精华内容
下载资源
问答
  • <br>【前言摘要】 本书的前身是由清华大学出版社出版的《C常用算法程序集()》,该书()颇受读者欢迎。但在该书中没有具体的算法函数程序,所有的算法函数程序均存放在一张软盘上,读者需要具体...
  • 很好用的c++算法代码,适合专业人士使用,可以看一看
  • 使用Pillow库处理图像文件 三章 程序流程控制 几个例题 选择题:1、2、3 填空题:6 思考题:3~6 上机实践:2~14 案例研究:使用嵌套循环实现图像处理算法 四章 常用内置数据类型 几个例题 选择题:11 填空题:4...

    (还在更新中…) 这篇博客花费了我的大量时间和精力,从创作到维护;若认可本篇博客,希望给一个点赞、收藏

    并且,遇到了什么问题,请在评论区留言,我会及时回复的


    这本书对Python的知识点的描述很详细,而且排版看的很舒服

    1. 几个例题: 假装自己从零开始学,将一些有代表性、有意思的例题抽取出来
    2. 部分复习题: 遇到有意思的复习题,我会拿出来,并且进行分析
    3. 上机实践: 全部上机实践题的解题思路

    文章目录

    第一章 Python概述


    几个例题

    一:Python3.7.4下载

    python3.7.4下载地址:https://www.python.org/downloads/release/python-374/
    页面最下面:

    下载,安装完python后:出现的四个玩意:Python 3.7 Module Docs,IDLE,Python 3.7 Manuals,Python 3.7(64-bit)

    1. Python 3.7 Module Docs(64-bit)
      点击之后,会出现一个网页(将我下载的Python3.7.4文件夹中包含的模块都列了出来,页面不止这么点,还可以往下拉)

    2. IDLE(Python 3.7 64-bit)
      一个Python编辑器,Python内置的集成开发工具

    3. Python 3.7 Manuals(64-bit)
      Python 3.7 开发手册

    4. Python 3.7(64-bit)
      控制台中运行Python

    二:更新pip和setuptools包,安装NumPy包,安装Matplotlib包

    以下三个命令都是在控制台(windows中的cmd)中运行

    更新pip和setuptools包

    1. pip用于安装和管理Python扩展包
    2. setuptools用于发布Python包
    python -m pip install -U pip setuptools
    

    安装NumPy

    Python扩展模块NumPy提供了数组和矩阵处理,以及傅立叶变换等高效的数值处理功能

     python -m pip install NumPy
    

    安装Matplotlib包

    Matplotlib是Python最著名的绘图库之一,提供了一整套和MATLAB相似的命令API,既适合交互式地进行制图,也可以作为绘图控件方便地嵌入到GUI应用程序中

    python -m pip install Matplotlib
    

    三:使用IDLE打开和执行Python源文件程序

    首先:
    有一个.py文件test.py
    在这里插入图片描述

    使用IDLE打开.py文件的两种方式:

    1. 右键test.py---->Edit With IDLE---->Edit With IDLE 3.7(64-bit)
    2. 打开IDLE,然后File---->Open(或者ctrl+O)选择.py文件

    运行

    Run---->Run Module(或者F5
    就会出现这个界面,执行结果显示在这个界面中

    补充一点:
    如果在IDLE中编辑.py文件,记得修改后要保存(ctrl+s),再运行(F5

    四:使用资源管理器运行hello.py

    hello.py文件在桌面

    import random
    
    print("hello,Python")
    print("你今天的随机数字是:",random.choice(range(10)))#输出在0-9之间随机选择的整数
    input()
    
    1. 在桌面打开PowerShell(还有两种输入方式:python hello.py或者.\hello.py
    2. 或者在桌面打开cmd, 就输入hello.py或者python hello.py

    补充:上述两种命令中的hello.py都是相对路径,因为文件在桌面,而且我是在桌面打开cmd,所以文件路劲可以这么简简单单的写。如果文件存储位置和cmd打开位置不一样,请使用绝对路径

    五:命令行参数示例hello_argv.py

    hello_argv.py文件在桌面

    import sys
    
    print("Hello,",sys.argv[1])
    #这样写也行:
    #print("Hello,"+sys.argv[1])
    
    1. 在桌面打开PowerShell(还有两种输入方式:python hello_argv.py 任意输入或者./hello_argv.py 任意输入
    2. 或者在桌面打开cmd,就输入hello_argv.py 任意输入或者python hello_argv.py 任意输入

    补充:以图中第一个命令举例,hello_argv.pysys.argv[0]Pythonsys.argv[1]

    第二章 Python语言基础


    选择题:1、3、7、8

    1. 在Python中,以下标识符合法的是

    A. _ B. 3C C. it’s B. str

    答案:A

    1. 标识符的第一个字符必须是字母,下划线(_);其后的字符可以是字母、下划线或数字。
    2. 一些特殊的名称,作为python语言的保留关键字,不能作为标识符
    3. 以双下划线开始和结束的名称通常具有特殊的含义。例如__init__为类的构造函数,一般应避免使用

    B:以数字开头,错误
    C:使用了',不是字母、下划线或数字
    D:str是保留关键字

    3. 在下列Python语句中非法的是

    A. x = y =1 B. x = (y =1) C. x,y = y,x B. x=1;y=1

    答案:B,C

    7. 为了给整型变量x,y,z赋初值10,下面Python赋值语句正确的是

    A. xyz=10 B. x=10 y=10 z=10 C. x=y=z=10 B. x=10,y=10,z=10

    答案:C

    1. 分号;用于在一行书写多个语句
    2. python支持链式赋值

    A:赋值对象是xyz
    B:分号;用于在一行书写多个语句,而不是' '(即空格)
    D:分号;用于在一行书写多个语句,而不是,

    8. 为了给整型变量x,y,z赋初值5,下面Python赋值语句正确的是

    A. x=5;y=5;z=5 B. xyz=5 C. x,y,z=10 B. x=10,y=10,z=10

    答案:A

    Pytho能支持序列解包赋值,但是变量的个数必须与序列的元素个数一致,否则会报错

    B:赋值对象是xyz
    C:序列解包赋值,变量的个数必须与序列的元素个数一致,否则会报错
    D:分号;用于在一行书写多个语句,而不是,

    思考题:9

    9.下列Python语句的输出结果是

    def f():pass
    print(type(f()))
    

    结果:<class 'NoneType'>

    NoneType数据类型包含唯一值None,主要用于表示空值,如没有返回值的函数的结果

    上机实践:2~6

    2. 编写程序,输入本金、年利率和年数,计算复利(结果保留两位小数)

    money = int(input("请输入本金:"))
    rate = float(input("请输入年利率:"))
    years = int(input("请输入年数:"))
    amount = money*((1+rate/100)**years)
    print(str.format("本金利率和为:{0:2.2f}",amount))
    

    运行:

    请输入本金:1000
    请输入年利率:6.6
    请输入年数:10
    本金利率和为:1894.84
    

    3. 编写程序,输入球的半径,计算球的表面积和体积(结果保留两位小数)

    import math
    r = float(input("请输入球的半径:"))
    area = 4 * math.pi * r**2
    volume = 4/3*math.pi*r**3
    print(str.format("球的表面积为:{0:2.2f},体积为:{1:2.2f}",area,volume))
    

    运行:

    请输入球的半径:666
    球的表面积为:5573889.08,体积为:1237403376.70
    

    4. 编写程序,声明函数getValue(b,r,n),根据本金b,年利率r和年数n计算最终收益v

    money = int(input("请输入本金:"))
    rate = float(input("请输入年利率(<1):"))
    years = int(input("请输入年数:"))
    
    def getValue(b,r,n):
        return b*(1+r)**n
    
    print(str.format("本金利率和为:{0:2.2f}",getValue(money,rate,years)))
    

    运行:

    请输入本金:10000
    请输入年利率(<1):0.6
    请输入年数:6
    本金利率和为:167772.16
    

    5. 编写程序,求解一元二次方程x2-10x+16=0

    from math import sqrt 
    x = (10+sqrt(10*10-4*16))/2
    y = (10-sqrt(10*10-4*16))/2
    print(str.format("x*x-10*x+16=0的解为:{0:2.2f},{1:2.2f}",x,y))
    

    运行:

    x*x-10*x+16=0的解为:8.00,2.00
    

    6. 编写程序,提示输入姓名和出生年份,输出姓名和年龄

    import datetime
    sName = str(input("请输入您的姓名:"))
    birthday = int(input("请输入您的出生年份:"))
    age = datetime.date.today().year - birthday
    print("您好!{0}。您{1}岁。".format(sName,age))
    

    运行:

    请输入您的姓名:zgh
    请输入您的出生年份:1999
    您好!zgh。您20岁。
    

    案例研究:使用Pillow库处理图像文件

    https://blog.csdn.net/Zhangguohao666/article/details/102060722

    通过此案例,进一步了解Python的基本概念:模块、对象、方法和函数的使用

    第三章 程序流程控制


    几个例题

    一:编程判断某一年是否为闰年

    闰年:年份能被4整除但不能被100整除,或者可以被400整除。
    口诀:四年一闰,百年不闰,四百必闰

    代码一:

    y = int(input("请输入要判断的年份:"))
    if((y % 4 == 0 and y % 100 != 0) or y % 400 == 0):
        print("是闰年")
    else:
        print("不是闰年")
    

    代码二(使用calendar模块的isleap()函数来判断):

    from calendar import isleap
    
    y = int(input("请输入要判断的年份:"))
    if(isleap(y)):print("闰年")
    else:print("不是闰年")
    

    二:利用嵌套循环打印九九乘法表

    九九乘法表:

    for i in range(1,10):
        s = ""
        for j in range(1,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    下三角:

    for i in range(1,10):
        s = ""
        for j in range(1,i+1):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    上三角:

    for i in range(1,10):
        s = ""
        for k in range(1,i):
            s += "                   "
        for j in range(i,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    三:enumerate()函数和下标元素循环示例

    Python语言中的for循环直接迭代对象集合中的元素,如果需要在循环中使用索引下标访问集合元素,则可以使用内置的enumerate()函数

    enumerate()函数用于将一个可遍历的数据对象(例如列表、元组或字符串)组合为一个索引序列,并返回一个可迭代对象,故在for循环当中可直接迭代下标和元素

    seasons = ["Spring","Summer","Autumn","Winter"]
    for i,s in enumerate(seasons,start=1):    #start默认从0开始
        print("第{0}个季节:{1}".format(i,s))
    

    运行:

    第1个季节:Spring
    第2个季节:Summer
    第3个季节:Autumn
    第4个季节:Winter
    

    四:zip()函数和并行循环示例

    如果需要并行遍历多个可迭代对象,则可以使用Python的内置函数zip()

    zip()函数将多个可迭代对象中对应的元素打包成一个个元组,然后返回一个可迭代对象。如果元素的个数不一致,则返回列表的长度与最短的对象相同。

    利用运算符*还可以实现将元组解压为列表

    evens = [0,2,4,6,8]
    odds = [1,3,5,7,9]
    for e,o in zip(evens,odds):
        print("{0} * {1} = {2}".format(e,o,e*o))
    

    运行:

    0 * 1 = 0
    2 * 3 = 6
    4 * 5 = 20
    6 * 7 = 42
    8 * 9 = 72
    

    五:map()函数和循环示例

    如果需要遍历可迭代对象,并使用指定函数处理对应的元素,则可以使用Python的内置函数map()

    map(func,seq1[,seq2,...])
    
    • func作用于seq中的每一个元素,并将所有的调用结果作为可迭代对象返回。
    • 如果func为None,该函数的作用等同于zip()函数

    计算绝对值:

    >>> list(map(abs, [-1, 0, 7, -8]))
    [1, 0, 7, 8]
    

    计算乘幂:

    >>> list(map(pow, range(5), range(5)))
    [1, 1, 4, 27, 256]
    

    计算ASCII码:

    >>> list(map(ord, 'zgh'))
    [122, 103, 104]
    

    字符串拼接(使用了匿名函数lambda):

    >>> list(map(lambda x, y: x+y, 'zgh', '666'))
    ['z6', 'g6', 'h6']
    

    选择题:1、2、3

    1. 下面的Python循环体的执行次数与其他不同的是

    A.

    i = 0						
    while(i <= 10):
    	print(i)
    	i = i + 1
    

    B.

    i = 10
    while(i > 0):
    	print(i)
    	i = i - 1
    

    C.

    for i in range(10):
    	print(i)
    

    D.

    for i in range(10,0,-1):
    	print(i)
    

    答案:A

    A:[0,10] 执行11次
    B:[10,1] 执行10次
    C:[0,9) 执行10次
    D:[10,0) 执行10次

    2. 执行下列Python语句将产生的结果是

    x = 2; y = 2.0
    if(x == y): print("Equal")
    else: print("Not Equal")
    
    A. Equal B. Not Equal C. 编译错误 D. 运行时错误

    答案:A

    Python中的自动类型转换:

    1. 自动类型转换注意针对Number数据类型来说的
    2. 当2个不同类型的数据进行运算的时候,默认向更高精度转换
    3. 数据类型精度从低到高:bool int float complex
    4. 关于bool类型的两个值:True 转化成整型是1;False 转化成整型是0

    int类型的2转化为float类型的2.0

    3. 执行下列Python语句将产生的结果是

    i= 1 	
    if(i): print(True) 	
    else: print(False)
    
