精华内容
下载资源
问答
  • AES加密算法的详细介绍与实现

    万次阅读 多人点赞 2017-02-19 08:53:54
    AES简介高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法的)。对称加密算法也就是加密和解密用相同的密钥,具体的加密流程如下图: 下面简单介绍下...

    AES简介

    高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法的)。对称加密算法也就是加密和解密用相同的密钥,具体的加密流程如下图:
    加密流程图
    下面简单介绍下各个部分的作用与意义:

    • 明文P

    没有经过加密的数据。

    • 密钥K

    用来加密明文的密码,在对称加密算法中,加密与解密的密钥是相同的。密钥为接收方与发送方协商产生,但不可以直接在网络上传输,否则会导致密钥泄漏,通常是通过非对称加密算法加密密钥,然后再通过网络传输给对方,或者直接面对面商量密钥。密钥是绝对不可以泄漏的,否则会被攻击者还原密文,窃取机密数据。

    • AES加密函数

    设AES加密函数为E,则 C = E(K, P),其中P为明文,K为密钥,C为密文。也就是说,把明文P和密钥K作为加密函数的参数输入,则加密函数E会输出密文C。

    • 密文C

    经加密函数处理后的数据

    • AES解密函数

    设AES解密函数为D,则 P = D(K, C),其中C为密文,K为密钥,P为明文。也就是说,把密文C和密钥K作为解密函数的参数输入,则解密函数会输出明文P。

    在这里简单介绍下对称加密算法与非对称加密算法的区别。

    • 对称加密算法

    加密和解密用到的密钥是相同的,这种加密方式加密速度非常快,适合经常发送数据的场合。缺点是密钥的传输比较麻烦。

    • 非对称加密算法

    加密和解密用的密钥是不同的,这种加密方式是用数学上的难解问题构造的,通常加密解密的速度比较慢,适合偶尔发送数据的场合。优点是密钥传输方便。常见的非对称加密算法为RSA、ECC和EIGamal。

    实际中,一般是通过RSA加密AES的密钥,传输到接收方,接收方解密得到AES密钥,然后发送方和接收方用AES密钥来通信。

    本文下面AES原理的介绍参考自《现代密码学教程》,AES的实现在介绍完原理后开始。

    AES的基本结构

    AES为分组密码,分组密码也就是把明文分成一组一组的,每组长度相等,每次加密一组数据,直到加密完整个明文。在AES标准规范中,分组长度只能是128位,也就是说,每个分组为16个字节(每个字节8位)。密钥的长度可以使用128位、192位或256位。密钥的长度不同,推荐加密轮数也不同,如下表所示:

    AES 密钥长度(32位比特字) 分组长度(32位比特字) 加密轮数
    AES-128 4 4 10
    AES-192 6 4 12
    AES-256 8 4 14

    轮数在下面介绍,这里实现的是AES-128,也就是密钥的长度为128位,加密轮数为10轮。
    上面说到,AES的加密公式为C = E(K,P),在加密函数E中,会执行一个轮函数,并且执行10次这个轮函数,这个轮函数的前9次执行的操作是一样的,只有第10次有所不同。也就是说,一个明文分组会被加密10轮。AES的核心就是实现一轮中的所有操作。

    AES的处理单位是字节,128位的输入明文分组P和输入密钥K都被分成16个字节,分别记为P = P0 P1 … P15 和 K = K0 K1 … K15。如,明文分组为P = abcdefghijklmnop,其中的字符a对应P0,p对应P15。一般地,明文分组用字节为单位的正方形矩阵描述,称为状态矩阵。在算法的每一轮中,状态矩阵的内容不断发生变化,最后的结果作为密文输出。该矩阵中字节的排列顺序为从上到下、从左至右依次排列,如下图所示:
    state

    现在假设明文分组P为"abcdefghijklmnop",则对应上面生成的状态矩阵图如下:
    state2
    上图中,0x61为字符a的十六进制表示。可以看到,明文经过AES加密后,已经面目全非。

    类似地,128位密钥也是用字节为单位的矩阵表示,矩阵的每一列被称为1个32位比特字。通过密钥编排函数该密钥矩阵被扩展成一个44个字组成的序列W[0],W[1], … ,W[43],该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥加(下面介绍);后面40个字分为10组,每组4个字(128比特)分别用于10轮加密运算中的轮密钥加,如下图所示:
    keystate
    上图中,设K = “abcdefghijklmnop”,则K0 = a, K15 = p, W[0] = K0 K1 K2 K3 = “abcd”。

    AES的整体结构如下图所示,其中的W[0,3]是指W[0]、W[1]、W[2]和W[3]串联组成的128位密钥。加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。另外,在第一轮迭代之前,先将明文和原始密钥进行一次异或加密操作。
    aes_struct
    上图也展示了AES解密过程,解密过程仍为10轮,每一轮的操作是加密操作的逆操作。由于AES的4个轮操作都是可逆的,因此,解密操作的一轮就是顺序执行逆行移位、逆字节代换、轮密钥加和逆列混合。同加密操作类似,最后一轮不执行逆列混合,在第1轮解密之前,要执行1次密钥加操作。

    下面分别介绍AES中一轮的4个操作阶段,这4分操作阶段使输入位得到充分的混淆。

    一、字节代换

    1.字节代换操作

    AES的字节代换其实就是一个简单的查表操作。AES定义了一个S盒和一个逆S盒。
    AES的S盒:

    行/列 0 1 2 3 4 5 6 7 8 9 A B C D E F
    0 0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5 0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76
    1 0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0 0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0
    2 0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc 0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15
    3 0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a 0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75
    4 0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0 0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84
    5 0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b 0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf
    6 0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85 0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8
    7 0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5 0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2
    8 0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17 0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
    9 0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88 0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb
    A 0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c 0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79
    B 0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9 0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08
    C 0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6 0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a
    D 0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e 0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e
    E 0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94 0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf
    F 0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68 0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16

    状态矩阵中的元素按照下面的方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,取出S盒或者逆S盒中对应的行的元素作为输出。例如,加密时,输出的字节S1为0x12,则查S盒的第0x01行和0x02列,得到值0xc9,然后替换S1原有的0x12为0xc9。状态矩阵经字节代换后的图如下:
    字节变换

    2.字节代换逆操作

    逆字节代换也就是查逆S盒来变换,逆S盒如下:

    行/列 0 1 2 3 4 5 6 7 8 9 A B C D E F
    0 0x52 0x09 0x6a 0xd5 0x30 0x36 0xa5 0x38 0xbf 0x40 0xa3 0x9e 0x81 0xf3 0xd7 0xfb
    1 0x7c 0xe3 0x39 0x82 0x9b 0x2f 0xff 0x87 0x34 0x8e 0x43 0x44 0xc4 0xde 0xe9 0xcb
    2 0x54 0x7b 0x94 0x32 0xa6 0xc2 0x23 0x3d 0xee 0x4c 0x95 0x0b 0x42 0xfa 0xc3 0x4e
    3 0x08 0x2e 0xa1 0x66 0x28 0xd9 0x24 0xb2 0x76 0x5b 0xa2 0x49 0x6d 0x8b 0xd1 0x25
    4 0x72 0xf8 0xf6 0x64 0x86 0x68 0x98 0x16 0xd4 0xa4 0x5c 0xcc 0x5d 0x65 0xb6 0x92
    5 0x6c 0x70 0x48 0x50 0xfd 0xed 0xb9 0xda 0x5e 0x15 0x46 0x57 0xa7 0x8d 0x9d 0x84
    6 0x90 0xd8 0xab 0x00 0x8c 0xbc 0xd3 0x0a 0xf7 0xe4 0x58 0x05 0xb8 0xb3 0x45 0x06
    7 0xd0 0x2c 0x1e 0x8f 0xca 0x3f 0x0f 0x02 0xc1 0xaf 0xbd 0x03 0x01 0x13 0x8a 0x6b
    8 0x3a 0x91 0x11 0x41 0x4f 0x67 0xdc 0xea 0x97 0xf2 0xcf 0xce 0xf0 0xb4 0xe6 0x73
    9 0x96 0xac 0x74 0x22 0xe7 0xad 0x35 0x85 0xe2 0xf9 0x37 0xe8 0x1c 0x75 0xdf 0x6e
    A 0x47 0xf1 0x1a 0x71 0x1d 0x29 0xc5 0x89 0x6f 0xb7 0x62 0x0e 0xaa 0x18 0xbe 0x1b
    B 0xfc 0x56 0x3e 0x4b 0xc6 0xd2 0x79 0x20 0x9a 0xdb 0xc0 0xfe 0x78 0xcd 0x5a 0xf4
    C 0x1f 0xdd 0xa8 0x33 0x88 0x07 0xc7 0x31 0xb1 0x12 0x10 0x59 0x27 0x80 0xec 0x5f
    D 0x60 0x51 0x7f 0xa9 0x19 0xb5 0x4a 0x0d 0x2d 0xe5 0x7a 0x9f 0x93 0xc9 0x9c 0xef
    E 0xa0 0xe0 0x3b 0x4d 0xae 0x2a 0xf5 0xb0 0xc8 0xeb 0xbb 0x3c 0x83 0x53 0x99 0x61
    F 0x17 0x2b 0x04 0x7e 0xba 0x77 0xd6 0x26 0xe1 0x69 0x14 0x63 0x55 0x21 0x0c 0x7d

    二、行移位

    1.行移位操作

    行移位是一个简单的左循环移位操作。当密钥长度为128比特时,状态矩阵的第0行左移0字节,第1行左移1字节,第2行左移2字节,第3行左移3字节,如下图所示:
    shiftRows

    2.行移位的逆变换

    行移位的逆变换是将状态矩阵中的每一行执行相反的移位操作,例如AES-128中,状态矩阵的第0行右移0字节,第1行右移1字节,第2行右移2字节,第3行右移3字节。

    三、列混合

    1.列混合操作

    列混合变换是通过矩阵相乘来实现的,经行移位后的状态矩阵与固定的矩阵相乘,得到混淆后的状态矩阵,如下图的公式所示:
    col

    状态矩阵中的第j列(0 ≤j≤3)的列混合可以表示为下图所示:
    col2

    其中,矩阵元素的乘法和加法都是定义在基于GF(2^8)上的二元运算,并不是通常意义上的乘法和加法。这里涉及到一些信息安全上的数学知识,不过不懂这些知识也行。其实这种二元运算的加法等价于两个字节的异或,乘法则复杂一点。对于一个8位的二进制数来说,使用域上的乘法乘以(00000010)等价于左移1位(低位补0)后,再根据情况同(00011011)进行异或运算,设S1 = (a7 a6 a5 a4 a3 a2 a1 a0),刚0x02 * S1如下图所示:
    col3
    也就是说,如果a7为1,则进行异或运算,否则不进行。
    类似地,乘以(00000100)可以拆分成两次乘以(00000010)的运算:
    col4
    乘以(0000 0011)可以拆分成先分别乘以(0000 0001)和(0000 0010),再将两个乘积异或:
    在这里插入图片描述

