的各个传输信道和控制信息所采用的信道编码详细情况见表1 和表 2。
    在这里插入图片描述
      5G NR 对数据信道采用的是 Quasi-Cyclic LDPC 码,并且为了在 HARQ 协议中使用而采用了速率匹配(Rate-Compatible)的结构。控制信息部分在有效载荷(Payload)大于 11bit 时采用了 Polar 码。当有效载荷小于等于 11bit 时,信道编码采用的是 Reed-Muller 码。

      传输信道编码
      传输信道编码的过程如下图4所示。
    在这里插入图片描述
      添加 CRC 是通过在数据块后增加 CRC 校验码使得接收端能够检测出接收的数据是否有错。CRC 校验码块的大小取决于传输数据块的大小,对于大于 3824bit 的传输数据块,校验码采用了 24-bit CRC;对于小于等于 3824bit的传输数据块,采用的则是 16-bit CRC。在接收端,通过判断所接收数据是否有错误,再通过 HARQ 协议决定是否要求发送端重发数据。
      码块分割是把超过一定大小的传输数据块切割成若干较小的数据块,分开进行后续的纠错编码,分割后的数据块会分别计算并添加额外的 CRC 校验码。
      信道编码采用了 Quasi-cyclic LDPC 码。
      速率匹配的目的是把经过信道编码的比特数量通过调整,适配到对应的所分配的PDSCH 或 PUSCH 资源(所承载的比特数量)上。
      速率匹配输出的码块按顺序级联后即可进行调制进而经由发射机发送。

      控制信道编码
      上下行控制信道都采用了Polar码。
      上行
      上行控制信息UCI的整个信道编码过程如下图5所示。
    在这里插入图片描述
      首先,对待传输的控制信息进行码块分割和添加码块 CRC 校验码。信道纠错编码采用了 Polar 码。速率匹配则把经过信道编码的数据从速率上匹配到所分配到的物理信道资源上。码块级联则把数据块按顺序连接起来,然后通过调制发送。
      下行
      下行控制信息(DCI)的整个信道编码过程如图 6 所示。
    在这里插入图片描述
      首先,对待传输的控制信息添加 CRC 校验码。随后经过加扰,加扰序列采用的是终端无线网络临时识别号(RNTI,Radio Network Temporary Identity),这样做的目的是使得接收侧(终端)可以通过 CRC 校验码和加扰序列同时得知数据的正确性以及本终端是不是该信息的正确接收方,从而减少了需要通过PDCCH 发送的比特数。信道纠错编码采用了 Polar 码。速率匹配则把经过信道编码的数据从速率上匹配到所分配到的物理信道资源上,后续数据块即可按顺序进行 QPSK 调制进而由发射机发送。
    参考文档

    展开全文
  • 无线通信中为了增加通信的可靠性而增加的一种信道编码机制。 一般用三个参数来设定(n,k,m)。 其中n一个时刻输出的比特数,k是一个时刻输入的比特数,m是记忆的输入的数量。 由于k个输入变为了n个输出,所以称为...
  • 第六章 信道编码

    2021-09-07 19:09:42
    信道编码的目的: 为了提高信号传输的可靠性,改善通信系统的传输质量。 信道可以理解为传输水的管道,主要是为了传输码元,信道的大小也会影响到传输的速率,就想管子的口径大,那么传输的水量同样大,信道的传输...
  • 基带传输中的信道编码和信源编码

    千次阅读 2018-11-07 10:25:37
    信道编码 由于移动通信存在干扰和衰落,在信号传输过程中将出现差错,故对数字信号必须采用纠、检错技术,即纠、检错编码技术,以增强数据在信道中传输时抵御各种干扰的能力,提高系统的可靠性。对要在信道中传送的...
  • 信道编码算法的发展和应用

    千次阅读 2018-11-23 14:15:01
    一、什么是信道编码算法  由于无线信号是敏感而脆弱的,易受干扰、弱覆盖等影响,发送的数据和接收到的数据有时候会不一致,比如手机发送的1 0 0 1 0,而基站接收到的却是1 1 0 1 0,为了纠错,无线通信系统就引入...
  • 信道冲击响应数据的误码率作为分析基础,设计了一种引进正交频分复用及多天线技术概念进行改良的多载波MFSK 编码方案,并验证了在多径衰落条件下的频谱使用效率及误码率,从而证明了该方案在提高频谱效率方面的...
  • 信道容量及信道编码原理学习