    A. 输出1 B. 输出True C. 输出False D. 编译错误

    答案:B

    在Python中,条件表达式最后被评价为bool值True或False。

    如果表达式的结果为数值类型(0),空字符串(""),空元组(()),空列表([]),空字典({}),其bool值为False,否则其bool值为True

    填空题:6

    6. 要使语句for i in range(_,-4,-2)循环执行15次,则循环变量i的初值应当为

    答案:26或者25

    一开始我给的答案是26,经过评论区 的提醒:
    在这里插入图片描述

    >>> a = 0
    >>> for i in range(26, -4, -2): a+=1
    
    >>> print(a)
    15
    
    >>> a = 0
    >>> for i in range(25, -4, -2): a+=1
    
    >>> print(a)
    15
    

    这种题目有一个规律:for i in range(x,y,z):
    若循环中没有break或者continue语句,
    执行次数的绝对值:result = (x-y)÷z

    但实际上没有这么简单:

    • 如果步长为 -1或者1,那么答案只有一个
    • 如果步长为 -2或者2,那么答案有两个
    • 如果步长为 -3或者3,那么答案有三个

    通过公式算出 x 之后,

    • 如果步长为2,还要计算 (x ± 1) - z × (result-1) 的值,然后再经过琐碎的判断即可
    • 如果步长为3,还要计算 (x ± 2) - z × (result-1) 的值,…

    虽然看着麻烦,但实际上是很好理解的

    思考题:3~6

    3. 阅读下面的Python程序,请问程序的功能是什么?

    from math import sqrt
    
    n = 0
    for m in range(101,201,2):
        k = int(sqrt(m))
        for i in range(2, k+2):
            if m % i == 0:break
        if i == k + 1:
            if n % 10 == 0:print()
            print('%d' % m,end = " ")
            n += 1
    

    输出101到200之间的素数
    每行输出10个,多余换行

    运行:

    101 103 107 109 113 127 131 137 139 149 
    151 157 163 167 173 179 181 191 193 197 
    199
    

    素数(质数)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

    4. 阅读下面的Python程序,请问输出的结果使什么?

    n = int(input("请输入图形的行数:"))
    for i in range(0, n):
        for j in range(0, 10 - i):print(" ", end=" ")
        for k in range(0, 2 * i + 1):print(" * ", end=" ")
        print("\n")
    

    输出的是一个金字塔

    运行:

    请输入图形的行数:4
                         *  
    
                       *   *   *  
    
                     *   *   *   *   *  
    
                   *   *   *   *   *   *   *  
    

    5. 阅读下面的Python程序,请问输出的结果使什么?程序的功能是什么?

    for i in range(100,1000):
        n1 = i // 100
        n2 = i // 10 % 10
        n3 = i % 10
        if(pow(n1, 3) + pow(n2, 3) + pow(n3, 3) == i):print(i, end=" ")
    

    输出三位数中所有的水仙花数

    运行:

    153 370 371 407 
    

    水仙花数 是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身

    6. 阅读下面的Python程序,请问输出的结果使什么?程序的功能是什么?

    for n in range(1,1001):
        total = 0; factors = []
        for i in range(1, n):
            if(n % i == 0):
                factors.append(i)
                total += i
        if(total == n):print("{0} : {1}".format(n, factors))    
    

    输出1到1000的所有完数,并输出每个完数的所有因子

    运行:

    6 : [1, 2, 3]
    28 : [1, 2, 4, 7, 14]
    496 : [1, 2, 4, 8, 16, 31, 62, 124, 248]
    

    完数 所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身

    上机实践:2~14

    2. 编写程序,计算1=2+3+…+100之和

    1. 使用for循环(递增):
    total = 0
    for i in range(101):
        total += i
    print(total) 
    
    1. 使用求和公式:
    >>> (1 + 100) * 100 /2
    5050.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1, 101)))[99]
    5050
    

    3. 编写程序,计算10+9+8+…+1之和

    1. 使用for循环(递增):
    total = 0
    for i in range(11):
        total += i
    print(total) 
    
    1. 使用for循环(递减):
    total = 0
    for i in range(10,0,-1):
        total += i
    print(total)   
    
    1. 使用求和公式:
    >>> (1 + 10) * 10 / 2
    55.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1,11)))[9]
    55
    

    4. 编写程序,计算1+3+5+7+…+99之和

    1. 使用for循环(递增):
    total = 0
    for i in range(1,100,2):
        total += i
    print(total)     
    
    1. 使用求和公式:
    >>> (1 + 99) * 50 /2
    2500.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> list(itertools.accumulate(range(1,100,2)))[49]
    2500
    

    5. 编写程序,计算2+4+6+8+…+100之和

    1. 使用for循环(递增):
    total = 0
    for i in range(2,101,2):
        total += i
    print(total)     
    
    1. 使用求和公式:
    >>> (2 + 100) * 50 / 2
    2550.0
    
    1. 使用累计迭代器itertools.accumulate
    >>> import itertools
    >>> x = list(itertools.accumulate(range(2,101,2)))
    >>> x[len(x)-1]
    2550
    

    6. 编写程序,使用不同的实现方法输出2000~3000的所有闰年

    代码一:

    for y in range(2000,3001):
        if((y % 4 == 0 and y % 100 != 0) or y % 400 == 0):
            print(y,end = ' ')
    

    代码二(使用calendar模块的isleap()函数来判断):

    from calendar import isleap
    
    for y in range(2000,3001):
        if(isleap(y)):print(y,end = " ")
    

    运行:

    2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064 2068 2072 2076 2080 2084 2088 2092 2096 2104 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176 2180 2184 2188 2192 2196 2204 2208 2212 2216 2220 2224 2228 2232 2236 2240 2244 2248 2252 2256 2260 2264 2268 2272 2276 2280 2284 2288 2292 2296 2304 2308 2312 2316 2320 2324 2328 2332 2336 2340 2344 2348 2352 2356 2360 2364 2368 2372 2376 2380 2384 2388 2392 2396 2400 2404 2408 2412 2416 2420 2424 2428 2432 2436 2440 2444 2448 2452 2456 2460 2464 2468 2472 2476 2480 2484 2488 2492 2496 2504 2508 2512 2516 2520 2524 2528 2532 2536 2540 2544 2548 2552 2556 2560 2564 2568 2572 2576 2580 2584 2588 2592 2596 2604 2608 2612 2616 2620 2624 2628 2632 2636 2640 2644 2648 2652 2656 2660 2664 2668 2672 2676 2680 2684 2688 2692 2696 2704 2708 2712 2716 2720 2724 2728 2732 2736 2740 2744 2748 2752 2756 2760 2764 2768 2772 2776 2780 2784 2788 2792 2796 2800 2804 2808 2812 2816 2820 2824 2828 2832 2836 2840 2844 2848 2852 2856 2860 2864 2868 2872 2876 2880 2884 2888 2892 2896 2904 2908 2912 2916 2920 2924 2928 2932 2936 2940 2944 2948 2952 2956 2960 2964 2968 2972 2976 2980 2984 2988 2992 2996 
    

    7. 编写程序,计算Sn=1-3+5-7+9-11…

    代码一:

    n = int(input("项数:"))
    total = 0
    flag = True
    for i in range(1,2*n,2):
        if(flag):
            total += i
            flag = False
        else:
            total -= i
            flag = True
    print(total)
    

    代码二:

    n = int(input("项数:"))
    total = 0
    x = 2
    for i in range(1,2*n,2):
        total += pow(-1,x)*i
        x += 1 
    print(total)
    

    运行:

    项数:10
    -10
    

    8. 编写程序,计算Sn=1+1/2+1/3+…

    n = int(input("项数:"))
    total = 0.0
    for i in range(1,n+1):
        total += 1/i 
    print(total)
    

    运行:

    项数:10
    2.9289682539682538
    

    9. 编写程序,打印九九乘法表。要求输入九九乘法表的各种显示效果(上三角,下三角,矩形块等方式)

    矩形块:

    for i in range(1,10):
        s = ""
        for j in range(1,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    下三角:

    for i in range(1,10):
        s = ""
        for j in range(1,i+1):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    上三角:

    for i in range(1,10):
        s = ""
        for k in range(1,i):
            s += "                   "
        for j in range(i,10):
            s += str.format("%d * %d = %02d  " %(i, j, i*j))
        print(s)
    

    10. 编写程序,输入三角形的三条边,先判断是否可以构成三角形,如果可以,则进一步求三角形的周长和面积,否则报错“无法构成三角形!”

    from math import sqrt
    
    a = float(input("请输入三角形的边长a:"))
    b = float(input("请输入三角形的边长b:"))
    c = float(input("请输入三角形的边长c:"))
    
    if(a < b): a,b = b,a
    if(a < c): a,c = c,a
    if(b < c): b,c = c,b
    
    if(a < 0 or b < 0 or c < 0 or b+c <= a): print("无法构成三角形!")
    else:
        h = (a+b+c)/2
        area = sqrt(h*(h-a)*(h-b)*(h-c))
        print("周长:{0},面积:{1}".format(a+b+c,area))
    

    运行:

    请输入三角形的边长a:4
    请输入三角形的边长b:3
    请输入三角形的边长c:5
    周长:12.0,面积:6.0
    

    11. 编写程序,输入x,根据如下公式计算分段函数y的值。请分别用单分支语句,双分支语句结构以及条件运算语句等方法实现

    y = (x2-3x)/(x+1) + 2π + sinx (x0 )
    y = ln(-5x) + 6(|x|+e4) - (x+1)3 (x<0)

    单分支语句:

    import math
    
    x = float(input("请输入x:"))
    if(x >= 0):
        y = (x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)
    if(x < 0):
        y = math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)
    
    print(y)
    
    
    

    双分支语句:

    import math
    
    x = float(input("请输入x:"))
    if(x >= 0):
        y = (x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)
    else:
        y = math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)
    
    print(y)
    

    条件运算语句:

    import math
    
    x = float(input("请输入x:"))
    y = ((x*x - 3*x)/(x+1) + 2*math.pi + math.sin(x)) if(x >= 0) \
    else (math.log(-5*x) + 6 * math.sqrt(abs(x) + math.exp(4)) - pow(x+1,3)) 
    
    print(y)
    

    运行一:

    请输入x:666
    668.2715406628656
    

    运行二:

    请输入x:-666
    294079794.1744833
    

    12. 编写程序,输入一元二次方程的3个系数a、b、c,求ax2+bx+c=0方程的解

    import math
    
    a = float(input("请输入系数a:"))
    b = float(input("请输入系数b:"))
    c = float(input("请输入系数c:"))
    
    delta = b*b -4*a*c
    
    if(a == 0):
        if(b == 0): print("无解")
        else: print("有一个实根:",-1*c/b)
    elif(delta == 0): print("有两个相等实根:x1 = x2 = ", (-1*b)/(2*a))
    elif(delta > 0): print("有两个不等实根:x1 = {0},x2 = {1}".format\
                           ((-1*b +math.sqrt(delta))/2*a,(-1*b -math.sqrt(delta))/2*a))
    elif(delta < 0): print("有两个共轭复根:x1 = {0},x2 = {1}".format\
                           (complex( (-1*b)/(2*a),math.sqrt(delta*-1)/(2*a)),complex( (-1*b)/(2*a),-1*math.sqrt(delta*-1)/(2*a))))
    

    运行一:

    请输入系数a:0
    请输入系数b:0
    请输入系数c:10
    无解
    

    运行二:

    请输入系数a:0
    请输入系数b:10
    请输入系数c:5
    有一个实根: -0.5
    

    运行三:

    请输入系数a:1
    请输入系数b:8
    请输入系数c:16
    有两个相等实根:x1 = x2 =  -4.0
    

    运行四:

    请输入系数a:1
    请输入系数b:-5
    请输入系数c:6
    有两个不等实根:x1 = 3.0,x2 = 2.0
    

    运行五:

    请输入系数a:5
    请输入系数b:2
    请输入系数c:1
    有两个共轭复根:x1 = (-0.2+0.4j),x2 = (-0.2-0.4j)
    

    13. 编写程序,输入整数n(n0),分别利用for循环和while循环求n!

    1. for循环
    n = int(input("请输入n:"))
    
    if(n == 0): total = 1
    if(n > 0):
        total = 1
        for i in range(n,0,-1):
            total *= i
    
    print(total)
    
    
    1. while循环
    n = int(input("请输入n:"))
    
    if(n == 0): total = 1
    if(n > 0):
        total = 1
        while(n >= 1):
            total *= n
            n -= 1
    
    print(total)
    
    1. 补充一个:使用累计迭代器itertools.accumulate
    >>> import itertools, operator
    >>> n = int(input('请输入n:'))
    请输入n:7
    >>> x = list(accumulate(range(1, n+1), operator.mul))
    >>> x[len(x)-1]
    5040
    

    14. 编写程序,产生两个0~100(包含0和100)的随机整数a和b,求这两个整数的最大公约数和最小公倍数

    1. 现有知识点解决方法
    
    import random
    
    a = random.randint(0,100)
    b = random.randint(0,100)
    sum = a*b
    
    print(a) #输出原来的a,b
    print(b)
    
    if(a < b): a,b = b,a
    
    while(a%b != 0):
        a,b = b,a%b
    
    print("最大公约数:{0},最小公倍数:{1}".format(b,sum/b))
    
    
    1. 补充:使用生成器(generate)函数:yield
    >>> def func(a, b):
    	if(a < b): a,b = b,a
    	while(a%b != 0):
    		a,b = b,a%b
    		yield b
    
    		
    >>> import random
    >>> if __name__ == '__main__':
    	a = random.randint(0,100)
    	b = random.randint(0,100)
    	sum = a*b
    	print(a,b)
    	t = list(iter(func(a, b)))
    	gcd = t[len(t)-1]
    	print("gcd = {0}, mcm = {1}".format(gcd, sum/gcd))
    
    	
    29 65
    gcd = 1, mcm = 1885.0
    
    1. 补充:使用math模块中的gcd(x,y)函数
    >>> import random
    >>> import math
    >>> if __name__ == '__main__':
    	a = random.randint(0,100)
    	b = random.randint(0,100)
    	sum = a*b
    	print(a,b)
    	gcd = math.gcd(a,b)
    	print("gcd = {0}, mcm = {1}".format(gcd, sum/gcd))
    
    	
    29 48
    gcd = 1, mcm = 1392.0
    

    案例研究:使用嵌套循环实现图像处理算法

    https://blog.csdn.net/Zhangguohao666/article/details/103935185

    通过图像处理算法案例,深入了解Python数据结构和基本算法流程

    第四章 常用内置数据类型


    几个例题

    一:Python内置数据类型概述

    Python中一切皆为对象,而每个对象属于某个数据类型

    Python的数据类型包括:

    1. 内置的数据类型
    2. 模块中定义的数据类型
    3. 用户自定义的类型

    四种内置的数值类型:int,float,bool,complex

    1. int
      与其他计算机语言有精度限制不同,Python中的整数位数可以为任意长度(只受限于计算机内存)。
      整型对象是不可变对象。
    2. float
      与其他计算机语言中的double和float对应
      Python的浮点类型的精度和系统相关
    3. bool
    4. complex
      当数值字符串中包含虚部j(或J)时即复数字面量

    序列数据类型:str,tuple,bytes,list,bytearray

    序列数据类型表示若干有序数据.