    因此,我们只需要实现乘以2的函数,其他数值的乘法都可以通过组合来实现。
    下面举个具体的例子,输入的状态矩阵如下:

    C9 E5 FD 2B
    7A F2 78 6E
    63 9C 26 67
    B0 A7 82 E5

    下面,进行列混合运算:
    以第一列的运算为例:
    col7
    其它列的计算就不列举了,列混合后生成的新状态矩阵如下:

    D4 E7 CD 66
    28 02 E5 BB
    BE C6 D6 BF
    22 0F DF A5

    2.列混合逆运算

    逆向列混合变换可由下图的矩阵乘法定义:
    col6
    可以验证,逆变换矩阵同正变换矩阵的乘积恰好为单位矩阵。

    四、轮密钥加

    轮密钥加是将128位轮密钥Ki同状态矩阵中的数据进行逐位异或操作,如下图所示。其中,密钥Ki中每个字W[4i],W[4i+1],W[4i+2],W[4i+3]为32位比特字,包含4个字节,他们的生成算法下面在下面介绍。轮密钥加过程可以看成是字逐位异或的结果,也可以看成字节级别或者位级别的操作。也就是说,可以看成S0 S1 S2 S3 组成的32位字与W[4i]的异或运算。
    roundadd
    轮密钥加的逆运算同正向的轮密钥加运算完全一致,这是因为异或的逆操作是其自身。轮密钥加非常简单,但却能够影响S数组中的每一位。

    密钥扩展

    AES首先将初始密钥输入到一个44的状态矩阵中,如下图所示。
    keyextends
    这个4
    4矩阵的每一列的4个字节组成一个字,矩阵4列的4个字依次命名为W[0]、W[1]、W[2]和W[3],它们构成一个以字为单位的数组W。例如,设密钥K为"abcdefghijklmnop",则K0 = ‘a’,K1 = ‘b’, K2 = ‘c’,K3 = ‘d’,W[0] = “abcd”。
    接着,对W数组扩充40个新列,构成总共44列的扩展密钥数组。新列以如下的递归方式产生:
    1.如果i不是4的倍数,那么第i列由如下等式确定:
    W[i]=W[i-4]⨁W[i-1]
    2.如果i是4的倍数,那么第i列由如下等式确定:
    W[i]=W[i-4]⨁T(W[i-1])
    其中,T是一个有点复杂的函数。
    函数T由3部分组成:字循环、字节代换和轮常量异或,这3部分的作用分别如下。
    a.字循环:将1个字中的4个字节循环左移1个字节。即将输入字[b0, b1, b2, b3]变换成[b1,b2,b3,b0]。
    b.字节代换:对字循环的结果使用S盒进行字节代换。
    c.轮常量异或:将前两步的结果同轮常量Rcon[j]进行异或,其中j表示轮数。
    轮常量Rcon[j]是一个字,其值见下表。

    j 1 2 3 4 5
    Rcon[j] 01 00 00 00 02 00 00 00 04 00 00 00 08 00 00 00 10 00 00 00
    j 6 7 8 9 10
    Rcon[j] 20 00 00 00 40 00 00 00 80 00 00 00 1B 00 00 00 36 00 00 00

    下面举个例子:
    设初始的128位密钥为:
    3C A1 0B 21 57 F0 19 16 90 2E 13 80 AC C1 07 BD
    那么4个初始值为:
    W[0] = 3C A1 0B 21
    W[1] = 57 F0 19 16
    W[2] = 90 2E 13 80
    W[3] = AC C1 07 BD
    下面求扩展的第1轮的子密钥(W[4],W[5],W[6],W[7])。
    由于4是4的倍数,所以:
    W[4] = W[0] ⨁ T(W[3])
    T(W[3])的计算步骤如下:

    1. 循环地将W[3]的元素移位:AC C1 07 BD变成C1 07 BD AC;
    2. 将 C1 07 BD AC 作为S盒的输入,输出为78 C5 7A 91;
    3. 将78 C5 7A 91与第一轮轮常量Rcon[1]进行异或运算,将得到79 C5 7A 91,因此,T(W[3])=79 C5 7A 91,故
      W[4] = 3C A1 0B 21 ⨁ 79 C5 7A 91 = 45 64 71 B0
      其余的3个子密钥段的计算如下:
      W[5] = W[1] ⨁ W[4] = 57 F0 19 16 ⨁ 45 64 71 B0 = 12 94 68 A6
      W[6] = W[2] ⨁ W[5] =90 2E 13 80 ⨁ 12 94 68 A6 = 82 BA 7B 26
      W[7] = W[3] ⨁ W[6] = AC C1 07 BD ⨁ 82 BA 7B 26 = 2E 7B 7C 9B
      所以,第一轮的密钥为 45 64 71 B0 12 94 68 A6 82 BA 7B 26 2E 7B 7C 9B。

    AES解密

    在文章开始的图中,有AES解密的流程图,可以对应那个流程图来进行解密。下面介绍的是另一种等价的解密模式,流程图如下图所示。这种等价的解密模式使得解密过程各个变换的使用顺序同加密过程的顺序一致,只是用逆变换取代原来的变换。
    deaes

    AES原理到这里就结束了,下面主要为AES的实现,对以上原理中的每一个小节进行实现讲解,讲解的时候会插入一些关键代码,完整的代码参见文章最后。文章最后提供两个完整的程序,一个能在linux下面编译运行,一个能在VC6.0下面编译通过。

    AES算法实现

    AES加密函数预览

    aes加密函数中,首先进行密钥扩展,然后把128位长度的字符串读进一个4*4的整数数组中,这个数组就是状态矩阵。例如,pArray[0][0] = S0,pArray[1][0] = S1, pArray[0][1] = S4。这个读取过程是通过 convertToIntArray()函数来实现的。每个轮操作的函数都对pArray进行修改,也就是对状态矩阵进行混淆。在执行完10轮加密后,会把pArray转换回字符串,再存入明文p的字符数组中,所以,在加密完后,明文p的字符串中的字符就是加密后的字符了。这个转换过程是通过convertArrayToStr()函数来实现的。

    /**
     * 参数 p: 明文的字符串数组。
     * 参数 plen: 明文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void aes(char *p, int plen, char *key){
    
        int keylen = strlen(key);
        if(plen == 0 || plen % 16 != 0) {
            printf("明文字符长度必须为16的倍数!\n");
            exit(0);
        }
    
        if(!checkKeyLen(keylen)) {
            printf("密钥字符长度错误!长度必须为16、24和32。当前长度为%d\n",keylen);
            exit(0);
        }
    
        extendKey(key);//扩展密钥
        int pArray[4][4];
    
        for(int k = 0; k < plen; k += 16) {
            convertToIntArray(p + k, pArray);
    
            addRoundKey(pArray, 0);//一开始的轮密钥加
    
            for(int i = 1; i < 10; i++){//前9轮
    
                subBytes(pArray);//字节代换
    
                shiftRows(pArray);//行移位
    
                mixColumns(pArray);//列混合
    
                addRoundKey(pArray, i);
    
            }
    
            //第10轮
            subBytes(pArray);//字节代换
    
            shiftRows(pArray);//行移位
    
            addRoundKey(pArray, 10);
    
            convertArrayToStr(pArray, p + k);
        }
    }
    
    

    1.密钥扩展的实现

    在开始加密前,必须先获得第一轮加密用到的密钥,故先实现密钥扩展
    下面是密钥扩展函数的实现,这个函数传入密钥key的字符串表示,然后从字符串中读取W[0]到W[3],函数getWordFromStr()用于实现此功能。读取后,就开始扩展密钥,当i是4的倍数的时候,就会调用T()函数来进行扩展,因为T函数的行为与加密的轮数有关,故要把加密的轮数 j 作为参数传进去。

    //密钥对应的扩展数组
    static int w[44];
    
    /**
     * 扩展密钥,结果是把w[44]中的每个元素初始化
     */
    static void extendKey(char *key) {
        for(int i = 0; i < 4; i++)
            w[i] = getWordFromStr(key + i * 4); 
    
        for(int i = 4, j = 0; i < 44; i++) {
            if( i % 4 == 0) {
                w[i] = w[i - 4] ^ T(w[i - 1], j); 
                j++;//下一轮
            }else {
                w[i] = w[i - 4] ^ w[i - 1]; 
            }
        }   
    
    }
    
    

    下面是T()函数的代码实现,T()函数中接收两个参数,参数num为上面传进的W[i - 1],round为加密的轮数。首先用一个numArray储存从32位的W[i-1]中取得4个字节。如果W[i-1]为0x12ABCDEF,那么numArray[0] = 0x12,numArray[1] = 0xAB。函数splitIntToArray()用于从32位整数中读取这四个字节,之所以这样做是因为整数数组比较容易操作。然后调用leftLoop4int()函数把numArray数组中的4个元素循环左移1位。然后执行字节代换,通过getNumFromSBox()函数来获取S盒中相应的值来替换numArray中的值。接着通过mergeArrayToInt()函数把字节代换后的numArray合并回32位的整数,在进行轮常量异或后返回。

    /**
     * 常量轮值表
     */
    static const int Rcon[10] = { 0x01000000, 0x02000000,
        0x04000000, 0x08000000,
        0x10000000, 0x20000000,
        0x40000000, 0x80000000,
        0x1b000000, 0x36000000 };
    /**
     * 密钥扩展中的T函数
     */
    static int T(int num, int round) {
        int numArray[4];
        splitIntToArray(num, numArray);
        leftLoop4int(numArray, 1);//字循环
    
        //字节代换
        for(int i = 0; i < 4; i++)
            numArray[i] = getNumFromSBox(numArray[i]);
    
        int result = mergeArrayToInt(numArray);
        return result ^ Rcon[round];
    }
    
    

    2. 字节代换的实现

    字节代换的代码很简单,就是把状态矩阵中的每个元素传进getNumFromSBox()函数中,然后取得前面8位中的高4位作为行值,低4位作为列值,然后返回S[row][col],这里的S是储存S盒的数组。