    千次阅读 2019-10-08 11:03:23
    4. 信道编码定理 0x1:信道容量的直观理解 前面的章节中我们已经讨论了离散无记忆信道的信息容量定义,即容量可以视为能够在该信道中可靠传输的比特数。我们这小节将尝试给出一个直观思路,解释为什么能通过信道...
  • 无线信道的衰落:无线信道的物理特性总是处于变化中,称为变参信道。对于无线信道,最要命的特性莫过于衰落现象:由于多径效应引起的小尺度效应;由于距离衰减引起的路径损耗或者障碍物造成的阴影等大尺度效应。大小...
  • 从消息到信道波形或矢量的映射 了解信道编码的作用与意义,对信道编码的研究方法和成果有广泛的基本认识 特点:以概念和物理意义为主,数学推导尽量放到课外
  • 信道编码之差错控制原理

    千次阅读 2018-06-22 21:28:02
    在前面讲差错控制方式时,有的编码只能检错,却不能纠错;有的码既能检错,又能纠错。这个到底是由什么决定的呢?通过一个简单的例子来说明这个问题。我们知道,一个由3位二进制数字构成的码组,总共由8种不同的组合...
  • 信道编码绪论

    千次阅读 2018-05-15 07:49:29
    1.研究背景 信息化是当今社会最鲜明的特点,...图1给出了通信系统的一般模型,在图中发送端的信息源就是把日常生活中的各种消息转换成电信号的一种设备,发送设备是把信息源产生的电信号通过调制或者是编码等手段使...
  • 信道编码是这本书的第五章,老师在讲到线性分组码的时候突然让学生去黑板上做练习题,并说这是重点,必须练习。(幸好第一堂课没有点我的名字) 在这里我只写一些关于线性分组码的相关知识,及我的理解。 下面试...
  • 信源编码和信道编码的发展历程 信源编码: 最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码...
  • 信道编码之设计线性分组码

    千次阅读 2020-01-24 23:51:13
    (n,k)线性分组码表示有k位的信息组,编码后为n位。根据生成矩阵的不同分为系统码和非系统码:系统码是码字中信息位与监督位分离,非系统码在码字中无法直观的得到原信息,在接收时需要额外译码。接收时由检校矩阵...
  • 无线信道基础概念

    千次阅读 2020-10-16 20:53:55
    无线信道基础概念目录一、无线信道信道容量信道带宽时延扩展信号衰落多普勒效应原理公式二、天线增益2.读入数据总结 目录 一、无线信道 无线信道是对无线通信中发送端和接收端之间通路的一种形象比喻,对于无线...
  • 信道编码译码(ECC)学习笔记

    千次阅读 2020-09-24 00:12:37
    如果学过编码相关课程就不用看了。 codeword概念 (此处只讲系统码) 一个完整的码字(codeword)包括两部分:信息位(massage)和校验位(parity)。 例如:给出一个汉明码:1010101, 根据汉明码的相关定义(校验...
  • 信息论与信道编码之BPSK误码率公式推导

    千次阅读 多人点赞 2020-06-28 19:37:05
    不过对于它的实质概念,在当时来看,还是很模糊的。这导致后来一次接触到正态分布,直接一脸懵,那是在大一的模拟通信的课程。当然本来正态分布涉及到的数学问题还是非常复杂的。 在讲什么是正态分布之前,先来解读...
  • 信道编码1

    2021-07-07 15:59:34
    I(X,Y):信息传输率,表示信道实际传输的信息...而信道编码是在假设信源熵很大的情况下(信源理想)降低损失熵即:H(X|Y).I(X,Y)=H(X)-H(X\Y):从而信源编码和信道编码都可以增大:平均互信息。 一:噪声信道的编码 ..
  • 毫米波蜂窝系统的信道估计及混合预处理 摘 要 ...由于高损耗以及混合信号设备的功率开销,毫米波的预编码可能在模拟域和数字域之间划分开来。多天线以及模拟波束成形要求为毫米波定制新的信道估计...
  • LDPC编译码原理

    万次阅读 多人点赞 2019-08-01 20:45:32
    LDPC码简介 LDPC编码 LDPC译码 结语
  • 第1章 物理层架构 1.1 物理层内部功能协议栈 1.2物理层编码与处理过程 ...(1)信道编码 ...本文主要探讨NR的信道...以发送为例, 阐述物理层信道编码的过程以及其中涉及到的主要,接收过程与之相反。 (1)TrBloc...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 15,353
精华内容 6,141
关键字:

信道编码概念