    不可变序列数据类型:

    1. str(字符串)
      表示Unicode字符序列,例如:“zgh666”
      在Python中没有独立的字符数据类型,字符即长度为1的字符串
    2. tuple(元组)
      表示任意数据类型的序列,例如:(“z”,“g”,“h”,6,6,6)
    3. bytes(字节序列)
      表示字节(8位)序列数据

    可变序列数据类型:

    1. list(列表)
      表示可以修改的任意类型数据的序列,比如:[‘z’,‘g’,‘h’,6,6,6]
    2. bytearray(字节数组)
      表示可以修改的字节(8位)数组

    集合数据类型:set,frozenset

    集合数据类型表示若干数据的集合,数据项目没有顺序,且不重复

    1. set(集)
      例如:{1,2,3}
    2. frozenset(不可变集)

    字典数据类型:dict

    字典数据类型用于表示键值对的字典
    例如:{1:"zgh", 2:666}

    NoneType,NotImplementedType,EllipsisType

    1. NoneType数据类型包含唯一值None,主要用于表示空值,如没有返回值的函数的结果
    2. NotImplementedType数据类型包含唯一值NotImplemented,在进行数值运算和比较运算时,如果对象不支持,则可能返回该值
    3. EllipsisType数据类型包含唯一值Ellipsis,表示省略字符串符号...

    其他数据类型

    Python中一切对象都有一个数据类型,模块、类、对象、函数都属于某种数据类型
    Python解释器包含内置类型,
    例如:
    代码对象Code objects
    框架对象Frame objects
    跟踪对象Traceback objects
    切片对象Slice objects
    静态方法对象Static method objects
    类方法对象Class method objects

    二:整型字面量示例

    Python3.7支持使用下划线作为整数或者浮点数的千分位标记,以增强大数值的可阅读性。
    二进制、八进制、十六进制则使用下划线区分4位标记

    1_000_000_000  #输出1000000000
    
    0xff_ff_ff_ff  #输出4294967295
    0x_FF_FF_FF_FF  #输出4294967295
    

    三:字符串字面量示例

    两个紧邻的字符串,如果中间只有空格分隔,则自动拼接位一个字符串

    'zgh' '666'  #输出'zgh666'
    'zgh' + "666"   #输出'zgh666'
    

    四:转义字符示例

    转义字符后跟Unicode编码也可以表示字符

    1. \ooo八进制Unicode码对应的字符
    2. \xhh十六进制Unicode码对应的字符
    '\101'  #输出'A'
    '\x41'  #输出'A'
    

    使用r’‘或者R’'的字符串称为原始字符串,其中包含的任何字符都不进行转义

    s = r'换\t行\t符\n'
    s  		  #输出:'换\\t行\\t符\\n'
    print(s)  #输出:换\\t行\\t符\\n
    

    五:字符串的格式化

    一:

    "student number:{0},score_average:{1}".format(2,100)
    #输出:'student number:2,score_average:100'
    

    二:

    str.format("student number:{0},score_average:{1}",2,100)
    #输出:'student number:2,score_average:100'
    

    三(兼容Python2的格式,不推荐使用):

     "student number:%4d,score_average:%2.1f" %(2,100)
     #输出:'student number:   2,score_average:100.0'
    

    六:字符串示例,格式化输出字符串堆积的三角形

    1. str.center()方法用于字符串两边填充
    2. str.rjust()方法用于字符串右填充
    print("1".center(20))		#一行20个字符,居中对齐
    print(format("121","^20"))	#一行20个字符,居中对齐
    print("1".rjust(20,"*"))	#一行20个字符,右对齐,加*
    print(format("121","*>20"))	#一行20个字符,右对齐,加*
    

    运行:

             1          
            121         
    *******************1
    *****************121
    

    选择题:11

    11. 关于Python字符串,下列说法错误的是

    A. 字符即长度为1的字符串
    B. 字符串以/0标识字符串的结束
    C. 用户既可以用单引号,也可以用双引号创建字符串
    D. 用三引号字符串中可以包含换行回车等特殊字符

    答案:B

    Python中字符串不是用\0来判断字符串结尾,
    每个字符串都存有字符串的长度,通过计数来判断是否到达结尾。

    虽然在c语言中\0就是来判断字符串的结尾;

    填空题:4、7、8、9、10、13、21

    4. Python表达式3 ** 2 ** 3的值为

    答案:6561

    表达式中,相同优先级的运算,从右往左

    7. Python语句print(pow(-3,2),round(18.67,1),round(18.67,-1))的输出结果是

    答案:9 18.7 20.0

    pow()幂运算
    round()四舍六入,五留双

    8. Python语句print(round(123.84,0),round(123.84,-2),floor(15.5))的输出结果是

    答案:124.0 100.0 15

    补充:floor()是math模块中的方法,向下取整

    9. Python语句print(int(‘20’,16),int(‘101’,2))的输出结果是

    答案:32 5

    注意:int(x,y)是指将y进制的数值x转化为10进制数

    10. Python语句print(hex(16),bin(10))的输出结果是

    答案:0x10 0b1010

    hex(x)将十进制数x转化为十六进制,以字符串形式输出
    bin(x)将十进制数x转化为二进制,以字符串形式输出

    13. Python语句print(gcd(12,16),divmod(7,3))的输出结果是

    答案:4 (2,1)

    gcd()是math模块中的函数,求最大公约数
    divmod()是内置函数,返回商和余数

    21. Python语句序列 x=True;y=False;z=False;print(x or y and z) 的运行结果是

    答案:True

    and优先级比or高

    思考题:5

    5. 阅读下面的Python程序,请问输出结果是什么?

    from decimal import *
    
    ctx = getcontext()
    ctx.prec = 2
    print(Decimal('1.78'))#1.78
    print(Decimal('1.78') + 0)#1.8
    ctx.rounding = ROUND_UP
    print(Decimal('1.65') + 0)#1.7
    print(Decimal('1.62') + 0)#1.7
    print(Decimal('-1.45') + 0)#-1.5
    print(Decimal('-1.42') + 0)#-1.5
    ctx.rounding = ROUND_HALF_UP
    print(Decimal('1.65') + 0)#1.7
    print(Decimal('1.62') + 0)#1.6
    print(Decimal('-1.45') + 0)#-1.5
    ctx.rounding = ROUND_HALF_DOWN
    print(Decimal('1.65') + 0)#1.6
    print(Decimal('-1.45') + 0)#-1.4
    

    上机实践:2~14

    2. 编写程序,格式化输出杨辉三角

    杨辉三角即二项式定理的系数表,各元素满足如下条件:第一列及对角线上的元素均为1;其余每个元素等于它上一行同一列元素与前一列元素之和

    我使用了一个更加精妙的规律
    比如第一行为1
    第二行:01 + 10 = 11
    第三行:011 + 110 = 121
    第四行:0121 + 1210 = 1331
    。。。

    def generate(numRows):
        l1 = [1]
        n = 0
        while n < numRows:
            print(str(l1).center(66))
            l1 = [sum(t) for t in zip([0] + l1, l1 + [0])]  #利用zip函数算出每一行 如第二行 zip([0,1],[1,0])=[1,1],以此类推
            n += 1
    a=int(input("请输入行数"))
    generate(a)
    

    运行:

    请输入行数4
                                   [1]                                
                                  [1, 1]                              
                                [1, 2, 1]                             
                               [1, 3, 3, 1]  
    

    3. 输入直角三角形的两个直角边,求三角形的周长和面积,以及两个锐角的度数。结果保留一位小数

    import math
    
    a = float(input("请输入直角三角形的直角边a:"))
    b = float(input("请输入直角三角形的直角边b:"))
    c = math.sqrt(a*a+b*b)
    
    p = a + b + c
    area = 0.5*a*b
    print("三角形的周长:{0:1.1f},面积:{1:1.1f}".format(p,area))
    
    sina = a/c
    sinb = b/c
    
    a_degree = round(math.asin(sina) * 180 / math.pi,0)
    b_degree = round(math.asin(sinb) * 180 / math.pi,0)
    
    print("三角形直角边a的度数:{0},b的度数:{1}".format(a_degree,b_degree))
    

    运行:

    请输入直角三角形的直角边a:3
    请输入直角三角形的直角边b:4
    三角形的周长:12.0,面积:6.0
    三角形直角边a的度数:37.0,b的度数:53.0
    

    4. 编程产生0~100(包含0和100)的三个随机数a、b、c,要求至少使用两种不同的方法,将三个数按从小到大的顺序排序

    方法一:

    import random
    
    a = random.randint(0, 100)
    b = random.randint(0, 100)
    c = random.randint(0, 100)
    
    print(str.format("原始值:{0},{1},{2}", a, b, c))
    
    if(a > b): a,b = b,a
    if(a > c): a,c = c,a
    if(b > c): b,c = c,b
    
    print(str.format("增序:{0},{1},{2}", a, b, c))
    

    方法二(使用内置函数max、min、sum):

    import random
    
    a = random.randint(0, 100)
    b = random.randint(0, 100)
    c = random.randint(0, 100)
    
    print(str.format("原始值:{0},{1},{2}", a, b, c))
    
    maxx = max(a, b, c)
    minx = min(a, b, c)
    median = sum([a, b, c]) - minx - maxx
    
    print(str.format("增序:{0},{1},{2}", minx, median, maxx))
    

    方法三(使用内置函数sorted):

    >>> import random
    >>> a = random.randint(0,100)
    >>> b = random.randint(0,100)
    >>> c = random.randint(0,100)
    >>> print("init value: {0} , {1} , {2}".format(a,b,c))
    init value: 17 , 6 , 59
    >>> sorted([a,b,c])
    [6, 17, 59]
    

    5. 编程计算有固定工资收入的党员每月所缴纳的党费。

    工资基数3000元及以下者,交纳工资基数的0.5%
    工资基数3000~5000元者,交纳工资基数的1%
    工资基数在5000~10000元者,交纳工资基数的1.5%
    工资基数超过10000元者,交纳工资基数的2%

    salary = float(input("请输入有固定工资收入的党员的月工资:"))
    if salary <= 3000: dues = salary*0.005
    elif salary <= 5000: dues = salary*0.01
    elif salary <= 10000: dues = salary*0.15
    else: dues = salary*0.02
    
    print("交纳党费:",dues)
    

    运行:

    请输入有固定工资收入的党员的月工资:10001
    交纳党费: 200.02
    

    6. 编程实现袖珍计算器,要求输入两个操作数和一个操作符(+、-、*、/、%),根据操作符输出运算结果。注意/和%运算符的零异常问题

    a = float(input("请输入操作数(左):"))
    b = float(input("请输入操作数(右):"))
    operator = input("请输入操作符(+、-、*、/、%):")
    
    if(b == 0 and (operator == '/' or operator == '%')):
        print("分母为零,异常!")
    else:
        if operator == '+': result = a+b
        elif operator == '-': result = a-b
        elif operator == '*': result = a*b
        elif operator == '/': result = a/b
        elif operator == '%': result = a%b
        print("{0} {1} {2}= {3}:".format(a,operator,b,result))
    

    运行:

    请输入操作数(左):10
    请输入操作数(右):5
    请输入操作符(+、-、*、/、%):+
    10.0 + 5.0= 15.0:
    

    7. 输入三角形的3条边a、b、c,判断此3边是否可以构成三角形。若能,进一步判断三角形的性质,即为等边、等腰、直角或其他三角形

    a = float(input("请输入三角形的边a:"))
    b = float(input("请输入三角形的边b:"))
    c = float(input("请输入三角形的边c:"))
    
    if(a > b): a,b = b,a
    if(a > c): a,c = c,a
    if(b > c): b,c = c,b
    
    result = "三角形"
    if(not(a>0 and b>0 and c>0 and a+b>c)):
        result = '此三边无法构成三角形'
    else:
        if a == b == c: result = '等边三角形'
        elif(a==b or a==c or b==c): result = '等腰三角形'
        elif(a*a+b*b == c*c): result = '直角三角形'
    
    print(result)
    

    运行:

    请输入三角形的边a:3
    请输入三角形的边b:4
    请输入三角形的边c:5
    直角三角形
    

    8. 编程实现鸡兔同笼问题

    已知在同一个笼子里共有h只鸡和兔,鸡和兔的总脚数为f,其中h和f由用户输入,求鸡和兔各有多少只?要求使用两种方法:一是求解方程;二是利用循环进行枚举测试

    h = int(input("请输入总头数:"))
    f = int(input("请输入总脚数:"))
    
    def fun1(h,f):
        rabbits = f/2-h
        chicken = h-rabbits
        if(chicken < 0 or rabbits < 0): return '无解'
        return chicken,rabbits
    
    def fun2(h,f):
        for i in range(0,h+1):
            if(2*i + 4*(h-i) == f):return i,h-i
        return '无解'
    
    if(h>0 and f>0 and f % 2 == 0):
        if fun1(h,f)=='无解':
            print("无解")
        else:
            print("方法一:鸡:{0},兔:{1}".format(fun1(h,f)[0],fun1(h,f)[1]))
            print("方法二:鸡:{0},兔:{1}".format(fun2(h,f)[0],fun2(h,f)[1]))
    else:
        print('输入的数据无意义')    
    

    运行:

    请输入总头数:100
    请输入总脚数:100
    无解
    

    9. 输入任意实数x,计算ex的近似值,直到最后一项的绝对值小于10-6为止

    ex = 1 + x + x2/2 + x3/3! + x4/4! + … + xn/n!

    x = int(input("请输入任意实数:"))
    
    e = 1
    i = 1
    t = 1
    a = 1
    while(a >= 10e-6):
        t *= i
        a = pow(x,i)/t
        e += a
        i += 1
    
    print(e)
    

    运行:

    请输入任意实数:1
    2.7182815255731922
    

    我发现了在Python中10e-6pow(10,-6)是有差别的,将上述代码中的10e-6改为pow(10,-6),输出结果会有细微的差别

    运行:

    请输入任意实数:1
    2.7182818011463845
    

    10. 输入任意实数a(a>=0),用迭代法求x=a,要求计算的相对偏差小于10-6

    求平方根的公式:

    Xn+1 = 0.5(Xn + a/Xn)

    import math
    
    a = int(input("请输入任意实数a(>=0):"))
    
    x = a / 2
    y = (x + a/x) / 2
    
    while(abs(y-x) >= pow(10,-6)):
        x = y
        y = (x + a/x) / 2
    
    print(y)
    

    运行:

    请输入任意实数a(>=0):2
    1.414213562373095
    

    11. 即有一个数,用3除余2,用5除余3,用7除余2,请问0~1000中这样的数有哪些?

    我国古代有位大将,名叫韩信。他每次集合部队,只要求部下先后按1-3,1-5,1-7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法被人们称作“鬼谷算”,也叫“隔墙算”,或称为“韩信点兵”,外国人还称它为“中国余数定理”。

    for i in range(0,1001):
        if((i % 3 == 2 )and (i % 5 == 3) and (i % 7 == 2)): print(i, end="  ")
    

    运行:

    23  128  233  338  443  548  653  758  863  968
    

    12. 一球从100米的高度自由下落,每次落地后反弹回原高度的一半,再落下。求小球在第10次落地时共经过多少米?第10次反弹多高

    规律:
    第一次下落时的高度:100
    第二次下落时的高度(第一次反弹的高度):50
    第三次下落时的高度(第二次反弹的高度):25

    n = 10
    
    h_down = 100
    h_up = 0
    sum = 0
    for i in range(1,n+1):
        sum += h_down+h_up
        h_down = h_up = h_down/2
    
    print("小球在第十次落地时共经过:{0}米,第十次反弹高度:{1}米".format(sum,h_up))    
    

    运行:

    小球在第十次落地时共经过:299.609375米,第十次反弹高度:0.09765625米
    

    13. 猴子吃桃问题

    猴子第一天摘下若干个桃子,当天吃掉一半多一个;第二天接着吃了剩下的桃子的一半多一个;以后每天都吃了前一天剩下的桃子的一半多一个。到第八天发现只剩一个桃子了。请问猴子第一天共摘了多少个桃子?

    这是一个递推问题

    某天所剩桃子数x
    后一天所剩桃子数y = x - (x/2+1) = x/2-1

    则x = 2(y+1)

    result = 1
    for i in range(8,0,-1):
        print("第{0}天桃子数:{1}".format(i,result))
        result = 2*(result+1)
    

    运行:

    第8天桃子数:1
    第7天桃子数:4
    第6天桃子数:10
    第5天桃子数:22
    第4天桃子数:46
    第3天桃子数:94
    第2天桃子数:190
    第1天桃子数:382
    

    14. 计算Sn = 1+11+111+…+111…111(最后一项是n个1)。n是一个随机产生的1~10(包括1和10)中的正整数

    import random
    
    n = random.randint(1,10)
    
    x = 1
    s = 0
    for i in range(1,n+1):
        s += x
        x = 10*x+1
    
    print("n = {0},sn = {1}".format(n,s))
    

    运行:

    n = 6,sn = 123456
    

    random.randint(a, b)

    • 生成指定范围内的整数
    • 范围:[a, b]

    案例研究:科学计算和数据分析

    https://blog.csdn.net/Zhangguohao666/article/details/103941448

    通过Python科学计算和数据分析库的安装和基本使用,了解使用Python进行科学计算的基本方法

    第五章 序列数据类型


    几个例题

    一:Python中内置的序列数据类型

    • 元组也称为定值表,用于存储固定不变的表
    • 列表也称为表,用于存储其值可变的表
    • 字符串是包括若干字符的序列数据,支持序列数据的基本操作
    • 字节序列数据是包括若干字节的序列。Python抓取网页时返回的页面通常为utf-8编码的字节序列。

    字节序列和字符串可以直接相互转换(字节编码和解码):

    >>> s1 = b'abc'
    >>> s1
    b'abc'
    >>> s1.decode("utf-8")
    abc
    
    >>> s2 = "中国"
    >>> s2.encode("utf-8")
    b'\xe4\xb8\xad\xe5\x9b\xbd'
    

    二:序列的切片操作示例

    >>> s = 'zgh666'
    >>> s[0]
    'z'
    >>> s[2]
    'h'
    >>> s[:3]
    'zgh'
    >>> s[1:3]
    'gh'
    >>> s[3:6]
    '666'
    >>> s[3:55]
    '666'
    >>> s[::-1]
    '666hgz'
    >>> s[3:2]
    ''
    >>> s[:]
    'zgh666'
    >>> s[::2]
    'zh6'
    

    三:序列的连接和重复操作

    • 通过连接操作符+可以连接两个序列,形成一个新的序列对象
    • 通过重复操作符*可以重复一个序列n次
    • 连接操作符和重复操作符也支持复合赋值运算,即:+=*=
    >>> x = 'zgh'
    >>> y = '666'
    >>> x + y
    'zgh666'
    >>> x *2
    'zghzgh'
    >>> x += y
    >>> x
    'zgh666'
    >>> y *= 3
    >>> y
    '666666666'
    

    四:序列的成员关系操作

    • in
    • not in
    • s.count(x)
      x在s中出现的次数
    • s.index(x)
      x在s中第一次出现的下标
    >>> s = "zgh666"
    >>> 'z' in s
    True
    >>> 'g' not in s
    False
    >>> s.count('6')
    3
    >>> s.index('6')
    3
    

    五:序列的排序操作

    sorted(iterable,key=None,reverse=False)

    >>> sorted(s)
    [1, 3, 5, 9]
    >>> sorted(s,reverse=True)
    [9, 5, 3, 1]
    
    >>> s = 'zGhZgH'
    >>> sorted(s)
    ['G', 'H', 'Z', 'g', 'h', 'z']
    >>> sorted(s,key=str.lower)
    ['G', 'g', 'h', 'H', 'z', 'Z']
    >>> sorted(s,key=str.lower,reverse=True)
    ['z', 'Z', 'h', 'H', 'G', 'g']
    

    六:序列的拆分

    1. 变量个数与序列长度相等
      若变量个数与序列的元素个数不一致,将导致ValueError
    >>> data = (118,'zgh',(100,100,100))
    >>> sid,name,(chinese,english,math) = data
    >>> sid
    118
    >>> name
    'zgh'
    >>> chinese
    100
    >>> english
    100
    >>> math
    100
    
    1. 变量个数与序列长度不等
      如果序列长度未知,可以使用*元组变量,将多个值作为元组赋值给元组变量。在一个赋值语句中,*元组变量只允许出现一次,否则将导致SyntaxError
    >>> first,second,third,*middles,last = range(10)
    >>> first
    0
    >>> second
    1
    >>> third
    2
    >>> middles
    [3, 4, 5, 6, 7, 8]
    >>> last
    9
    
    >>> first,*middles,last = sorted([58,60,60,100,70,70])
    >>> sum(middles)/len(middles)
    65.0
    
    1. 使用临时变量_
      如果只需要部分数据,序列的其它位置可以使用临时变量_
    >>> record = ['zgh','858990471@qq.com','17354364147','15272502101']
    >>> name,_,*phone = record
    >>> name
    'zgh'
    >>> phone
    ['17354364147', '15272502101']
    

    七:使用元组字面量,tuple创建元组实例对象的实例

    >>> t1 = 1,2,3
    >>> t1
    (1, 2, 3)
    
    >>> t2 = (4,5,6)
    >>> t2
    (4, 5, 6)
    
    >>> t3 = (9,)
    >>> t3
    (9,)
    

    如果元组中只有一个项目,后面的逗号不能省略。

    Python解释器把(1)解释为整数1,将(1,)解释为元组

    >>> t1 = tuple()
    >>> t1
    ()
    
    >>> t2 = tuple("zgh666")
    >>> t2
    ('z', 'g', 'h', '6', '6', '6')
    
    >>> t3 = tuple(['z','g','h'])
    >>> t3
    ('z', 'g', 'h')
    

    八:使用列表字面量,list创建列表实例对象的实例

    >>> l1 = []
    >>> l1
    []
    
    >>> l2 = ['zgh666']
    >>> l2
    ['zgh666']
    
    >>> l3 = [(1,2,3)]
    >>> l3
    [(1, 2, 3)]
    
    >>> l1 = list()
    >>> l1
    []
    
    >>> l2 = list(b'zgh666')
    >>> l2
    [122, 103, 104, 54, 54, 54]
    
    >>> l3 = list(b'aAbBcC')
    >>> l3
    [97, 65, 98, 66, 99, 67]
    

    补充:列表是可变对象,故用户可以改变列表对象中元素的值,也可以通过del删除某元素

    九:列表解析表达式示例

    使用列表解析表达式可以简单,高效地处理一个可迭代对象,并生成结果列表

    >>> [(i,i**2) for i in range(10)]
    [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64), (9, 81)]
    
    >>> [i for i in range(10) if i%2==0]
    [0, 2, 4, 6, 8]
    
    >>> [(x,y,x*y) for x in range(1,4) for y in range(1,4) if x>=y]
    [(1, 1, 1), (2, 1, 2), (2, 2, 4), (3, 1, 3), (3, 2, 6), (3, 3, 9)]
    

    选择题:4、5、7、11、12

    4. Python语句序列“a = (1,2,3,None,(),[]);print(len(a))”的运行结果是

    >>> a = (1,2,3,None,(),[])
    >>> len(a)
    6
    

    5. Python语句序列“nums = set([1,2,2,3,3,3,4]);print(len(nums))”的运行结果是

    >>> nums = set([1,2,2,3,3,3,4])
    >>> nums
    {1, 2, 3, 4}
    >>> len(nums)
    4
    

    7. Python语句序列“s1=[4,5,6];s2=s1;s1[1]=0;print(s2)”的运行结果是

    Python中变量(如s1,s2)存储在栈中,存放的是地址
    [4,5,6]存储在堆中

    s1 = [4,5,6]即s1存储指向堆中[4,5,6]的地址
    s2 = s1地址赋值,即s2和s1都指向同一个地址
    所以对列表进行修改,两者的显示都会发生变化

    >>> s1 = [4,5,6]
    >>> s2 = s1
    >>> s1[1] = 0
    >>> s1
    [4, 0, 6]
    >>> s2
    [4, 0, 6]
    

    11. Python语句序列“s={‘a’,1,‘b’,2};print(s[‘b’])”的运行结果是

    A. 语法错 B. ‘b’ C. 1 D. 2

    答案:A

    通过值访问集合是没有意义的,语法也不支持

    >>> s ={'a',1,'b',2}
    >>> print(s['b'])
    Traceback (most recent call last):
      File "<pyshell#29>", line 1, in <module>
        print(s['b'])
    TypeError: 'set' object is not subscriptable
    

    补充:集合set是无序不重复的,是无法通过下标访问的

    12. Python语句print(r"\nGood")的运行结果是

    A. 新行和字符串Good B. r"\nGood" C. \nGood D. 字符r、新行和字符串Good

    答案:C

    >>> print(r"\nGood")
    \nGood
    

    r""声明原始字符串

    填空题:1、5、6、12、13、14

    1. Python语句序列“fruits = [‘apple’,‘banana’,‘bear’];print(fruits[-1][-1])”的运行结果是

    注意:fruit[-1]是字符串’bear’
    所以:fruit[-1][-1]'bear[-1]'

    >>> fruits = ['apple','banana','pear']
    >>> fruits[-1]
    'pear'
    >>> fruits[-1][-1]
    'r'
    