    
    /**
     * 根据索引,从S盒中获得元素
     */
    static int getNumFromSBox(int index) {
        int row = getLeft4Bit(index);
        int col = getRight4Bit(index);
        return S[row][col];
    }
    
    /**
     * 字节代换
     */
    static void subBytes(int array[4][4]){
        for(int i = 0; i < 4; i++)
            for(int j = 0; j < 4; j++)
                array[i][j] = getNumFromSBox(array[i][j]);
    }
    
    

    3.行移位的实现

    行移位的时候,首先把状态矩阵中第2,3,4行复制出来,然后对它们行进左移相应的位数,然后再复制回去状态矩阵array中。

    
    /**
     * 将数组中的元素循环左移step位
     */
    static void leftLoop4int(int array[4], int step) {
        int temp[4];
        for(int i = 0; i < 4; i++)
            temp[i] = array[i];
    
        int index = step % 4 == 0 ? 0 : step % 4;
        for(int i = 0; i < 4; i++){
            array[i] = temp[index];
            index++;
            index = index % 4;
        }
    }
    
    /**
     * 行移位
     */
    static void shiftRows(int array[4][4]) {
        int rowTwo[4], rowThree[4], rowFour[4];
        //复制状态矩阵的第2,3,4行
        for(int i = 0; i < 4; i++) {
            rowTwo[i] = array[1][i];
            rowThree[i] = array[2][i];
            rowFour[i] = array[3][i];
        }
        //循环左移相应的位数
        leftLoop4int(rowTwo, 1);
        leftLoop4int(rowThree, 2);
        leftLoop4int(rowFour, 3);
    
        //把左移后的行复制回状态矩阵中
        for(int i = 0; i < 4; i++) {
            array[1][i] = rowTwo[i];
            array[2][i] = rowThree[i];
            array[3][i] = rowFour[i];
        }
    }
    
    

    4.列混合的实现

    列混合函数中,先把状态矩阵初始状态复制一份到tempArray中,然后把tempArray与colM矩阵相乘,colM为存放要乘的常数矩阵的数组。其中的GFMul()函数定义了矩阵相乘时的乘法,加法则直接通过异或来实现。GFMul()通过调用乘以各个数对应的函数来实现乘法。例如,S1 * 2 刚通过调用GFMul2(S1)来实现。S1 * 3 刚通过GFMul3(S1)来实现。在这里,主要实现GFMul2()函数就行了,其它的都可以通过GFMul2()的组合来实现。举个例子吧,为计算下面这条等式,需要像下面这样调用函数
    ex

    s = GFMul3(0xC9) ^ 0x7A ^ 0x63 ^ GFMul2(0xB0)

    /**
     * 列混合要用到的矩阵
     */
    static const int colM[4][4] = { 2, 3, 1, 1,
        1, 2, 3, 1,
        1, 1, 2, 3,
        3, 1, 1, 2 };
    
    static int GFMul2(int s) {
        int result = s << 1;
        int a7 = result & 0x00000100;
    
        if(a7 != 0) {
            result = result & 0x000000ff;
            result = result ^ 0x1b;
        }
    
        return result;
    }
    
    static int GFMul3(int s) {
        return GFMul2(s) ^ s;
    }
    
    /**
     * GF上的二元运算
     */
    static int GFMul(int n, int s) {
        int result;
    
        if(n == 1)
            result = s;
        else if(n == 2)
            result = GFMul2(s);
        else if(n == 3)
            result = GFMul3(s);
        else if(n == 0x9)
            result = GFMul9(s);
        else if(n == 0xb)//11
            result = GFMul11(s);
        else if(n == 0xd)//13
            result = GFMul13(s);
        else if(n == 0xe)//14
            result = GFMul14(s);
    
        return result;
    }
    
    /**
     * 列混合
     */
    static void mixColumns(int array[4][4]) {
    
        int tempArray[4][4];
    
        for(int i = 0; i < 4; i++)
            for(int j = 0; j < 4; j++)
                tempArray[i][j] = array[i][j];
    
        for(int i = 0; i < 4; i++)
            for(int j = 0; j < 4; j++){
                array[i][j] = GFMul(colM[i][0],tempArray[0][j]) ^ GFMul(colM[i][1],tempArray[1][j])
                    ^ GFMul(colM[i][2],tempArray[2][j]) ^ GFMul(colM[i][3], tempArray[3][j]);
            }
    }
    
    

    5.轮密钥加的实现

    轮密钥加的实现很简单,就是根据传入的轮数来把状态矩阵与相应的W[i]异或。

    
    /**
     * 轮密钥加
     */
    static void addRoundKey(int array[4][4], int round) {
        int warray[4];
        for(int i = 0; i < 4; i++) {
    
            splitIntToArray(w[ round * 4 + i], warray);
    
            for(int j = 0; j < 4; j++) {
                array[j][i] = array[j][i] ^ warray[j];
            }
        }
    }
    
    
    

    AES解密函数

    AES的解密函数和加密函数有点不同,可以参考上面的等价解密流程图来理解,解密函数中调用的是各轮操作的逆函数。逆函数在这里就不详细讲解了,可以参考最后的完整代码。

    /**
     * 参数 c: 密文的字符串数组。
     * 参数 clen: 密文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void deAes(char *c, int clen, char *key) {
    
        int keylen = strlen(key);
        if(clen == 0 || clen % 16 != 0) {
            printf("密文字符长度必须为16的倍数!现在的长度为%d\n",clen);
            exit(0);
        }
    
        if(!checkKeyLen(keylen)) {
            printf("密钥字符长度错误!长度必须为16、24和32。当前长度为%d\n",keylen);
            exit(0);
        }
    
        extendKey(key);//扩展密钥
        int cArray[4][4];
        for(int k = 0; k < clen; k += 16) {
            convertToIntArray(c + k, cArray);
    
    
            addRoundKey(cArray, 10);
    
            int wArray[4][4];
            for(int i = 9; i >= 1; i--) {
                deSubBytes(cArray);
    
                deShiftRows(cArray);
    
                deMixColumns(cArray);
                getArrayFrom4W(i, wArray);
                deMixColumns(wArray);
    
                addRoundTowArray(cArray, wArray);
            }
    
            deSubBytes(cArray);
    
            deShiftRows(cArray);
    
            addRoundKey(cArray, 0);
    
            convertArrayToStr(cArray, c + k);
    
        }
    }
    
    

    完整的程序代码

    Linux版本

    aes.h

    #ifndef AES_H
    #define AES_H
    
    /**
     * 参数 p: 明文的字符串数组。
     * 参数 plen: 明文的长度,长度必须为16的倍数。
     * 参数 key: 密钥的字符串数组。
     */
    void aes(char *p, int plen, char *key);
    
    /**
     * 参数 c: 密文的字符串数组。
     * 参数 clen: 密文的长度,长度必须为16的倍数。
     * 参数 key: 密钥的字符串数组。
     */
    void deAes(char *c, int clen, char *key);
    
    #endif
    
    

    aes.c

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include "aes.h"
    
    /**
     * S盒
     */
    static const int S[16][16] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
    
    /**
     * 逆S盒
     */
    static const int S2[16][16] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
    	0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
    	0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
    	0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
    	0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
    	0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
    	0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
    	0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
    	0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
    	0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
    	0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
    	0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
    	0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
    	0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
    	0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
    	0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
    
    /**
     * 获取整形数据的低8位的左4个位
     */
    static int getLeft4Bit(int num) {
    	int left = num & 0x000000f0;
    	return left >> 4;
    }
    
    /**
     * 获取整形数据的低8位的右4个位
     */
    static int getRight4Bit(int num) {
    	return num & 0x0000000f;
    }
    /**
     * 根据索引,从S盒中获得元素
     */
    static int getNumFromSBox(int index) {
    	int row = getLeft4Bit(index);
    	int col = getRight4Bit(index);
    	return S[row][col];
    }
    
    /**
     * 把一个字符转变成整型
     */
    static int getIntFromChar(char c) {
    	int result = (int) c;
    	return result & 0x000000ff;
    }
    
    /**
     * 把16个字符转变成4X4的数组,
     * 该矩阵中字节的排列顺序为从上到下,
     * 从左到右依次排列。
     */
    static void convertToIntArray(char *str, int pa[4][4]) {
    	int k = 0;
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++) {
    			pa[j][i] = getIntFromChar(str[k]);
    			k++;
    		}
    }
    
    /**
     * 打印4X4的数组
     */
    static void printArray(int a[4][4]) {
    	for(int i = 0; i < 4; i++){
    		for(int j = 0; j < 4; j++)
    			printf("a[%d][%d] = 0x%x ", i, j, a[i][j]);
    		printf("\n");
    	}
    	printf("\n");
    }
    
    /**
     * 打印字符串的ASSCI,
     * 以十六进制显示。
     */
    static void printASSCI(char *str, int len) {
    	for(int i = 0; i < len; i++)
    		printf("0x%x ", getIntFromChar(str[i]));
    	printf("\n");
    }
    
    /**
     * 把连续的4个字符合并成一个4字节的整型
     */
    static int getWordFromStr(char *str) {
    	int one = getIntFromChar(str[0]);
    	one = one << 24;
    	int two = getIntFromChar(str[1]);
    	two = two << 16;
    	int three = getIntFromChar(str[2]);
    	three = three << 8;
    	int four = getIntFromChar(str[3]);
    	return one | two | three | four;
    }
    
    /**
     * 把一个4字节的数的第一、二、三、四个字节取出,
     * 入进一个4个元素的整型数组里面。
     */
    static void splitIntToArray(int num, int array[4]) {
    	int one = num >> 24;
    	array[0] = one & 0x000000ff;
    	int two = num >> 16;
    	array[1] = two & 0x000000ff;
    	int three = num >> 8;
    	array[2] = three & 0x000000ff;
    	array[3] = num & 0x000000ff;
    }
    
    /**
     * 将数组中的元素循环左移step位
     */
    static void leftLoop4int(int array[4], int step) {
    	int temp[4];
    	for(int i = 0; i < 4; i++)
    		temp[i] = array[i];
    
    	int index = step % 4 == 0 ? 0 : step % 4;
    	for(int i = 0; i < 4; i++){
    		array[i] = temp[index];
    		index++;
    		index = index % 4;
    	}
    }
    