    5. Python语句 print(’%d%%%d’%(3/2,3%2)) 的运行结果是

    >>> print('%d%%%d'%(3/2,3%2))
    1%1
    

    6. Python语句序列“s = [1,2,3,4];s.append([5,6]);print(len(s))”的运行结果是

    答案:5

    注意append()和extend()函数的区别
    s.append(x)将对象x追加到s尾部
    s.extend(x)将序列x追加到s尾部

    append

    >>> s = [1,2,3,4]
    >>> s.append([5,6])
    >>> s
    [1, 2, 3, 4, [5, 6]]
    >>> len(s)
    5
    

    extend

    >>> s = [1,2,3,4]
    >>> s.extend([5,6])
    >>> s
    [1, 2, 3, 4, 5, 6]
    >>> len(s)
    6
    

    12

    >>> s =('a','b','c','d','e')
    >>> s[2]
    'c'
    >>> s[2:3]
    ('c',)
    >>> s[2:4]
    ('c', 'd')
    >>> s[1::2]
    ('b', 'd')
    >>> s[-2]
    'd'
    >>> s[::-1]
    ('e', 'd', 'c', 'b', 'a')
    >>> s[-2:-1]
    ('d',)
    >>> s[-99:-5]
    ()
    >>> s[-99:-3]
    ('a', 'b')
    >>> s[::]
    ('a', 'b', 'c', 'd', 'e')
    >>> s[1:-1]
    ('b', 'c', 'd')
    

    13

    >>> s = [1,2,3,4,5,6]
    >>> s[:1] = []
    >>> s
    [2, 3, 4, 5, 6]
    
    >>> s[:2] = 'a'
    >>> s
    ['a', 4, 5, 6]
    
    >>> s[2:] = 'b'
    >>> s
    ['a', 4, 'b']
    
    >>> s[2:3] = ['x','y']
    >>> s
    ['a', 4, 'x', 'y']
    
    >>> del s[:1]
    >>> s
    [4, 'x', 'y']
    

    14

    >>> s = ['a','b']
    >>> s.append([1,2])
    >>> s
    ['a', 'b', [1, 2]]
    >>> s.extend('34')
    >>> s
    ['a', 'b', [1, 2], '3', '4']
    >>> s.extend([5,6])
    >>> s
    ['a', 'b', [1, 2], '3', '4', 5, 6]
    >>> s.insert(1,7)
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6]
    >>> s.insert(10,8)
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6, 8]
    >>> s
    ['a', 7, 'b', [1, 2], '3', '4', 5, 6]
    >>> s.remove('b')
    >>> s
    ['a', 7, [1, 2], '3', '4', 5, 6]
    >>> s[3:] =[]
    >>> s
    ['a', 7, [1, 2]]
    >>> s.reverse()
    >>> s
    [[1, 2], 7, 'a']
    >>> 
    

    思考题:2、3、5

    2. 阅读下面的Python语句,请问输出结果是什么?

    n = int(input('请输入图形的行数:'))
    
    for i in range(n,0,-1):
        print(" ".rjust(20-i),end=' ')
        for j in range(2*i-1):print(" * ",end=' ')
        print('\n')
    
    for i in range(1,n):
        print(" ".rjust(19-i),end=' ')
        for j in range(2*i+1):print(" * ",end=' ')
        print('\n')          
    

    运行一:

    请输入图形的行数:1
                         *  
    

    运行二:

    请输入图形的行数:2
                        *   *   *  
    
                         *  
    
                        *   *   *  
    

    运行三:

    请输入图形的行数:3
                       *   *   *   *   *  
    
                        *   *   *  
    
                         *  
    
                        *   *   *  
    
                       *   *   *   *   *  
    

    3. 阅读下面的Python语句,请问输出结果是什么?

    n = int(input('请输入上(或下)三角行数:'))
    
    for i in range(0,n):
        print(" ".rjust(19-i),end=' ')
        for j in range(2*i+1):print(" * ",end=' ')
        print('\n')
    
    for i in range(n-1,0,-1):
        print(" ".rjust(20-i),end=' ')
        for j in range(2*i-1):print(" * ",end=' ')
        print('\n')          
    

    运行:

    请输入上(或下)三角行数:4
                         *  
    
                        *   *   *  
    
                       *   *   *   *   *  
    
                      *   *   *   *   *   *   *  
    
                       *   *   *   *   *  
    
                        *   *   *  
    
                         *  
    

    5. 阅读下面的Python语句,请问输出结果是什么?

    先看这三句:

    >>> names1 = ['Amy','Bob','Charlie','Daling']
    >>> names2 = names1
    >>> names3 = names1[:]
    

    毫无疑问,此时names1,names2,names3的值都是[‘Amy’,‘Bob’,‘Charlie’,‘Daling’]
    但是

    >>> id(names1)
    2338529391368
    >>> id(names2)
    2338529391368
    >>> id(names3)
    2338529391560
    

    names1和names2指向同一个地址
    而names3指向另一个地址

    然后:

    >>> names2[0] = 'Alice'
    >>> names3[1] = 'Ben'
    >>> names1
    ['Alice', 'Bob', 'Charlie', 'Daling']
    >>> names2
    ['Alice', 'Bob', 'Charlie', 'Daling']
    >>> names3
    ['Amy', 'Ben', 'Charlie', 'Daling']
    

    最后:

    >>> sum = 0
    >>> for ls in(names1,names2,names3):
    	if ls[0] == 'Alice': sum+=1
    	if ls[1] == 'Ben':sum+=2
    
    	
    >>> print(sum)
    4
    

    上机实践:2~6

    2. 统计所输入字符串中单词的个数,单词之间用空格分隔

    s = input("请输入字符串:")
    
    num = 0
    for i in s:
        if((i >= 'a' and i <= 'z') or (i >= 'A' and i <= 'Z')):
            num += 1
    
    print("其中的单词总数:",num) 
    

    运行:

    请输入字符串:zgh666 ZGH6
    其中的单词总数: 6
    

    3. 编写程序,删除一个list里面重复元素

    方法一:利用set集合不重复的性质(但结果不能保证原来的顺序)

    l = [1,2,2,3,3,3,4,5,6,6,6]
    s = set(l)
    l = list(s)
    print(l)
    

    运行:

    [1, 2, 3, 4, 5, 6]
    

    方法二:既可以去除重复项,又可以保证原来的顺序

    def unique(items):
        items_existed = set()
        for item in items:
            if item not in items_existed:
                yield item
                items_existed.add(item)
    
    if __name__ == '__main__':
        a = [1, 8, 5, 1, 9, 2, 1, 10]
        a1 = unique(a)
        print(list(a1))
    
    

    运行结果:

    [1, 8, 5, 9, 2, 10]
    

    对代码的分析:

    • 可以看出,unique()函数返回的并不是items_existed,而是利用了yield

    在函数定义中,如果使用yield语句代替return返回一个值,则定义了一个生成器函数(generator)
    生成器函数是一个迭代器,是可迭代对象,支持迭代

    • a1 = unique(a) 这个函数返回的实际上是一个可迭代对象
      print(a1)得到的会是:<generator object unique at 0x0000016E23AF4F48>
    • 所以,要得到去掉重复后的列表的样子,需要将可迭代对象a1放在list()中
      运行:

    4. 编写程序,求列表[9,7,8,3,2,1,55,6]中的元素个数、最大值、最小值,以及元素之和、平均值。请思考有几种实现方法?

    内置函数:

    s = [9,7,8,3,2,1,55,6]
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(len(s),max(s),min(s),sum(s),sum(s)/len(s)))
    

    直接访问元素列表(for i in s…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = 0
    for i in s:
        sum += i
        length += 1
        if(i > max): max = i
        if(i < min): min = i
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    间接访问列表元素(for i in range(0,len(s))…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    for i in range(0,length):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    正序访问(i=0;while i<len(s)…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = 0
    while(i < length):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i += 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    反序访问(i=len(s)-1;while i>=0…):

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = length-1
    while(i >= 0):
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i -= 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    
    

    while True:…break

    s = [9,7,8,3,2,1,55,6]
    
    sum = 0
    max = s[0]
    min = s[0]
    length = len(s)
    
    i = 0
    while(True):
        if(i > length-1): break
        sum += s[i]
        if(s[i] > max): max = s[i]
        if(s[i] < min): min = s[i]
        i += 1
    
    print("元素个数:{0},最大值:{1},最小值:{2},和:{3},平均值:{4}".\
          format(length,max,min,sum,sum/length))
    

    运行:

    元素个数:8,最大值:55,最小值:1,和:91,平均值:11.375
    

    5. 编写程序,将列表[9,7,8,3,2,1,5,6]中的偶数变成它的平方,奇数保持不变

    l = [9,7,8,3,2,1,5,6]
    
    for i,value in enumerate(l):
        if(value % 2 == 0):l[i] = value**2
    
    print(l)
    

    运行:

    [9, 7, 64, 3, 4, 1, 5, 36]
    

    6. 编写程序,输入字符串,将其每个字符的ASCII码形成列表并输出

    s = input("请输入一个字符串:")
    l = list()
    for i in s:
        l.append(ord(i))
    
    print(l)
    

    运行:

    请输入一个字符串:zgh666
    [122, 103, 104, 54, 54, 54]
    

    案例研究:猜单词游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103948234

    通过猜单词游戏的设计和实现,帮助读者了解使用Python系列数据类型和控制流程

    第六章 输入和输出


    几个例题

    一:运行时提示输入密码

    输入密码时,一般需要不明显,则可以使用模块getpass,以保证用户输入的密码在控制台中不回显

    import getpass
    
    username = input("user:")
    password = getpass.getpass("password:")
    if(username == 'zgh' and password == '666'):
        print('logined!')
    else:
        print('failed!')
    
    input()#为了看到输出结果。因为执行完毕后,控制台会立马关闭
    

    注意:上面这个代码,如果使用IDLE执行,会因为安全问题而执行失败

    但是,在控制台中执行就没问题,看输出结果(可以看到,输入的密码不会显示出来):

    user:zgh
    password:
    logined!
    

    二:重定向标准输出到一个文件的示例

    这种重定向由控制台完成,而与Python本身无关。

    格式:
    程序 > 输出文件

    其目的是将显示屏从标准输出中分离,并将输出文件与标准输出关联,即程序的执行结果将写入输出文件,而不是发送到显示屏中显示

    首先准备一个test.py文件(代码如下)

    import sys,random
    
    n = int(sys.argv[1])
    for i in range(n):
        print(random.randrange(0,100))
    

    然后在PowerShell中:python test.py 100 > scores.txt
    记住,切记,一定要注意:千万能省略python,这样写./test.py 100 > scores.txt会出现问题,生成的scores文件中会没有任何内容!!!(原因未知)

    然后在当前目录下,100个[0,100)范围内的的整数生成在scores.txt文件中了

    三:重定向文件到标准输入

    格式:
    程序 < 输入文件

    其目的是将控制台键盘从标准输入中分离,并将输入文件与标准输入关联,即程序从输入文件中读取输入数据,而不是从键盘中读取输入数据

    准备一个average.py文件(代码如下)

    import sys
    
    total =0.0
    count = 0
    for line in sys.stdin:
        count += 1
        total += float(line)
    
    avg = total/count
    print("average:",avg)
    

    然后问题总是不期而至,
    在PowerShell中:python average.py < scores.txt,会报错,PowerShell会提示你:“<”运算符是为将来使用而保留的
    很无奈,我只能使用cmd了,然后得出结果

    四:管道

    格式:
    程序1 | 程序2 | 程序3 | … | 程序4

    其目的是将程序1的标准输出连接到程序2的标准输入,
    将程序2的标准输出连接到程序3的标准输入,以此类推

    例如:
    打开cmd,输入python test.py 100 | average.py,其执行结果等同于上面两个例子中的命令

    使用管道更加简洁,且不用创建中间文件,从而消除了输入流和输出流可以处理的数据大小的限制,执行效率更高

    五:过滤器

    1. 使用操作系统实用程序more逐屏显示数据

    2. 使用操作系统实用程序sort排序输出数据

    more和sort都可以在一个语句中使用

    填空题:1、2

    print(value, ..., sep = ' ', end = '\n', file = sys.stdout, flush = False)

    1. sep(分隔符,默认为空格)
    2. end(换行符,即输入的末尾是个啥)
    3. file(写入到指定文件流,默认为控制台sys.stdout)
    4. flush(指定是否强制写入到流)

    1

    >>> print(1,2,3,4,5,sep='-',end='!')
    1-2-3-4-5!
    

    2

    >>> for i in range(10):
    	print(i,end=' ')
    
    	
    0 1 2 3 4 5 6 7 8 9 
    

    例题及上机实践:2~5

    2. 尝试修改例6.2编写的命令行参数解析的程序,解析命令行参数所输入边长的值,计算并输出正方形的周长和面积

    argparse模块用于解析命名的命令行参数,生成帮助信息的Python标准模块

    例6.2:解析命令行参数所输入的长和宽的值,计算并输出长方形的面积

    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--length', default = 10, type = int, help = '长度')
    parser.add_argument('--width', default = 5, type = int, help = '宽度')
    
    args = parser.parse_args()
    area = args.length * args.width
    print('面积 = ', area)
    
    input()#加这一句是为了可以看到输出结果
    

    输出:面积 = 50

    如果在执行这个模块时,加入两个命令行参数

    输出:面积 = 36

    基本上看了上面这个例子后,就可以理解argparse的用法了

    本题代码:

    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--length', default = 10, type = int, help = '长度')
    
    args = parser.parse_args()
    area = args.length ** 2
    perimeter = 4 * args.length
    print('面积 = {0},周长 = {1}'.format(area,perimeter))
    
    input()#加这一句是为了可以看到输出结果
    
    

    在PowerShell中输入.\test.py
    不给命令行参数,输出是以默认值来计算的
    输出:面积 = 100,周长 = 40

    给命令行参数:.\test.py --length 1
    输出:面积 = 1,周长 = 4

    3. 尝试修改例6.8编写读取并输出文本文件的程序,由命令行第一个参数确认所需输出的文本文件名

    f = open(file, mode = 'r' , buffering = -1, encoding = None)

    1. file是要打开或创建的文件名,如果文件不在当前路径,需指出具体路径
    2. mode是打开文件的模式,模式有:
      ‘r’(只读)
      ‘w’(写入,写入前删除就内容)
      ‘x’(创建新文件,如果文件存在,则导致FileExistsError)
      ‘a’(追加)
      ‘b’(二进制文件)
      ‘t’(文本文件,默认值)
      ‘+’(更新,读写)
    3. buffering表示是否使用缓存(缓存为-1,表示使用系统默认的缓冲区大小)
    4. encoding是文件的编码

    例6.8:读取并输出文本文件

    import sys
    
    filename = sys.argv[0]#就读取本文件,骚的呀皮
    f = open(filename, 'r', encoding = 'utf-8')
    
    line_no = 0
    while True:
        line_no += 1
        line = f.readline()
        if line:
            print(line_no, ":", line)
        else:
            break
    f.close()       
    

    输出(代码输出的就是本python文件):

    1 : import sys
    
    2 : 
    
    3 : filename = sys.argv[0]#就读取本文件,骚的呀皮
    
    4 : f = open(filename, 'r', encoding = 'utf-8')
    
    5 : 
    
    6 : line_no = 0
    
    7 : while True:
    
    8 :     line_no += 1
    
    9 :     line = f.readline()
    
    10 :     if line:
    
    11 :         print(line_no, ":", line)
    
    12 :     else:
    
    13 :         break
    
    14 : f.close()
    
    15 :         
    
    

    本题代码:

    对例题代码进行些许修改就可以了,首先将上例中的第二个语句改为:filename = sys.argv[0],再考虑下面怎么进行

    准备一个用来测试的文件test.txt:

    对于这个文件要注意一点(你们很可能回出现这个问题!!!),win10默认创建的文本文件的字符编码是ANSI

    代码怎么写,有两种:

    1. 将test.txt文本文件的编码修改为utf-8,代码如上所说
      记事本方式打开test.txt文件,点击文件,点击另存为,看到下方的编码(修改为utf-8)
    2. test.txt就用默认的ANSI编码方式,再将上例代码的第三个语句修改为f = open(filename, 'r', encoding = 'ANSI')

    在PowerShell中输入:./test.py test.txt
    输出:

    1 : 大家好
    
    2 : 我是Zhangguohao666
    
    3 : 如果本文章对大家有帮助,请点赞支持一下
    
    4 : 还有:
    
    5 : 如果发现了什么问题,请在评论区指出,我会积极改进
    

    4. 尝试修改例6.9编写利用with语句读取并输出文本文件的程序,由命令行第一个参数确认所需输出的文本文件名

    为了简化操作,Python语言中与资源相关的对象可以实现上下文管理协议,可以使用with语句,确保释放资源。
    with open(file,mode) as f:

    例6.9:利用with语句读取并输出文本文件

    import sys
    
    filename = sys.argv[0]
    
    line_no = 0
    with open(filename, 'r', encoding = 'utf-8') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
    

    基本上,看这个例子,就可以上手with语句了

    本题代码:

    还是上一题准备的文本文件,
    代码一(文本文件的编码为默认的ANSI):

    import sys
    
    filename = sys.argv[1]
    
    line_no = 0
    with open(filename, 'r', encoding = 'ANSI') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
          
    

    代码二(将文本文件的编码修改为utf-8):

    import sys
    
    filename = sys.argv[1]
    
    line_no = 0
    with open(filename, 'r', encoding = 'utf-8') as f:
        for line in f:
            line_no += 1
            print(line_no, ":", line)
    f.close()
          
    
    

    本题的输出,我再不要脸的放一次吧:

    1 : 大家好
    
    2 : 我是Zhangguohao666
    
    3 : 如果本文章对大家有帮助,请点赞支持一下
    
    4 : 还有:
    
    5 : 如果发现了什么问题,请在评论区指出,我会积极改进
    

    5. 尝试修改例6.12编写标准输出流重定向的程序,从命令行第一个参数中获取n的值,然后将0-n,0-n的2倍值,2的0-n次幂的列表打印输出到out.log文件中

    例6.12:从命令行第一个参数中获取n的值,然后将0-n,2的0-n次幂的列表打印输出到out.log文件中

    1. 标准输入流文件对象:sys.stdin,
      默认值为sys.__stdin__
    2. 标准输出流文件对象:sys.stdout,
      默认值为sys.__stdout__
    3. 错误输出流文件对象(标准错误流文件对象):sys.stderr
      默认值为sys.__stderr__

    书中给的代码是这样的:

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ', str(power))
        power = 2*power
        i += 1
    sys.stdout = sys.__stdout__
    

    如果使用的编辑器是PyCharm(现在大多数编辑器会帮你对代码进行优化和处理一些隐患),运行书中的这个代码没有问题。

    但是:
    若使用的编辑器是python自带的IDLE,运行这个代码有问题!

    第一:out.log文件会生成,但是没有东西
    (发现文件关闭不了(就是×不掉),
    确定是文件没关闭(f.close())的原因)

    第二:控制台没有输出’done’语句(估计是IDLE编辑器处理不了__stdout__这个值)

    经过研究后,发现(基于IDLE编辑器):
    如果在上面的代码中加入f.close()后,该输入的东西都成功输入进out.log文件了,
    但是,
    还有一个问题
    控制台依旧没有输出’done’语句
    经过一步步的断点调试(就是手动写print)
    发现sys.stdout = sys.__stdout__不会执行

    然后进行改动后,就可以了,代码如下:
    (既然__stdout__不好使,就使用中间变量)

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    output = sys.stdout
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ', str(power))
        power = 2*power
        i += 1
    
    f.close()
    sys.stdout = output
    print('done!')#这一句是用来检测上面的代码是否成功执行
    
    

    问题虽然解决,但是原因没有彻底弄清楚,求助。。。。。。

    本题代码:

    import sys
    
    n = int(sys.argv[1])
    power = 1
    i = 0
    
    output = sys.stdout
    f = open('out.log', 'w')
    sys.stdout = f
    
    while i <= n:
        print(str(i), ' ',  str(2*i),  ' ', str(power))
        power = 2*power
        i += 1
    
    f.close()
    sys.stdout = output
    print('done!')#这一句是用来检测上面的代码是否成功执行
    
    

    比如时输入的命令行参数是6
    输出:

    案例研究:21点扑克牌游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103948545

    通过21点扑克牌游戏的设计和实现,了解使用Python数据类型、控制流程和输入输出

    第七章 错误和异常处理


    Python语言采用结构化的异常处理机制捕获和处理异常

    而我感觉,Python在这方面的知识点其实和Java的差不多

    几个例题

    一:程序的错误和异常处理

    1. 语法错误

    指源代码中的拼写错误,这些错误导致Python编译器无法把Python源代码转换为字节码,故也称之为编译错误

    1. 运行时错误

    在解释执行过程中产生的错误

    例如:

    • 程序中没有导入相关的模块,NameError
    • 程序中包括零除运算,ZeroDivisionError
    • 程序中试图打开不存在的文件,FileNotFoundError
    1. 逻辑错误

    程序可以执行(程序运行本身不报错),但执行结果不正确。
    对于逻辑错误,Python解释器无能为力,需要用户根据结果来调试判断

    大部分由程序错误而产生的错误和异常一般由Python虚拟机自动抛出。另外,在程序中如果判断某种错误情况,可以创建相应的异常类的对象,并通过raise语句抛出

    >>> a = -1
    >>> if(a < 0): raise ValueError("数值不能为负数")
    
    Traceback (most recent call last):
      File "<pyshell#9>", line 1, in <module>
        if(a < 0): raise ValueError("数值不能为负数")
    ValueError: 数值不能为负数
    >>> 
    

    在程序中的某个方法抛出异常后,Python虚拟机通过调用堆栈查找相应的异常捕获程序。如果找到匹配的异常捕获程序(即调用堆栈中的某函数使用try…except语句捕获处理),则执行相应的处理程序(try…except语句中匹配的except语句块)

    如果堆栈中没有匹配的异常捕获程序,则Python虚拟机捕获处理异常,在控制台打印出异常的错误信息和调用堆栈,并中止程序的执行

    二:try …except…else…finally

    try:
    	可能产生异常的语句
    except Exception1:
    	发生Exception1时执行的语句
    except (Exception2,Exception3):
    	发生Exception2或Exception3时执行的语句
    except Exception4 as e:
    	发生Exception4时执行的语句,Exception4的实例是e
    except:
    	捕获其他所有异常
    else:
    	无异常时执行的语句
    finally:
    	不管异常发生与否都保证执行的语句			
    

    except语句可以写多个,但是要注意一点:系统是自上而下匹配发生的异常,所以用户需要将带有最具体的(即派生类程度最高的)异常类的except写在前面

    三:创建自定义异常,处理应用程序中出现的负数参数的异常

    自定义异常类一般继承于Exception或其子类。自定义异常类的名称一般以Error或Exception为后缀

    >>> class NumberError(Exception):
        def __init__(self,data):
            Exception.__init__
            (self,data)
            self.data = data
        def __str__(self):
            return self.data + ':非法数值(<0)'
    
    >>> 
    >>> def total(data):
        total = 0
        for i in data:
            if i < 0: raise NumberError(str(i))
            total += 1
        return total
    
    >>> 
    >>> data1 = (44, 78, 90, 80, 55)
    >>> print("sum: ",total(data1))
    sum:  5
    >>> 
    >>> data2 = (44, 78, 90, 80, -1)
    >>> print("sum: ",total(data2))
    Traceback (most recent call last):
      File "<pyshell#24>", line 1, in <module>
        print("sum: ",total(data2))
      File "<pyshell#18>", line 4, in total
        if i < 0: raise NumberError(str(i))
    NumberError: -1:非法数值(<0>>> 
    

    四:断言处理

    用户在编写程序时,在调试阶段往往需要判断代码执行过程中变量的值等信息:

    1. 用户可以使用print()函数打印输出结果
    2. 也可以通过断点跟踪调试查看变量
    3. 但使用断言更加灵活

    assert语句和AssertionError

    断言的声明:

    • assert <布尔表达式>
      即:if __debug__: if not testexpression: raise AssertionError
    • assert <布尔表达式>,<字符串表达式>
      即:if __debug__: if not testexpression: raise AssertionError(data)
      字符串表达式(即data)是断言失败时输出的失败消息

    __debug__也是布尔值,Python解释器有两种:调试模式和优化模式

    • 调试模式:__debug__ == True
    • 优化模式:__debug__ == False

    在学习中,对于执行一个py模块(比如test.py)我们通常在cmd中这么输入python test.py,而这默认是调试模式。
    如果我们要使用优化模式来禁用断言来提高程序效率,我们可以加一个运行选项-O,在控制台中这么输入python -O test.py

    看一下断言的示例吧,理解一下用法:

    a =int(input("a: "))
    b =int(input("b: "))
    assert b != 0, '除数不能为零'
    c = a/b
    print("a/b = ", c)
    

    cmd出场:
    输入正确数值时:

    输入错误数值时:

    禁用断言,并且输入错误数值时:

    案例研究:使用调试器调试Python程序

    https://blog.csdn.net/Zhangguohao666/article/details/103948568

    了解使用Python调试器调试程序的方法

    第八章 函数和函数式编程


    一些知识点总结和几个例题

    Python中函数的分类:

    1. 内置函数
      在程序中可以直接使用
    2. 标准库函数
      Python语言安装程序同时会安装若干标准库,例如math、random等
    3. 第三方库函数
      Python社区提供了许多其它高质量的库,在下载、安装这些库后,通过import语句可以导入库
    4. 用户自定义函数
    • 函数名为有效的标识符(命名规则为全小写字母,可以使用下划线增加可阅读性,例如my_func()
    • 函数可以使用return返回值
      如果函数体中包含return语句,则返回值
      否则不返回,即返回值为空(None),无返回值的函数相当于其它编程语言中的过程

    调用函数之前程序必须先执行def语句,创建函数对象

    • 内置函数对象会自动创建
    • import导入模块时会执行模块中的def语句,创建模块中定义的函数
    • Python程序结构顺序通常为import语句>函数定义>全局代码

    一:产生副作用的函数,纯函数

    打印等腰三角形

    n = int(input("行数:"))
    
    def print_star(n):
        print((" * " * n).center(50))
    
    for i in range(1, 2*n, 2):
        print_star(i)
    

    输出:

    行数:5
                            *                         
                         *  *  *                      
                      *  *  *  *  *                   
                   *  *  *  *  *  *  *                
                *  *  *  *  *  *  *  *  *             
    

    上面代码中的print_star()是一个产生副作用的函数,其副作用是向标准输出写入若干星号

    • 副作用:例如读取键盘输入,产生输出,改变系统的状态等
    • 在一般情况下,产生副作用的函数相当于其它程序设计语言中的过程,可以省略return语句

    定义计算并返回第n阶调和数(1+1/2+1/3+…+1/n)的函数,输出前n个调和数

    def harmonic(n):
        total = 0.0
        for i in range(1, n+1):
            total += 1.0/i
        return total
    
    n = int(input("n:"))
    
    print("输出前n个调和数的值:")
    for i in range(1, n+1):
        print(harmonic(i))
    