    /**
     * 把数组中的第一、二、三和四元素分别作为
     * 4字节整型的第一、二、三和四字节,合并成一个4字节整型
     */
    static int mergeArrayToInt(int array[4]) {
    	int one = array[0] << 24;
    	int two = array[1] << 16;
    	int three = array[2] << 8;
    	int four = array[3];
    	return one | two | three | four;
    }
    
    /**
     * 常量轮值表
     */
    static const int Rcon[10] = { 0x01000000, 0x02000000,
    	0x04000000, 0x08000000,
    	0x10000000, 0x20000000,
    	0x40000000, 0x80000000,
    	0x1b000000, 0x36000000 };
    /**
     * 密钥扩展中的T函数
     */
    static int T(int num, int round) {
    	int numArray[4];
    	splitIntToArray(num, numArray);
    	leftLoop4int(numArray, 1);//字循环
    
    	//字节代换
    	for(int i = 0; i < 4; i++)
    		numArray[i] = getNumFromSBox(numArray[i]);
    
    	int result = mergeArrayToInt(numArray);
    	return result ^ Rcon[round];
    }
    
    //密钥对应的扩展数组
    static int w[44];
    
    /**
     * 扩展密钥,结果是把w[44]中的每个元素初始化
     */
    static void extendKey(char *key) {
    	for(int i = 0; i < 4; i++)
    		w[i] = getWordFromStr(key + i * 4);
    
    	for(int i = 4, j = 0; i < 44; i++) {
    		if( i % 4 == 0) {
    			w[i] = w[i - 4] ^ T(w[i - 1], j);
    			j++;//下一轮
    		}else {
    			w[i] = w[i - 4] ^ w[i - 1];
    		}
    	}
    
    }
    
    /**
     * 轮密钥加
     */
    static void addRoundKey(int array[4][4], int round) {
    	int warray[4];
    	for(int i = 0; i < 4; i++) {
    
    		splitIntToArray(w[ round * 4 + i], warray);
    
    		for(int j = 0; j < 4; j++) {
    			array[j][i] = array[j][i] ^ warray[j];
    		}
    	}
    }
    
    /**
     * 字节代换
     */
    static void subBytes(int array[4][4]){
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			array[i][j] = getNumFromSBox(array[i][j]);
    }
    
    /**
     * 行移位
     */
    static void shiftRows(int array[4][4]) {
    	int rowTwo[4], rowThree[4], rowFour[4];
    	//复制状态矩阵的第2,3,4行
    	for(int i = 0; i < 4; i++) {
    		rowTwo[i] = array[1][i];
    		rowThree[i] = array[2][i];
    		rowFour[i] = array[3][i];
    	}
    	//循环左移相应的位数
    	leftLoop4int(rowTwo, 1);
    	leftLoop4int(rowThree, 2);
    	leftLoop4int(rowFour, 3);
    
    	//把左移后的行复制回状态矩阵中
    	for(int i = 0; i < 4; i++) {
    		array[1][i] = rowTwo[i];
    		array[2][i] = rowThree[i];
    		array[3][i] = rowFour[i];
    	}
    }
    
    /**
     * 列混合要用到的矩阵
     */
    static const int colM[4][4] = { 2, 3, 1, 1,
    	1, 2, 3, 1,
    	1, 1, 2, 3,
    	3, 1, 1, 2 };
    
    static int GFMul2(int s) {
    	int result = s << 1;
    	int a7 = result & 0x00000100;
    
    	if(a7 != 0) {
    		result = result & 0x000000ff;
    		result = result ^ 0x1b;
    	}
    
    	return result;
    }
    
    static int GFMul3(int s) {
    	return GFMul2(s) ^ s;
    }
    
    static int GFMul4(int s) {
    	return GFMul2(GFMul2(s));
    }
    
    static int GFMul8(int s) {
    	return GFMul2(GFMul4(s));
    }
    
    static int GFMul9(int s) {
    	return GFMul8(s) ^ s;
    }
    
    static int GFMul11(int s) {
    	return GFMul9(s) ^ GFMul2(s);
    }
    
    static int GFMul12(int s) {
    	return GFMul8(s) ^ GFMul4(s);
    }
    
    static int GFMul13(int s) {
    	return GFMul12(s) ^ s;
    }
    
    static int GFMul14(int s) {
    	return GFMul12(s) ^ GFMul2(s);
    }
    
    /**
     * GF上的二元运算
     */
    static int GFMul(int n, int s) {
    	int result;
    
    	if(n == 1)
    		result = s;
    	else if(n == 2)
    		result = GFMul2(s);
    	else if(n == 3)
    		result = GFMul3(s);
    	else if(n == 0x9)
    		result = GFMul9(s);
    	else if(n == 0xb)//11
    		result = GFMul11(s);
    	else if(n == 0xd)//13
    		result = GFMul13(s);
    	else if(n == 0xe)//14
    		result = GFMul14(s);
    
    	return result;
    }
    /**
     * 列混合
     */
    static void mixColumns(int array[4][4]) {
    
    	int tempArray[4][4];
    
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			tempArray[i][j] = array[i][j];
    
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++){
    			array[i][j] = GFMul(colM[i][0],tempArray[0][j]) ^ GFMul(colM[i][1],tempArray[1][j]) 
    				^ GFMul(colM[i][2],tempArray[2][j]) ^ GFMul(colM[i][3], tempArray[3][j]);
    		}
    }
    /**
     * 把4X4数组转回字符串
     */
    static void convertArrayToStr(int array[4][4], char *str) {
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			*str++ = (char)array[j][i];	
    }
    /**
     * 检查密钥长度
     */
    static int checkKeyLen(int len) {
    	if(len == 16)
    		return 1;
    	else
    		return 0;
    }
    
    /**
     * 参数 p: 明文的字符串数组。
     * 参数 plen: 明文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void aes(char *p, int plen, char *key){
    
    	int keylen = strlen(key);
    	if(plen == 0 || plen % 16 != 0) {
    		printf("明文字符长度必须为16的倍数!\n");
    		exit(0);
    	}
    
    	if(!checkKeyLen(keylen)) {
    		printf("密钥字符长度错误!长度必须为16、24和32。当前长度为%d\n",keylen);
    		exit(0);
    	}
    
    	extendKey(key);//扩展密钥
    	int pArray[4][4];
    
    	for(int k = 0; k < plen; k += 16) {	
    		convertToIntArray(p + k, pArray);
    
    		addRoundKey(pArray, 0);//一开始的轮密钥加
    
    		for(int i = 1; i < 10; i++){//前9轮
    
    			subBytes(pArray);//字节代换
    
    			shiftRows(pArray);//行移位
    
    			mixColumns(pArray);//列混合
    
    			addRoundKey(pArray, i);
    
    		}
    
    		//第10轮
    		subBytes(pArray);//字节代换
    
    		shiftRows(pArray);//行移位
    
    		addRoundKey(pArray, 10);
    
    		convertArrayToStr(pArray, p + k);
    	}
    }
    /**
     * 根据索引从逆S盒中获取值
     */
    static int getNumFromS1Box(int index) {
    	int row = getLeft4Bit(index);
    	int col = getRight4Bit(index);
    	return S2[row][col];
    }
    /**
     * 逆字节变换
     */
    static void deSubBytes(int array[4][4]) {
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			array[i][j] = getNumFromS1Box(array[i][j]);
    }
    /**
     * 把4个元素的数组循环右移step位
     */
    static void rightLoop4int(int array[4], int step) {
    	int temp[4];
    	for(int i = 0; i < 4; i++)
    		temp[i] = array[i];
    
    	int index = step % 4 == 0 ? 0 : step % 4;
    	index = 3 - index;
    	for(int i = 3; i >= 0; i--) {
    		array[i] = temp[index];
    		index--;
    		index = index == -1 ? 3 : index;
    	}
    }
    
    /**
     * 逆行移位
     */
    static void deShiftRows(int array[4][4]) {
    	int rowTwo[4], rowThree[4], rowFour[4];
    	for(int i = 0; i < 4; i++) {
    		rowTwo[i] = array[1][i];
    		rowThree[i] = array[2][i];
    		rowFour[i] = array[3][i];
    	}
    
    	rightLoop4int(rowTwo, 1);
    	rightLoop4int(rowThree, 2);
    	rightLoop4int(rowFour, 3);
    
    	for(int i = 0; i < 4; i++) {
    		array[1][i] = rowTwo[i];
    		array[2][i] = rowThree[i];
    		array[3][i] = rowFour[i];
    	}
    }
    /**
     * 逆列混合用到的矩阵
     */
    static const int deColM[4][4] = { 0xe, 0xb, 0xd, 0x9,
    	0x9, 0xe, 0xb, 0xd,
    	0xd, 0x9, 0xe, 0xb,
    	0xb, 0xd, 0x9, 0xe };
    
    /**
     * 逆列混合
     */
    static void deMixColumns(int array[4][4]) {
    	int tempArray[4][4];
    
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			tempArray[i][j] = array[i][j];
    
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++){
    			array[i][j] = GFMul(deColM[i][0],tempArray[0][j]) ^ GFMul(deColM[i][1],tempArray[1][j]) 
    				^ GFMul(deColM[i][2],tempArray[2][j]) ^ GFMul(deColM[i][3], tempArray[3][j]);
    		}
    }
    /**
     * 把两个4X4数组进行异或
     */
    static void addRoundTowArray(int aArray[4][4],int bArray[4][4]) {
    	for(int i = 0; i < 4; i++)
    		for(int j = 0; j < 4; j++)
    			aArray[i][j] = aArray[i][j] ^ bArray[i][j];
    }
    /**
     * 从4个32位的密钥字中获得4X4数组,
     * 用于进行逆列混合
     */
    static void getArrayFrom4W(int i, int array[4][4]) {
    	int index = i * 4;
    	int colOne[4], colTwo[4], colThree[4], colFour[4];
    	splitIntToArray(w[index], colOne);
    	splitIntToArray(w[index + 1], colTwo);
    	splitIntToArray(w[index + 2], colThree);
    	splitIntToArray(w[index + 3], colFour);
    
    	for(int i = 0; i < 4; i++) {
    		array[i][0] = colOne[i];
    		array[i][1] = colTwo[i];
    		array[i][2] = colThree[i];
    		array[i][3] = colFour[i];
    	}
    
    }
    
    /**
     * 参数 c: 密文的字符串数组。
     * 参数 clen: 密文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void deAes(char *c, int clen, char *key) {
    
    	int keylen = strlen(key);
    	if(clen == 0 || clen % 16 != 0) {
    		printf("密文字符长度必须为16的倍数!现在的长度为%d\n",clen);
    		exit(0);
    	}
    
    	if(!checkKeyLen(keylen)) {
    		printf("密钥字符长度错误!长度必须为16、24和32。当前长度为%d\n",keylen);
    		exit(0);
    	}
    
    	extendKey(key);//扩展密钥
    	int cArray[4][4];
    	for(int k = 0; k < clen; k += 16) {
    		convertToIntArray(c + k, cArray);
    
    
    		addRoundKey(cArray, 10);
    
    		int wArray[4][4];
    		for(int i = 9; i >= 1; i--) {
    			deSubBytes(cArray);
    
    			deShiftRows(cArray);
    
    			deMixColumns(cArray);
    			getArrayFrom4W(i, wArray);
    			deMixColumns(wArray);
    
    			addRoundTowArray(cArray, wArray);
    		}
    
    		deSubBytes(cArray);
    
    		deShiftRows(cArray);
    
    		addRoundKey(cArray, 0);
    
    		convertArrayToStr(cArray, c + k);
    
    	}
    }
    

    main.c

    #include <stdio.h>
    #include <unistd.h>
    #include <string.h>
    #include <stdlib.h>
    
    #include "aes.h"
    
    #define MAXLEN 1024
    
    void getString(char *str, int len){
    
    	int slen = read(0, str, len);
    	for(int i = 0; i < slen; i++,str++){
    		if(*str == '\n'){
    			*str = '\0';
    			break;
    		}
    	}
    }
    
    void printASCCI(char *str, int len) {
    	int c;
    	for(int i = 0; i < len; i++) {
    		c = (int)*str++;
    		c = c & 0x000000ff;
    		printf("0x%x ", c);
    	}
    	printf("\n");
    }
    
    /**
     * 从标准输入中读取用户输入的字符串
     */
    void readPlainText(char *str, int *len) {
    	int plen;
    	while(1) {
    		getString(str, MAXLEN);
    		plen = strlen(str);
    		if(plen != 0 && plen % 16 == 0) {
    			printf("你输入的明文为:%s\n", str);
    			break;
    		}else{
    			printf("明文字符长度必须为16的倍数,现在的长度为%d\n", plen);
    		}
    	}
    	*len = plen;
    }
    /**
     * 把字符串写进文件
     */
    void writeStrToFile(char *str, int len, char *fileName) {
    	FILE *fp;
    	fp = fopen(fileName, "wb");
    	for(int i = 0; i < len; i++)
    		putc(str[i], fp);
    	fclose(fp);
    }
    
    
    void aesStrToFile(char *key) {
    
    	char p[MAXLEN];
    	int plen;
    	printf("请输入你的明文,明文字符长度必须为16的倍数\n");
    	readPlainText(p,&plen);
    	printf("进行AES加密..................\n");
    
    	aes(p, plen, key);//AES加密
    
    	printf("加密完后的明文的ASCCI为:\n");
    	printASCCI(p, plen);
    	char fileName[64];
    	printf("请输入你想要写进的文件名,比如'test.txt':\n");
    	if(scanf("%s", fileName) == 1) {	
    		writeStrToFile(p, plen, fileName);
    		printf("已经将密文写进%s中了,可以在运行该程序的当前目录中找到它。\n", fileName);
    	}
    }
    /**
     * 从文件中读取字符串
     */
    int readStrFromFile(char *fileName, char *str) {
    	FILE *fp = fopen(fileName, "rb");
    	if(fp == NULL) {
    		printf("打开文件出错,请确认文件存在当前目录下!\n");
    		exit(0);
    	}
    
    	int i;
    	for(i = 0; i < MAXLEN && (str[i] = getc(fp)) != EOF; i++);
    
    	if(i >= MAXLEN) {
    		printf("解密文件过大!\n");
    		exit(0);
    	}
    
    	str[i] = '\0';
    	fclose(fp);
    	return i;
    }
    
    
    void deAesFile(char *key) {
    	char fileName[64];
    	char c[MAXLEN];//密文字符串
    	printf("请输入要解密的文件名,该文件必须和本程序在同一个目录\n");
    	if(scanf("%s", fileName) == 1) {
    		int clen = readStrFromFile(fileName, c);
    		printf("开始解密.........\n");
    		deAes(c, clen, key);
    		printf("解密后的明文ASCII为:\n");
    		printASCCI(c, clen);
    		printf("明文为:%s\n", c);
    		writeStrToFile(c,clen,fileName);
    		printf("现在可以打开%s来查看解密后的密文了!\n",fileName);
    	}
    }
    
    void aesFile(char *key) {
    	char fileName[64];
    	char fileP[MAXLEN];
    
    	printf("请输入要加密的文件名,该文件必须和本程序在同一个目录\n");
    	if(scanf("%s", fileName) == 1) {
    		readStrFromFile(fileName, fileP);
    		int plen = strlen(fileP);
    		printf("开始加密.........\n");
    		printf("加密前文件中字符的ASCII为:\n");
    		printASCCI(fileP, plen);
    
    		aes(fileP, plen, key);//开始加密
    
    		printf("加密后的密文ASCII为:\n");
    		printASCCI(fileP, plen);
    		writeStrToFile(fileP,plen,fileName);
    		printf("已经将加密后的密文写进%s中了\n",fileName);
    	}
    }
    
    int main(int argc, char const *argv[]) {
    
    	char key[17];
    	printf("请输入16个字符的密钥:\n");
    	int klen;
    	while(1){
    		getString(key,17);
    		klen = strlen(key);
    		if(klen != 16){
    			printf("请输入16个字符的密钥,当前密钥的长度为%d\n",klen);
    		}else{
    			printf("你输入的密钥为:%s\n",key);
    			break;
    		}
    	}
    
    	printf("输入's'表示要加密输入的字符串,并将加密后的内容写入到文件\n");
    	printf("请输入要功能选项并按回车,输入'f'表示要加密文件\n");
    	printf("输入'p'表示要解密文件\n");
    	char c;
    	if(scanf("%s",&c) == 1) {
    		if(c == 's')
    			aesStrToFile(key);//用AES加密字符串,并将字符串写进文件中
    		else if(c == 'p')
    			deAesFile(key);//把文件中的密文解密,并写回文件中
    		else if(c == 'f')//用AES加密文件
    			aesFile(key);
    	}
    	return 0;
    }
    

    通过下面的gcc命令来编译运行:

    gcc -o aes aes.c main.c
    

    VC6.0版本

    由于VC6.0的编译器比较坑,要先声明,后使用变量,故要对代码进行相应的修改。

    aes.h

    #ifndef MY_AES_H
    #define MY_AES_H
    
    /**
     * 参数 p: 明文的字符串数组。
     * 参数 plen: 明文的长度,长度必须为16的倍数。
     * 参数 key: 密钥的字符串数组。
     */
    void aes(char *p, int plen, char *key);
    
    /**
     * 参数 c: 密文的字符串数组。
     * 参数 clen: 密文的长度,长度必须为16的倍数。
     * 参数 key: 密钥的字符串数组。
     */
    void deAes(char *c, int clen, char *key);
    
    #endif
    

    aes.cpp

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #include "aes.h"
    
    /**
     * S盒
     */
    static const int S[16][16] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
    
    /**
     * 逆S盒
     */
    static const int S2[16][16] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
    	0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
    	0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
    	0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
    	0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
    	0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
    	0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
    	0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
    	0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
    	0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
    	0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
    	0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
    	0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
    	0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
    	0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
    	0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
    
    /**
     * 获取整形数据的低8位的左4个位
     */
    static int getLeft4Bit(int num) {
    	int left = num & 0x000000f0;
    	return left >> 4;
    }
    
    /**
     * 获取整形数据的低8位的右4个位
     */
    static int getRight4Bit(int num) {
    	return num & 0x0000000f;
    }
    /**
     * 根据索引,从S盒中获得元素
     */
    static int getNumFromSBox(int index) {
    	int row = getLeft4Bit(index);
    	int col = getRight4Bit(index);
    	return S[row][col];
    }
    
    /**
     * 把一个字符转变成整型
     */
    static int getIntFromChar(char c) {
    	int result = (int) c;
    	return result & 0x000000ff;
    }
    
    /**
     * 把16个字符转变成4X4的数组,
     * 该矩阵中字节的排列顺序为从上到下,
     * 从左到右依次排列。
     */
    static void convertToIntArray(char *str, int pa[4][4]) {
    	int k = 0;
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++) {
    			pa[j][i] = getIntFromChar(str[k]);
    			k++;
    		}
    }
    
    /**
     * 打印4X4的数组
     */
    static void printArray(int a[4][4]) {
    	int i,j;
    	for(i = 0; i < 4; i++){
    		for(j = 0; j < 4; j++)
    			printf("a[%d][%d] = 0x%x ", i, j, a[i][j]);
    		printf("\n");
    	}
    	printf("\n");
    }
    
    /**
     * 打印字符串的ASSCI,
     * 以十六进制显示。
     */
    static void printASSCI(char *str, int len) {
    	int i;
    	for(i = 0; i < len; i++)
    		printf("0x%x ", getIntFromChar(str[i]));
    	printf("\n");
    }
    
    /**
     * 把连续的4个字符合并成一个4字节的整型
     */
    static int getWordFromStr(char *str) {
    	int one, two, three, four;
    	one = getIntFromChar(str[0]);
    	one = one << 24;
    	two = getIntFromChar(str[1]);
    	two = two << 16;
    	three = getIntFromChar(str[2]);
    	three = three << 8;
    	four = getIntFromChar(str[3]);
    	return one | two | three | four;
    }
    
    /**
     * 把一个4字节的数的第一、二、三、四个字节取出,
     * 入进一个4个元素的整型数组里面。
     */
    static void splitIntToArray(int num, int array[4]) {
    	int one, two, three;
    	one = num >> 24;
    	array[0] = one & 0x000000ff;
    	two = num >> 16;
    	array[1] = two & 0x000000ff;
    	three = num >> 8;
    	array[2] = three & 0x000000ff;
    	array[3] = num & 0x000000ff;
    }
    
    /**
     * 将数组中的元素循环左移step位
     */
    static void leftLoop4int(int array[4], int step) {
    	int temp[4];
    	int i;
    	int index;
    	for(i = 0; i < 4; i++)
    		temp[i] = array[i];
    
    	index = step % 4 == 0 ? 0 : step % 4;
    	for(i = 0; i < 4; i++){
    		array[i] = temp[index];
    		index++;
    		index = index % 4;
    	}
    }
    