    输出:

     n:8
    输出前n个调和数的值:
    1.0
    1.5
    1.8333333333333333
    2.083333333333333
    2.283333333333333
    2.4499999999999997
    2.5928571428571425
    2.7178571428571425         
    

    上面代码中的harmonic()是纯函数

    纯函数:给定同样的实际参数,其返回值唯一,且不会产生其它的可观察到的副作用

    注意:编写同时产生副作用和返回值的函数通常被认为是不良编程风格,但有一个例外,即读取函数。例如,input()函数既可以返回一个值,又可以产生副作用(从标准输入中读取并消耗一个字符串)

    二:传递不可变对象、可变对象的引用

    • 实际参数值默认按位置顺序依次传递给形式参数。如果参数个数不对,将会产生错误

    在调用函数时:

    1. 若传递的是不可变对象(例如:int、float、bool、str对象)的引用,则如果函数体中修改对象的值,其结果实际上是创建了一个新的对象
    i = 1
    
    def func(i,n):
        i += n
        return i
    
    print(i)#1
    func(i,10)
    print(i)#1
    

    执行函数func()后,i依旧为1,而不是11

    1. 若传递的是可变对象(例如:list对象)的引用,则在函数体中可以直接修改对象的值
    import random
    
    def shuffle(a):
        n = len(a)
        for i in range(n):
            r = random.randrange(i,n)
            a[i],a[r] = a[r],a[i]
    
    a = [1,2,3,4,5]
    print("初始:",a)
    shuffle(a)
    print("调用函数后:",a)
    

    输出:

    初始: [1, 2, 3, 4, 5]
    调用函数后: [1, 5, 4, 3, 2]
    

    三:可选参数,命名参数,可变参数,强制命名参数

    可选参数

    • 在声明函数时,如果希望函数的一些参数是可选的,可以在声明函数时为这些参数指定默认值
    >>> def babbles(words, times=1):
    	print(words * times)
    
    	
    >>> babbles('Hello')
    Hello
    >>> 
    >>> babbles("Hello", 2)
    HelloHello
    >>> 
    

    注意到一点:必须先声明没有默认值的形参,然后再声明有默认值的形参,否则报错。 这是因为在函数调用时默认是按位置传递实际参数的。

    怎么理解上面那句话呢?

    默认是按位置传递实际参数(如果有默认值的形参在左边,无默认值的形参在右,那么在调用函数时,你的实参该怎么传递呢?)

    命名参数

    • 位置参数:当函数调用时,实参默认按位置顺序传递形参
    • 命名参数(关键字参数):按名称指定传入的参数
      参数按名称意义明确
      传递的参数与顺序无关
      如果有多个可选参数,则可以选择指定某个参数值

    基于期中成绩和期末成绩,按照指定的权重计算总评成绩

    >>> def my_sum(mid_score, end_score, mid_rate = 0.4):
    	score = mid_score*mid_rate + end_score*(1-mid_rate)
    	print(format(score,'.2f'))
    
    	
    >>> my_sum(80,90)
    86.00
    >>> my_sum(mid_score = 80,end_score = 90)
    86.00
    >>> my_sum(end_score = 90,mid_score = 80)
    86.00
    >>> 
    

    可变参数

    • 在声明函数时,可以通过带星号的参数(例如:def func(* param))向函数传递可变数量的实参,调用函数时,从那一点后所有的参数被收集为一个元组
    • 在声明函数时,可以通过带双星号的参数(例如:def func(** param))向函数传递可变数量的实参,调用函数时,从那一点后所有的参数被收集为一个字典

    利用带星的参数计算各数字的累加和

    >>> def my_sum(a,b,*c):
        total = a+b
        for i in c:
            total += i
        return total
    
    >>> print(my_sum(1,2))
    3
    >>> print(my_sum(1,2,3,4,5,6))
    21
    

    利用带星和带双星的参数计算各数字的累加和

    >>> def my_sum(a,b,*c,**d):
        total = a+b
        for i in c:
            total += i
        for key in d:
            total += d[key]
        return total
    
    >>> print(my_sum(1,2))
    3
    >>> print(my_sum(1,2,3,4))
    10
    >>> print(my_sum(1,2,3,4,male=1,female=2))
    13
    

    强制命名参数

    • 在带星号的参数后面声明参数会导致强制命名参数(Keyword-only),然后在调用时必须显式使用命名参数传递值
    • 因为按位置传递的参数默认收集为一个元组,传递给前面带星号的可变参数
    >>> def my_sum(*, mid_score, end_score, mid_rate = 0.4):
        score = mid_score*mid_rate + end_score*(1-mid_rate)
        print(format(score,'.2f'))
    
    >>> my_sum(mid_score=80,end_score=90)
    86.00
    >>> my_sum(end_score=90,mid_score=80)
    86.00
    >>> my_sum(80,90)
    Traceback (most recent call last):
      File "<pyshell#47>", line 1, in <module>
        my_sum(80,90)
    TypeError: my_sum() takes 0 positional arguments but 2 were given
    >>> 
    

    四:全局语句global示例,非局部语句nonlocal示例,输出局部变量和全局变量

    • 在函数体中可以引用全局变量,但是要为定义在函数外的全局变量赋值,需要使用global语句
    pi = 2.1415926
    e = 2.7182818
    
    def my_func():
        global pi
        pi = 3.14
        print("global pi = ", pi)
        e = 2.718
        print("local e = ", e)
    
    print('module pi = ', pi)
    print('module e = ', e)
    my_func()
    print('module pi = ', pi)
    print('module e = ', e)
    

    输出:

    module pi =  2.1415926
    module e =  2.7182818
    global pi =  3.14
    local e =  2.718
    module pi =  3.14
    module e =  2.7182818
    
    • 在函数体中可以定义嵌套函数,在嵌套函数中如果要为定义在上级函数体的局部变量赋值,可以使用nonlocal
    def outer_func():
        tax_rate = 0.17
        print('outer function tax rate is ',tax_rate)
        def inner_func():
            nonlocal tax_rate
            tax_rate = 0.01
            print('inner function tax rate is ',tax_rate)
        inner_func()
        print('outer function tax rate is ',tax_rate)
    
    outer_func()
    

    输出:

    outer function tax rate is  0.17
    inner function tax rate is  0.01
    outer function tax rate is  0.01
    
    • 输出局部变量和全局变量
    1. 内置函数locals(),局部变量列表
    2. 内置函数globals(),全局变量列表

    五:获取和设置最大递归数

    在sys模块中,函数getrecursionlimit()setrecursionlimit()用于获取和设置最大递归次数

    >>> import sys
    >>> sys.getrecursionlimit()
    1000
    >>> sys.setrecursionlimit(666)
    >>> sys.getrecursionlimit()
    666
    >>> 
    

    六:三个有趣的内置函数:eval()、exec()、compile()

    eval

    • 对动态表达式进行求值,返回值
    • eval(expression, globals=None, locals=None)
      expression是动态表达式的字符串
      globals和locals是求值时使用的上下文环境的全局变量和局部变量,如果不指定,则使用当前运行上下文
    >>> x = 2
    >>> str_func = input("请输入表达式:")
    请输入表达式:x**2+2*x+1
    >>> eval(str_func)
    9
    >>> 
    

    exec

    • 可以执行动态表达式,不返回值
    • exec(str, globals=None, locals=None)
    >>> exec("for i in range(10): print(i, end=' ')")
    0 1 2 3 4 5 6 7 8 9 
    >>> 
    

    compile

    • 编译代码为代码对象,可以提高效率
    • compile(source, filename, mode)
      source为代码语句的字符串;如果是多行语句,则每一行的结尾必须有换行符\n
      filename为包含代码的文件
      mode为编码方式,可以为'exec'(用于语句序列的执行),可以为'eval'(用于表达式求值),可以为'single'(用于单个交互语句)
    >>> co = compile("for i in range(10): print(i, end=' ')", '', 'exec')
    >>> exec(co)
    0 1 2 3 4 5 6 7 8 9 
    >>> 
    

    七:map(),filter()

    • map(f, iterable,…),将函数f应用于可迭代对象,返回结果为可迭代对象

    示例1:

    >>> def is_odd(x):
    	return x%2 == 1
    
    >>> list(map(is_odd,range(5)))
    [False, True, False, True, False]
    >>> 
    

    示例2:

    >>> list(map(abs,[1,-2,3,-4,5,-6]))
    [1, 2, 3, 4, 5, 6]
    >>> 
    

    示例3:

    >>> list(map(str,[1,2,3,4,5]))
    ['1', '2', '3', '4', '5']
    >>
    

    示例4:

    >>> def greater(x,y):
    	return x>y
    
    >>> list(map(greater,[1,5,7,3,9],[2,8,4,6,0]))
    [False, False, True, False, True]
    >>> 
    
    • filter(f, iterable),将函数f应用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素,返回结果为可迭代对象

    示例1(返回个位数的奇数):

    >>> def is_odd(x):
    	return x%2 == 1
    
    >>> list(filter(is_odd, range(10)))
    [1, 3, 5, 7, 9]
    >>> 
    

    示例2(返回三位数的回文):

    >>> list(filter(is_palindrome, range(100, 1000)))
    [101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656, 666, 676, 686, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999]
    >>> 
    

    八:Lambda表达式和匿名函数

    匿名函数广泛应用于需要函数对象作为参数、函数比较简单并且只使用一次的场合

    格式:

    lambda arg1,arg2... : <expression>
    

    其中,arg1、arg2等为函数的参数,<expression>为函数的语句,其结果为函数的返回值

    示例1(计算两数之和):

    >>> f = lambda x,y : x+y
    >>> type(f)
    <class 'function'>
    >>> f(1,1)
    2
    >>> 
    

    示例2(返回奇数):

    >>> list(filter(lambda x:x%2==1, range(10)))
    [1, 3, 5, 7, 9]
    >>> 
    

    示例3(返回非空元素):

    >>> list(filter(lambda s:s and s.strip(), ['A', '', 'B', None, 'C', ' ']))
    ['A', 'B', 'C']
    >>> 
    

    补充:

    • strip()用来去除头尾字符、空白符(\n,\r,\t,’’,即换行、回车、制表、空格)
    • lstrip()用来去除开头字符、空白符
    • rstrip()用来去除结尾字符、空白符

    再补充一点:

    • \n到下一行的开头
    • \r回到这一行的开头

    示例4(返回大于0的元素):

    >>> list(filter(lambda x:x>0, [1,0,-2,8,5]))
    [1, 8, 5]
    >>> 
    

    示例5(返回元素的平方):

    >>> list(map(lambda x:x*x, range(10)))
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> 
    

    九:operator模块和操作符函数

    Python内置操作符的函数接口,它定义了对应算术和比较等操作的函数,用于map()、filter()等需要传递函数对象作为参数的场合,可以直接使用而不需要使用函数定义或者Lambda表达式,使得代码更加简洁

    示例1(concat(x,y)对应于x+y):

    >>> import operator
    >>> a = 'hello'
    >>>> operator.concat(a, ' world')
    'hello world'
    

    实例2(operator.gt对应于操作符>):

    >>> import operator
    >>> list(map(operator.gt, [1,5,7,3,9],[2,8,4,6,0]))
    [False, False, True, False, True]
    >>> 
    

    十:functools.reduce(),偏函数functools.partial(),sorted()

    functools.reduce()

    functools.reduce(func, iterable[, iterable[, initializer]])

    • 使用指定的带两个参数的函数func对一个数据集合的所有数据进行下列操作:
    • 使用第一个和第二个数据作为参数用func()函数运算,得到的结果再与第三个数据作为参数用func()函数运算,依此类推,最后得到一个结果
    • 可选的initialzer为初始值

    示例:

    >>> import functools,operator
    >>> functools.reduce(operator.add, [1,2,3,4,5])
    15
    >>> functools.reduce(operator.add, [1,2,3,4,5], 10)
    25
    >>> functools.reduce(operator.add, range(1,101))
    5050
    >>> 
    >>> functools.reduce(operator.mul, range(1,11))
    3628800
    

    偏函数functools.partial()

    functools.partial(func, *arg, **keywords)

    • 通过把一个函数的部分参数设置为默认值的方式返回一个新的可调用(callable)的partial对象
    • 主要用于设置预先已知的参数,从而减少调用时传递参数的个数

    示例(2的n次方):

    >>> import functools,math
    >>> pow2 = functools.partial(math.pow, 2)
    >>> list(map(pow2, range(11)))
    [1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0]
    >>> 
    

    十一:sorted()

    sorted(iterable, *, key=None, reverse=False)

    • iterable是待排序的可迭代对象
    • key是比较函数(默认为None,按自然顺序排序)
    • reverse用于指定是否逆序排序

    示例1(数值。默认自然排序):

    >>> sorted([1,6,4,-2,9])
    [-2, 1, 4, 6, 9]
    >>> sorted([1,6,4,-2,9], reverse=True)
    [9, 6, 4, 1, -2]
    >>> sorted([1,6,4,-2,9], key=abs)
    [1, -2, 4, 6, 9]
    

    示例2(字符串,默认按字符串字典序排序):

    >>> sorted(['Dod', 'cat', 'Rabbit'])
    ['Dod', 'Rabbit', 'cat']
    >>> sorted(['Dod', 'cat', 'Rabbit'], key=str.lower)
    ['cat', 'Dod', 'Rabbit']
    >>> sorted(['Dod', 'cat', 'Rabbit'], key=len)
    ['Dod', 'cat', 'Rabbit']
    

    示例3(元组,默认按元组的第一个元素排序):

    >>> sorted([('Bob', 75), ('Adam', 92), ('Lisa', 88)])
    [('Adam', 92), ('Bob', 75), ('Lisa', 88)]
    >>> sorted([('Bob', 75), ('Adam', 92), ('Lisa', 88)], key=lambda t:t[1])
    [('Bob', 75), ('Lisa', 88), ('Adam', 92)]
    

    十二:函数装饰器

    这玩意就很有意思了,很Java语言中的注解是很相像的

    示例1:

    import time,functools
    
    def timeit(func):
        def wrapper(*s):
            start = time.perf_counter()
            func(*s)
            end = time.perf_counter()
            print('运行时间:', end - start)
        return wrapper
    
    @timeit
    def my_sum(n):
        sum = 0
        for i in range(n): sum += i
        print(sum)
    
    if __name__ == '__main__':
        my_sum(10_0000)
    

    结果:

    4999950000
    运行时间: 0.013929100000000028
    

    怎么理解上面的代码呢?