    /**
     * 把数组中的第一、二、三和四元素分别作为
     * 4字节整型的第一、二、三和四字节,合并成一个4字节整型
     */
    static int mergeArrayToInt(int array[4]) {
    	int one = array[0] << 24;
    	int two = array[1] << 16;
    	int three = array[2] << 8;
    	int four = array[3];
    	return one | two | three | four;
    }
    
    /**
     * 常量轮值表
     */
    static const int Rcon[10] = { 0x01000000, 0x02000000,
    	0x04000000, 0x08000000,
    	0x10000000, 0x20000000,
    	0x40000000, 0x80000000,
    	0x1b000000, 0x36000000 };
    /**
     * 密钥扩展中的T函数
     */
    static int T(int num, int round) {
    	int numArray[4];
    	int i;
    	int result;
    	splitIntToArray(num, numArray);
    	leftLoop4int(numArray, 1);//字循环
    
    	//字节代换
    	for(i = 0; i < 4; i++)
    		numArray[i] = getNumFromSBox(numArray[i]);
    
    	result = mergeArrayToInt(numArray);
    	return result ^ Rcon[round];
    }
    
    //密钥对应的扩展数组
    static int w[44];
    /**
     * 打印W数组
     */
    static void printW() {
    	int i, j;
    	for(i = 0, j = 1; i < 44; i++,j++){
    		printf("w[%d] = 0x%x ", i, w[i]);
    		if(j % 4 == 0)
    			printf("\n");
    	}
    	printf("\n");
    }
    
    
    /**
     * 扩展密钥,结果是把w[44]中的每个元素初始化
     */
    static void extendKey(char *key) {
    	int i,j;
    	for(i = 0; i < 4; i++)
    		w[i] = getWordFromStr(key + i * 4);
    
    	for(i = 4, j = 0; i < 44; i++) {
    		if( i % 4 == 0) {
    			w[i] = w[i - 4] ^ T(w[i - 1], j);
    			j++;//下一轮
    		}else {
    			w[i] = w[i - 4] ^ w[i - 1];
    		}
    	}
    
    }
    
    /**
     * 轮密钥加
     */
    static void addRoundKey(int array[4][4], int round) {
    	int warray[4];
    	int i,j;
    	for(i = 0; i < 4; i++) {
    
    		splitIntToArray(w[ round * 4 + i], warray);
    
    		for(j = 0; j < 4; j++) {
    			array[j][i] = array[j][i] ^ warray[j];
    		}
    	}
    }
    
    /**
     * 字节代换
     */
    static void subBytes(int array[4][4]){
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			array[i][j] = getNumFromSBox(array[i][j]);
    }
    
    /**
     * 行移位
     */
    static void shiftRows(int array[4][4]) {
    	int rowTwo[4], rowThree[4], rowFour[4];
    	int i;
    	for(i = 0; i < 4; i++) {
    		rowTwo[i] = array[1][i];
    		rowThree[i] = array[2][i];
    		rowFour[i] = array[3][i];
    	}
    
    	leftLoop4int(rowTwo, 1);
    	leftLoop4int(rowThree, 2);
    	leftLoop4int(rowFour, 3);
    
    	for(i = 0; i < 4; i++) {
    		array[1][i] = rowTwo[i];
    		array[2][i] = rowThree[i];
    		array[3][i] = rowFour[i];
    	}
    }
    
    /**
     * 列混合要用到的矩阵
     */
    static const int colM[4][4] = { 2, 3, 1, 1,
    	1, 2, 3, 1,
    	1, 1, 2, 3,
    	3, 1, 1, 2 };
    
    static int GFMul2(int s) {
    	int result = s << 1;
    	int a7 = result & 0x00000100;
    
    	if(a7 != 0) {
    		result = result & 0x000000ff;
    		result = result ^ 0x1b;
    	}
    
    	return result;
    }
    
    static int GFMul3(int s) {
    	return GFMul2(s) ^ s;
    }
    
    static int GFMul4(int s) {
    	return GFMul2(GFMul2(s));
    }
    
    static int GFMul8(int s) {
    	return GFMul2(GFMul4(s));
    }
    
    static int GFMul9(int s) {
    	return GFMul8(s) ^ s;
    }
    
    static int GFMul11(int s) {
    	return GFMul9(s) ^ GFMul2(s);
    }
    
    static int GFMul12(int s) {
    	return GFMul8(s) ^ GFMul4(s);
    }
    
    static int GFMul13(int s) {
    	return GFMul12(s) ^ s;
    }
    
    static int GFMul14(int s) {
    	return GFMul12(s) ^ GFMul2(s);
    }
    
    /**
     * GF上的二元运算
     */
    static int GFMul(int n, int s) {
    	int result;
    
    	if(n == 1)
    		result = s;
    	else if(n == 2)
    		result = GFMul2(s);
    	else if(n == 3)
    		result = GFMul3(s);
    	else if(n == 0x9)
    		result = GFMul9(s);
    	else if(n == 0xb)//11
    		result = GFMul11(s);
    	else if(n == 0xd)//13
    		result = GFMul13(s);
    	else if(n == 0xe)//14
    		result = GFMul14(s);
    
    	return result;
    }
    /**
     * 列混合
     */
    static void mixColumns(int array[4][4]) {
    
    	int tempArray[4][4];
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			tempArray[i][j] = array[i][j];
    
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++){
    			array[i][j] = GFMul(colM[i][0],tempArray[0][j]) ^ GFMul(colM[i][1],tempArray[1][j])
    				^ GFMul(colM[i][2],tempArray[2][j]) ^ GFMul(colM[i][3], tempArray[3][j]);
    		}
    }
    /**
     * 把4X4数组转回字符串
     */
    static void convertArrayToStr(int array[4][4], char *str) {
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			*str++ = (char)array[j][i];
    }
    /**
     * 检查密钥长度
     */
    static int checkKeyLen(int len) {
    	if(len == 16)
    		return 1;
    	else
    		return 0;
    }
    
    
    /**
     * 参数 p: 明文的字符串数组。
     * 参数 plen: 明文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void aes(char *p, int plen, char *key){
    
    	int keylen = strlen(key);
    	int pArray[4][4];
    	int k,i;
    
    	if(plen == 0 || plen % 16 != 0) {
    		printf("明文字符长度必须为16的倍数!\n");
    		exit(0);
    	}
    
    	if(!checkKeyLen(keylen)) {
    		printf("密钥字符长度错误!长度必须为16。当前长度为%d\n",keylen);
    		exit(0);
    	}
    
    	extendKey(key);//扩展密钥
    
    	for(k = 0; k < plen; k += 16) {
    		convertToIntArray(p + k, pArray);
    
    		addRoundKey(pArray, 0);//一开始的轮密钥加
    
    		for(i = 1; i < 10; i++){
    
    			subBytes(pArray);//字节代换
    
    			shiftRows(pArray);//行移位
    
    			mixColumns(pArray);//列混合
    
    			addRoundKey(pArray, i);
    
    		}
    
    		subBytes(pArray);//字节代换
    
    		shiftRows(pArray);//行移位
    
    		addRoundKey(pArray, 10);
    
    		convertArrayToStr(pArray, p + k);
    	}
    }
    /**
     * 根据索引从逆S盒中获取值
     */
    static int getNumFromS1Box(int index) {
    	int row = getLeft4Bit(index);
    	int col = getRight4Bit(index);
    	return S2[row][col];
    }
    /**
     * 逆字节变换
     */
    static void deSubBytes(int array[4][4]) {
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			array[i][j] = getNumFromS1Box(array[i][j]);
    }
    /**
     * 把4个元素的数组循环右移step位
     */
    static void rightLoop4int(int array[4], int step) {
    	int temp[4];
    	int i;
    	int index;
    	for(i = 0; i < 4; i++)
    		temp[i] = array[i];
    
    	index = step % 4 == 0 ? 0 : step % 4;
    	index = 3 - index;
    	for(i = 3; i >= 0; i--) {
    		array[i] = temp[index];
    		index--;
    		index = index == -1 ? 3 : index;
    	}
    }
    
    /**
     * 逆行移位
     */
    static void deShiftRows(int array[4][4]) {
    	int rowTwo[4], rowThree[4], rowFour[4];
    	int i;
    	for(i = 0; i < 4; i++) {
    		rowTwo[i] = array[1][i];
    		rowThree[i] = array[2][i];
    		rowFour[i] = array[3][i];
    	}
    
    	rightLoop4int(rowTwo, 1);
    	rightLoop4int(rowThree, 2);
    	rightLoop4int(rowFour, 3);
    
    	for(i = 0; i < 4; i++) {
    		array[1][i] = rowTwo[i];
    		array[2][i] = rowThree[i];
    		array[3][i] = rowFour[i];
    	}
    }
    /**
     * 逆列混合用到的矩阵
     */
    static const int deColM[4][4] = { 0xe, 0xb, 0xd, 0x9,
    	0x9, 0xe, 0xb, 0xd,
    	0xd, 0x9, 0xe, 0xb,
    	0xb, 0xd, 0x9, 0xe };
    
    /**
     * 逆列混合
     */
    static void deMixColumns(int array[4][4]) {
    	int tempArray[4][4];
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			tempArray[i][j] = array[i][j];
    
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++){
    			array[i][j] = GFMul(deColM[i][0],tempArray[0][j]) ^ GFMul(deColM[i][1],tempArray[1][j])
    				^ GFMul(deColM[i][2],tempArray[2][j]) ^ GFMul(deColM[i][3], tempArray[3][j]);
    		}
    }
    /**
     * 把两个4X4数组进行异或
     */
    static void addRoundTowArray(int aArray[4][4],int bArray[4][4]) {
    	int i,j;
    	for(i = 0; i < 4; i++)
    		for(j = 0; j < 4; j++)
    			aArray[i][j] = aArray[i][j] ^ bArray[i][j];
    }
    /**
     * 从4个32位的密钥字中获得4X4数组,
     * 用于进行逆列混合
     */
    static void getArrayFrom4W(int i, int array[4][4]) {
    	int index,j;
    	int colOne[4], colTwo[4], colThree[4], colFour[4];
    	index = i * 4;
    	splitIntToArray(w[index], colOne);
    	splitIntToArray(w[index + 1], colTwo);
    	splitIntToArray(w[index + 2], colThree);
    	splitIntToArray(w[index + 3], colFour);
    
    	for(j = 0; j < 4; j++) {
    		array[j][0] = colOne[j];
    		array[j][1] = colTwo[j];
    		array[j][2] = colThree[j];
    		array[j][3] = colFour[j];
    	}
    
    }
    
    /**
     * 参数 c: 密文的字符串数组。
     * 参数 clen: 密文的长度。
     * 参数 key: 密钥的字符串数组。
     */
    void deAes(char *c, int clen, char *key) {
    
    	int cArray[4][4];
    	int keylen,k;
    	keylen = strlen(key);
    	if(clen == 0 || clen % 16 != 0) {
    		printf("密文字符长度必须为16的倍数!现在的长度为%d\n",clen);
    		exit(0);
    	}
    
    	if(!checkKeyLen(keylen)) {
    		printf("密钥字符长度错误!长度必须为16、24和32。当前长度为%d\n",keylen);
    		exit(0);
    	}
    
    	extendKey(key);//扩展密钥
    
    	for(k = 0; k < clen; k += 16) {
    		int i;
    		int wArray[4][4];
    
    		convertToIntArray(c + k, cArray);
    
    		
    		
    		
    
    		addRoundKey(cArray, 10);
    
    		for(i = 9; i >= 1; i--) {
    			deSubBytes(cArray);
    
    			deShiftRows(cArray);
    
    			deMixColumns(cArray);
    			getArrayFrom4W(i, wArray);
    			deMixColumns(wArray);
    
    			addRoundTowArray(cArray, wArray);
    		}
    
    		deSubBytes(cArray);
    
    		deShiftRows(cArray);
    
    		addRoundKey(cArray, 0);
    
    		convertArrayToStr(cArray, c + k);
    
    	}
    }
    

    有不少初学者可能在使用AES实现的VC版本时,会出现没main函数的问题。其实直接导入VC编译是不行的,这里给出的只是头文件 aes.h 和实现的 aes.cpp 文件,需要通过include来包含使用,假设main函数所在的文件 main.cpp,并且与 aes.h 、 aes.cpp 文件在同一目录下,则需要像下面这样使用:

      #include "aes.h"
      // 其它头文件
      
      int main(int argc, char const *argv[]) {
        // 加密, 其中plain是明文字符数组, len是长度, key是密钥
        aes(plain, len, key);
        //解密,其中ciphertext是密文字符数组, len是长度, key是密钥
        deAes(ciphertext, len, key);
       }
    

    很高兴这篇文章能给大家带来帮助,我现在主要做信息安全方面的工作。下面是我创建的公众号,会不定期分享一些信息安全方面的技术文章,欢迎关注~

    我的安全专家之路

    展开全文
  • 网络安全常用加密算法是什么?

    千次阅读 2018-10-15 13:40:46
    文章目录加密分类对称加密非对称加密总结 ...  对称加密有很多种算法,由于它效率很高,所以被广泛使用在很多加密协议的核心当中。对称加密通常使用的是相对较小的密钥,一般小于256 bit。因为密钥越大,加密越强...



    加密分类

    • 对称加密
    • 非对称加密


    对称加密

      对称加密是最快速、最简单的一种加密方式,加密(encryption)与解密(decryption)用的是同样的密钥(secret key)。
      对称加密有很多种算法,由于它效率很高,所以被广泛使用在很多加密协议的核心当中。对称加密通常使用的是相对较小的密钥,一般小于256 bit。因为密钥越大,加密越强,但加密与解密的过程越慢。
      对称加密的一大缺点是密钥的管理与分配,换句话说,如何把密钥发送到需要解密你的消息的人的手里是一个问题。在发送密钥的过程中,密钥有很大的风险会被黑客们拦截。


    非对称加密

    非对称加密允许在不安全的媒体上的通讯双方交换信息。
      它使用了一对密钥,公钥(public key)和私钥(private key)。私钥只能由一方安全保管,不能外泄,而公钥则可以发给任何请求它的人。非对称加密使用这对密钥中的一个进行加密,而解密则需要另一个密钥。
      比如,你向银行请求公钥,银行将公钥发给你,你使用公钥对消息加密,那么只有私钥的持有人–银行才能对你的消息解密。与对称加密不同的是,银行不需要将私钥通过网络发送出去,因此安全性大大提高。


    总结

    1. 对称加密加密与解密使用的是同样的密钥,所以速度快,但由于需要将密钥在网络传输,所以安全性不高。
    2. 非对称加密使用了一对密钥,公钥与私钥,所以安全性高,但加密与解密速度慢。
    3. 解决的办法是将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。

    展开全文
  • 1、常用加密算法分类 常见的加密算法可以分成五类: 对称加密算法、非对称加密算法和、Hash 算法(也称摘要算法)、数字签名(Hash&amp;RSA)和数字证书(Hash&amp;RSA&amp;CA)。 1)对称加密算法...

    1、常用的加密算法分类

    常见的加密算法可以分成五类:

    对称加密算法、非对称加密算法和、Hash 算法(也称摘要算法)、数字签名(Hash&RSA)和数字证书(Hash&RSA&CA)。

    1)对称加密算法

    指加密和解密使用相同密钥的加密算法。

    对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。

    假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要 2 个密钥并交换使用,如果企业内用户有 n 个,则整个企业共需要 n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。

    对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去——如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档。

    常见的对称加密算法:

    DES、3DES、DESX、Blowfish、IDEA、RC4、RC5、RC6 和 AES

    对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

    DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;

    3DES(Triple DES):是基于 DES,但强度更高;

    AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。

    2)非对称加密算法

    指加密和解密使用不同密钥的加密算法,也称为公私钥加密。

    假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。

    如果企业中有 n 个用户,企业需要生成 n 对密钥,并分发 n 个公钥。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得十分简单。

    同时,由于每个用户的私钥是唯一的,其他用户除了可以可以通过信息发送者的公钥来验证信息的来源是否真实,还可以确保发送者无法否认曾发送过该信息。

    非对称加密的缺点是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比非对称加密慢上 1000 倍。

    常见的非对称加密算法:

    RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用)

    RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;

    DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);

    ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。

    ECC 和 RSA 相比,在许多方面都有对绝对的优势,主要体现在以下方面:

    抗攻击性强:相同的密钥长度,其抗攻击性要强很多倍;

    计算量小,处理速度快,ECC 总的速度比 RSA、DSA 要快得多;

    存储空间占用小,ECC 的密钥尺寸和系统参数与 RSA、DSA 相比要小得多,意味着它所占的存贮空间要小得多,这对于加密算法在 IC 卡上的应用具有特别重要的意义;

    带宽要求低,当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时 ECC 带宽要求却低得多,带宽要求低使 ECC 在无线网络领域具有广泛的应用前景。

    3)Hash 算法

    Hash 算法特别的地方在于它是一种单向算法,用户可以通过 Hash 算法对目标信息生成一段特定长度的唯一的 Hash 值,却不能通过这个 Hash 值重新获得目标信息。

    Hash(明文)--> 固定长度的摘要

    因此 Hash 算法常用在不可还原的密码存储、信息完整性校验等。

    特点:

    无论明文多长,计算出来的摘要长度总是固定的。hash(‘a’)和hash(‘aaaaaaaaaaa’)形成的摘要长度是一样的;

    一般明文不同,计算出来的摘要也不同。也就是相同的明文,计算出来的摘要是一样的,不同的明文形成的摘要一般是不一样(好的 Hash 函数不会发生碰撞);

    只能进行正向的消息摘要,也就是说从消息摘要中不能恢复成原来的明文。

    常见的 Hash 算法:

    MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1

    4)数字签名:将明文进行摘要,然后再通过私钥进行加密的结果

    MD5&RSA 算法和 SHA1&RSA 算法

    A 给 B 发送信息,A 生成公钥和私钥并将公钥公开;

    A 对发送消息进行数字摘要算法(Hash),然后再通过私钥进行加密;

    A 将明文和加密后的密文发送给 B;

    B 收到后,对密文用公钥进行解密,获得数据 C,再对明文进行摘要算法,获得数据 D,然后对比 C 和 D,这样就能确认 A 的身份。

    B 收到 A 的文件,B 想确认是 A 发送的,那么可以根据数字签名方式,根据 A 的公钥进行解密然后比较,因为 A 的私钥是不公开的,这样匹配成功就能确认是 A 发送的。

    5)数字证书

    A 给 B 发送消息,A生 成公钥和私钥;

    A 将公钥、公钥持有者、签名算法和过期时间等信息发送给 CA(数字证书认证机构);

    CA 认可信息之后,通过 CA 的私钥进行签名,这时候数字证书就产生了;

    接着 A 将明文、明文数字签名和数字证书一起发送给 B;

    B 接受到后,通过 CA 的公钥进行解密,进行第一次校验,校验数字证书;

    验证成功后,进行第二次检验,提取数字证书中的公钥,对密文进行解密。

    在数字签名的基础上,再发送一个数字证书,这样的话接收方不需要维护一个公钥库,通过 CA 验证后在数字证书提取,获得公钥。

    总结:

    加密算法的效能通常可以按照算法本身的复杂程度、密钥长度(密钥越长越安全)和加解密速度等来衡量。

    上述的算法中,除了 DES 密钥长度不够、MD2 速度较慢已逐渐被淘汰外,其他算法仍在目前的加密系统产品中使用。

    2、加密算法的选择

    1)由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度;

    2)对称加密算法不能实现签名,因此签名只能非对称算法;

    3)由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。

    4)在实际的操作过程中,我们通常采用的方式是:

    采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。

    3、如何选择采用多少位的密钥

    一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA 建议采用 1024 位的数字,ECC 建议采用 160 位,AES 采用 128 为即可,对于安全性较高的场合需要使用相应长度的秘钥。

    4、加密算法应用

    1)保密通信:

    保密通信是密码学产生的动因,使用公私钥密码体制进行保密通信时,信息接收者只有知道对应的密钥才可以解密该信息。

    2)数字签名:

    数字签名技术可以代替传统的手写签名,而且从安全的角度考虑,数字签名具有很好的防伪造功能,在政府机关、军事领域、商业领域有广泛的应用环境。

    3)秘密共享:

    秘密共享技术是指将一个秘密信息利用密码技术分拆成 n 个称为共享因子的信息,分发给 n 个成员,只有 k(k≤n) 个合法成员的共享因子才可以恢复该秘密信息,其中任何一个或 m(m≤k) 个成员合作都不知道该秘密信息。

    利用秘密共享技术可以控制任何需要多个人共同控制的秘密信息、命令等。

    4)认证功能:

    在公开的信道上进行敏感信息的传输,采用签名技术实现对消息的真实性、完整性进行验证,通过验证公钥证书实现对通信主体的身份验证。

    5)密钥管理:

    密钥是保密系统中更为脆弱而重要的环节,公钥密码体制是解决密钥管理工作的有力工具;

    利用公钥密码体制进行密钥协商和产生,保密通信双方不需要事先共享秘密信息;

    利用公钥密码体制进行密钥分发、保护、密钥托管、密钥恢复等。

    6)基于公钥密码体制可以实现以上通用功能以外,还可以设计实现以下的系统:

    安全电子商务系统、电子现金系统、电子选举系统、电子招投标系统、电子彩票系统等。

     
    refer:

    https://www.cnblogs.com/colife/p/5566789.html

    https://www.cnblogs.com/-new/p/7199837.html

     

    展开全文
  • 网络安全原理及加密算法

    千次阅读 2017-09-19 23:17:47
    一、重要的数据在互联网中进行传输的时候必须保证数据的安全性,从以下四个方面来做: 1.保证数据是从真正的源发送的,而不是其他人(源认证) ...加密算法 Tags: 1.加密算法分类 2.对称算法原理、特征、算

    一、重要的数据在互联网中进行传输的时候必须保证数据的安全性,从以下四个方面来做:

    1.保证数据是从真正的源发送的,而不是其他人(源认证)

    2.保证数据在传输的过程中没有被篡改过(数据的完整性)

    3.保证数据在传输的过程中别人看不懂(数据的私密性)

    4.保证数据的不可否认性(不可否认性)


    1.1.1加密算法

    Tags:

    1.加密算法分类

    2.对称算法<原理、特征、算法>

    3.非对称算法<原理、特征、算法>

     

     

    1.加密算法概述

    用于对用户数据进行加密,常用算法有DES3DESAESRSADH算法。

    根据密钥特征,分为对称非对称算法。

     

    2.对称算法

    1)原理

    使用一把密钥来对信息提供安全的保护。只有一个密钥,即用来加密,也用来解密

    2)特征

    加密速度快:

    数据通信中,运用对称加密可以让数据的传输基本感受不到加解密

     

    紧凑性:

    原文在经过加密后得到的密文,不会比原文大太多

     

    安全性:

    在没有得到密钥的情况下,对称加密不会被很快破解

     

    3)算法

    DESData Encryption Standard数据加密标准

    3DESTriple DES三重数据加密标准算法

    AES: Advanced Encryption Standard高级加密标准

     

    3DES:有三个密匙,用第一个密匙加密,用第二个密匙解密,用第三个密匙加密

     

    缺点:密钥的保管和分发是严重的问题

    收发双方都需要同一个密钥进行加密和解密,密钥的传递没有好的办法


    3.非对称算法

    1)原理

    公钥+私钥,公钥大家都知道,私钥只有本地知道,

    公钥加密私钥解,私钥加密公钥解。加解密双方各有

    一对密钥对。发给谁就用谁的公钥!

    2)特征

    速度慢

    密文不紧凑

    通常只用于数字签名,或加密一些小文件

    3)算法

    RSA

    DH

     

    缺点:

    密文不紧凑:不适用于大量数据的应用

    4、对称+非对称算法

    对称算法和非对称算法是互补的

    安全

    紧凑

    速度快

    密钥管理方便

    支持数字签名

    支持不可否认性

     

    明文------对称算法(密钥A--------密文

    密钥A--------使用接收方的公钥加密------------加密后的密钥A

     

    密文+加密后的密钥A--------------->接收者

     

    加密后的密钥A----------自己的私钥------------密钥A

    密文------------密钥A--------------明文

     

    使用对称加密算法和非对称加密算法的结合,实现了数据的加密和密钥的传输

    基本上,通信的过程中,都是使用对称算法对数据进行加密,使用非对称算法对对称算法的密钥进行加密


    1.1.2 哈希算法

    1、哈希算法(hash)分类

     

    MD5SHA,用于实现数据完整性校验。

     

    2、哈希算法原理

    Hash : 散列 ,散列函数的主要任务是验证数据的完整性。通过散列函数计算得到的结果叫做散列值,这个散列值也常常被称为数据的指纹(Fingerprint)

     

    把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。

     

    特征:

    1、雪崩效应:

    明文有任何的修改,hash全局改变

    2、不可逆向:

    无法根据哈希值得到明文

    3、固定输出:128bit160bit

    10M----MD5---->128bit散列值

    1000M-----MD5----->128bit散列值

    10000G-----SHA----->160bit散列值

    4、唯一性:

    相同的原文通过哈希计算永远得到一样的散列值


    1.1.3数字签名

    1.数字签名组件

    HASH算法

    非对称加密算法

     

    2.数字签名原理

    发送方使用自己的私钥进行加密,接收方使用发送方的公钥进行解密的过程

    (私钥只能由发送方保管,其他人不会有)

    解决了数据在传输过程中的源认证问题



    3.数字签名功能

     

    不可否认性

      用签名者的公钥可以解开HMAC,证明数据是签名者发送的

    数据完整性

      HASH值相同证明明文没有被篡改

    缺点:无法对发送方进行验证(欺骗者可以假装成发送方)


    1.1.5数字证书

    1、数字证书组成

    对等体公钥

    对等体姓名,组织,地址

    证书有效期

    CA的数字签名

     

    注意:数字证书仅仅只是解决“这个公钥的持有者到底是谁”的问题!

     

    2PKI架构

    CA

    RA

    数字证书

    对等体

    分发机制


    1.仅仅只有一个受信任的介绍者(证书颁发机构)

    2.CA签署每一个人的公钥

    3.每个人都拥有CA的公钥



    展开全文
  • 网络通信常用加密算法研究

    千次阅读 2015-12-24 10:46:10
    什么是对称加密和非对称加密 什么是对称加密: 对称加密采用了对称密码编码技术,它...另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP
  • 常用加密算法

    千次阅读 2021-02-11 09:21:48
    常见的加密算法可以分成三类,对称加密算法,非对称加密算法和Hash算法...对称加密算法安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出...
  • 常用加密算法之非对称加密算法

    万次阅读 2018-03-16 21:44:45
    非对称加密算法 非对称加密算法是一种密钥的保密方法。非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有...
  • 常用数据加密算法

    千次阅读 2019-01-10 14:34:46
    对称加密 指加密和解密使用相同密钥的加密算法。对称加密算法的优点在于加解密的高速度和使用长密钥时的...对称加密算法安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他...
  • 计算机网络 - 加密算法

    千次阅读 2019-03-26 21:06:07
    安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。
  • 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母 a,b,c,d ,用 D,E,F,G 做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码,多明码替代密码...
  • 第一章 常见网络攻击 1.1、XSS攻击 1.1.1 XSS简介 XSS攻击的全称是跨站脚本攻击(Cross Site Scripting),为不跟层叠样式表 (Cascading Style Sheets,CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS ...
  • 几种常用加密算法比较

    千次阅读 2017-02-08 20:03:12
    DES加密算法 AES加密算法 RSA加密算法 Base64加密算法 MD5加密算法 SHA1加密算法
  • 我们常说的数据安全:主要分为两种,数据本身的安全和数据防护安全。数据本身的安全包括数据保密,数据完整性验证,数据双向认证等。... App网络传输安全,指对数据从客户端传输到服务器中间过程的加密,防止...
  • 目前比较常用加密算法总结起来就是单向加密和双向加密了,很少对吧,理解起来也不算很难。 什么是单向加密? 通俗来说,就是通过对数据进行摘要计算生成密文,密文不可逆推还原。算法代表:MD5、SHA、MAC、CRC等...
  • 分享Java常用几种加密算法(四种)

    千次阅读 2017-05-09 17:02:28
    本文给大家分享java常用的几种加密算法,需要的朋友可以参考下 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,...
  • 深入浅出安全加密算法

    千次阅读 2019-06-20 14:16:55
    DES加密算法: DES加密算法是一种分组密码,以64位为分组对数据加密,它的密钥长度是56位,加密解密用同一算法。DES加密算法是对密钥进行保密,而公开算法,包括加密和解密算法。这样,只有掌握了和发送方相同密钥的...
  • 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个...
  • 几种常用加密算法简析与比较

    千次阅读 2018-04-24 17:29:38
    常用加密算法总体可以分为两类:单项加密和双向加密,双向加密又分为对称加密和非对称加密,因此主要分析下面三种加密算法:对称加密算法、非对称加密算法和单项加密算法(Hash算法)。1、对称加密算法(AES、DES...
  • 安全架构-加密算法-对称加密

    千次阅读 2020-12-21 21:50:03
    安全架构-加密算法-对称加密 本系列安全架构文章中,之前谈到了api接口签名防止数据篡改,但是关键数据在通讯过程中是不能明文传递的,这就涉及到另外的安全问题,数据加密传输。 加密算法根据加密秘钥的不同分为...
  • 从密码学角度看TX常用的TEA加密算法

    千次阅读 2013-04-30 15:46:26
    TEA这个简单加密算法在中国如此有名,大概主要因为腾讯在大量协议,本地数据中使用这个算法。网上很多人甚至直接将TX的加密算法称为TEA算法。 TX的算法,数据分块的加密的确采用的是TEA(第一代)算法,密钥16个...
  •  了解数字签名前先了解一下sha-1摘要,rsa加密算法。然后,再了解数字签名。 SHA-1  SHA-1(secure hash Algorithm )是一种数据加密算法。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段...
  • java常用加密算法

    千次阅读 2015-03-29 12:16:35
    对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读...
  • 1、几种常用加密算法比较

    千次阅读 2017-09-12 15:50:36
    由于计算机软件的非法复制,通信的泄密、...现在我们就几种常用加密算法给大家比较一下。DES加密算法DES加密算法是一种分组密码,以64位为分组对数据加密,它的密钥长度是56位,加密解密用同一算法。DES加密算法是对
  • 常用加密算法有哪些

    千次阅读 2016-12-08 14:47:57
    常见的加密算法可以分成三类,对称加密算法,非对称加密算法和Hash算法。 指加密和解密使用相同密钥的加密算法。 常见的对称加密算法有DES、3DES、和AES等; 对称加密 指加密和解密使用相同密钥的加密...
  • Java常用加密算法

    千次阅读 2016-04-01 09:56:09
    Java加密技术

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 123,173
精华内容 49,269
关键字:

常用的网络安全加密算法