    • 首先,timeit()返回的是wrapper,而不是执行(没有小括号)
    • @timeit相当于,在调用my_sum()的前一刻,会执行这么个语句:my_sum = timeit(my_sum)

    示例2:

    def makebold(fn):
        def wrapper(*s):
            return "<b>" + fn(*s) + "</b>"
        return wrapper
    
    def makeitalic(fn):
        def wrapper(*s):
            return "<i>" + fn(*s) + "</i>"
        return wrapper
    
    @makebold
    @makeitalic
    def htmltags(str1):
        return str1
    
    print(htmltags('Hello'))
    
    

    输出:

    <b><i>Hello</i></b>
    

    选择题:1~5

    1

    >>> print(type(lambda:None))
    <class 'function'>
    

    2

    >>> f = lambda x,y:x*y
    >>> f(12, 34)
    408
    

    3

    >>> f1 = lambda x:x*2
    >>> f2 = lambda x:x**2
    >>> print(f1(f2(2)))
    8
    

    4

    >>> def f1(p, **p2):
    	print(type(p2))
    
    	
    >>> f1(1, a=2)
    <class 'dict'>
    

    5

    >>> def f1(a,b,c):
    	print(a+b)
    
    	
    >>> nums = (1,2,3)
    >>> f1(*nums)
    3
    

    思考题:4~11

    4

    >>> d = lambda p:p*2
    >>> t = lambda p:p*3
    >>> x = 2
    >>> x = d(x)
    >>> x = t(x)
    >>> x = d(x)
    >>> print(x)
    24
    

    5

    >>> i = map(lambda x:x**2, (1,2,3))
    >>> for t in i:
    	print(t, end=' ')
    
    	
    1 4 9 
    

    6

    >>> def f1():
    	"simple function"
    	pass
    
    >>> print(f1.__doc__)
    simple function
    

    7

    >>> counter = 1
    >>> num = 0
    >>> def TestVariable():
    	global counter
    	for i in (1, 2, 3) : counter += 1
    	num = 10
    
    	
    >>> TestVariable()
    >>> print(counter, num)
    4 0
    

    8

    >>> def f(a,b):
    	if b==0 : print(a)
    	else : f(b, a%b)
    
    	
    >>> print(f(9,6))
    3
    None
    

    求最大公约数

    9

    >>> def aFunction():
    	"The quick brown fox"
    	return 1
    
    >>> print(aFunction.__doc__[4:9])
    quick
    

    10

    >>> def judge(param1, *param2):
    	print(type(param2))
    	print(param2)
    
    	
    >>> judge(1, 2, 3, 4, 5)
    <class 'tuple'>
    (2, 3, 4, 5)
    

    11

    >>> def judge(param1, **param2):
    	print(type(param2))
    	print(param2)
    
    	
    >>> judge(1, a=2, b=3, c=4, d=5)
    <class 'dict'>
    {'a': 2, 'b': 3, 'c': 4, 'd': 5}
    

    上机实践:2~5

    2. 编写程序,定义一个求阶乘的函数fact(n),并编写测试代码,要求输入整数n(n>=0)。请分别使用递归和非递归方式实现

    递归方式:

    def fact(n):
        if n == 0 :
            return 1
        return n*fact(n-1)
    
    n = int(input("请输入整数n(n>=0):"))
    print(str(n)+" ! =  " + str(fact(n)))
    
    

    非递归方式:

    def fact(n):
        t = 1
        for i in range(1,n+1):
            t *= i
        return t
    
    n = int(input("请输入整数n(n>=0):"))
    print(str(n)+" ! =  " + str(fact(n)))
    
    

    输出:

    请输入整数n(n>=0):5
    5 ! =  120
    

    3. 编写程序,定义一个求Fibonacci数列的函数fib(n),并编写测试代码,输出前20项(每项宽度5个字符位置,右对齐),每行输出10个。请分别使用递归和非递归方式实现

    递归方式:

    def fib(n):
        if (n == 1 or n == 2):
            return 1
        return fib(n-1)+fib(n-2)
    
    for i in range(1,21):
        print(str(fib(i)).rjust(5,' '),end = ' ')
        if i %10 == 0:
            print()
    

    非递归方式:

    def fib(n):
        if (n == 1 or n == 2):
            return 1
        n1 = n2 = 1
        for i  in range(3,n+1):
            n3 = n1+n2
            n1 = n2
            n2 = n3
        return n3
    
    for i in range(1,21):
        print(str(fib(i)).rjust(5,' '),end = ' ')
        if i %10 == 0:
            print()
    

    输出:

        1     1     2     3     5     8    13    21    34    55
       89   144   233   377   610   987  1597  2584  4181  6765
    

    4. 编写程序,利用可变参数定义一个求任意个数数值的最小值的函数min_n(a,b,*c),并编写测试代码。例如对于“print(min_n(8, 2))”以及“print(min_n(16, 1, 7, 4, 15))”的测试代码

    def min_n(a,b,*c):
        min_number = a if(a < b) else b
        for n in c:
            if n < min_number:
                min_number = n
        return min_number
    
    print(min_n(8, 2))
    print(min_n(16, 1, 7, 4, 15))
    

    输出:

    2
    1
    

    5. 编写程序,利用元组作为函数的返回值,求序列类型中的最大值、最小值和元素个数,并编写测试代码,假设测试代码数据分别为s1=[9, 7, 8, 3, 2, 1, 55, 6]、s2=[“apple”, “pear”, “melon”, “kiwi”]和s3="TheQuickBrownFox"

    def func(n):
        return (max(n),min(n),len(n))
        
    s1=[9, 7, 8, 3, 2, 1, 55, 6]
    s2=["apple", "pear", "melon", "kiwi"]
    s3="TheQuickBrownFox"
    
    for i in (s1,s2,s3):
        print("list = ", i)
        t = func(i)
        print("最大值 = {0},最小值 = {1},元素个数 = {2}".format(t[0], t[1], t[2]))
    

    输出:

    list =  [9, 7, 8, 3, 2, 1, 55, 6]
    最大值 = 55,最小值 = 1,元素个数 = 8
    list =  ['apple', 'pear', 'melon', 'kiwi']
    最大值 = pear,最小值 = apple,元素个数 = 4
    list =  TheQuickBrownFox
    最大值 = x,最小值 = B,元素个数 = 16
    

    案例研究:井字棋游戏

    https://blog.csdn.net/Zhangguohao666/article/details/103280740

    了解Python函数的定义和使用


    由于本文的内容太多了,导致了两个很不好的结果,
    一是:在网页中打开本篇博客的加载时间太长了,明显的卡顿很影响阅读体验;
    二是:本人在对本篇文章进行更新或者修改内容时,卡的要死。
    遂,
    将本文第八章后面的很多内容拆分到新的文章中,望大家理解


    第九章 面向对象的程序设计


    第十章 模块和客户端


    第十一章 算法与数据结构基础


    第十二章 图形用户界面


    我对图形用户界面基本无兴趣,无特殊情况,基本不打算碰这方面内容

    案例研究:简易图形用户界面计算器

    第十三章 图形绘制


    与上一章相同,我对于图形绘制的兴趣也基本没有,尝试做了2-7题,就完全没兴趣做下去了

    图形绘制模块:tkinter

    2. 参考例13.2利用Canvas组件创建绘制矩形的程序,尝试改变矩形边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 130, height = 70)
    c.pack()
    
    c.create_rectangle(10, 10, 60, 60, fill = 'red')
    c.create_rectangle(70, 10, 120, 60, fill = 'green', outline = 'blue', width = 5)
    
    

    创建画布对象:

    • root = Tk()
      创建一个Tk根窗口组件root
    • c = Canvas(root, bg = 'white', width = 130, height = 70)
      创建大小为200 * 100、背景颜色为白色的画布
    • c.pack()
      调用组件pack()方法,调整其显示位置和大小

    绘制矩形:

    c.create_rectangle(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • c.create_rectangle(70, 10, 120, 60, fill = 'green', outline = 'blue', width = 5)
      用蓝色边框、绿色填充矩形,边框宽度为5

    3. 参考例13.3利用Canvas组件创建绘制椭圆的程序,尝试修改椭圆边框样式、边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 280, height = 70)
    c.pack()
    
    c.create_oval(10, 10, 60, 60, fill = 'green')
    c.create_oval(70, 10, 120, 60, fill = 'green', outline = 'red', width = 5)
    c.create_oval(130, 25, 180, 45, dash = (10,))
    c.create_oval(190, 10, 270, 50, dash = (1,), width = 2)
    
    

    绘制椭圆

    c.create_oval(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • c.create_oval(70, 10, 120, 60, fill = 'green', outline = 'red', width = 5)
      绿色填充、红色边框,宽度为5
    • c.create_oval(130, 25, 180, 45, dash = (10,))
      虚线椭圆

    4. 参考例13.4利用Canvas组件创建绘制圆弧的程序,尝试修改圆弧样式、边框颜色以及填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_arc(10, 10, 60, 60, style = ARC)
    c.create_arc(70, 10, 120, 60, style = CHORD)
    c.create_arc(130, 10, 180, 60, style = PIESLICE)
    for i in range(0, 360, 60):
        c.create_arc(190, 10, 240, 60, fill = 'green', outline = 'red', start = i, extent = 30)
    
    

    绘制圆弧:

    c.create_arc(x0, y0, x1, y1, option, ...)
    
    • (x0,y0)是左上角的坐标
    • (x1,y1)是右下角的坐标
    • 选项start(开始角度,默认为0)和extend(圆弧角度,从start开始逆时针旋转,默认为90度)决定圆弧的角度范围
    • 选项start用于设置圆弧的样式

    5. 参考例13.5利用Canvas组件创建绘制线条的程序,尝试修改线条样式和颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_line(10, 10, 60, 60, arrow = BOTH, arrowshape = (3, 4, 5))
    c.create_line(70, 10, 95, 10, 120, 60, fill = 'red')
    c.create_line(130, 10, 180, 10, 130, 60, 180, 60, fill = 'green', width = 10, arrow = BOTH, joinstyle = MITER)
    c.create_line(190, 10, 240, 10, 190, 60, 240, 60, width = 10)
    
    

    绘制线条:

    c.create_line(x0, y0, x1, y1, ..., xn, yn, option, ...)
    
    • (x0,y0),(x1,y1),…,(xn,yn)是线条上各个点的坐标

    6. 参考例13.6利用Canvas组件创建绘制多边形的程序,尝试修改多边形的形状、线条样式和填充颜色

    from tkinter import *
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = 250, height = 70)
    c.pack()
    
    c.create_polygon(35, 10, 10, 60, 60, 60, fill = 'red', outline = 'green')
    c.create_polygon(70, 10, 120, 10, 120, 60, fill = 'white', outline = 'blue')
    c.create_polygon(130, 10, 180, 10, 180, 60, 130, 60, outline = 'blue')
    c.create_polygon(190, 10, 240, 10, 190, 60, 240, 60, fill = 'white', outline = 'black')
    
    

    绘制多边形:

    c.create_polygon(x0, y0, x1, y1, ..., option, ...)
    
    • (x0,y0),(x1,y1),…,(xn,yn)是多边形上各个顶点的坐标

    7. 参考例13.7利用Canvas组件创建绘制字符串和图形的程序,绘制y = cos(x) 的图形

    绘制字符串:

    c.create_text(x, y, option, ...)
    
    • (x,y)是字符串放置的中心位置

    y = sin(x)

    from tkinter import *
    import math
    
    WIDTH, HEIGHT = 510, 210
    ORIGIN_X, ORIGIN_Y = 2, HEIGHT/2 #原点
    
    SCALE_X, SCALE_Y = 40, 100 #x轴、y轴缩放倍数
    ox, oy = 0, 0
    x, y = 0, 0
    arc = 0 #弧度
    END_ARC = 360 * 2 #函数图形画两个周期
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = WIDTH, height = HEIGHT)
    c.pack()
    
    c.create_text(200, 20, text = 'y = sin(x)')
    c.create_line(0, ORIGIN_Y, WIDTH, ORIGIN_Y) 
    c.create_line(ORIGIN_X, 0, ORIGIN_X, HEIGHT) #绘制x轴,y轴
    for i in range(0, END_ARC+1, 10):
        arc = math.pi * i / 180
        x = ORIGIN_X + arc * SCALE_X
        y = ORIGIN_Y - math.sin(arc) * SCALE_Y
        c.create_line(ox, oy, x, y)
        ox, oy = x, y
    

    y = cos(x)

    from tkinter import *
    import math
    
    WIDTH, HEIGHT = 510, 210
    ORIGIN_X, ORIGIN_Y = 2, HEIGHT/2 #原点 
    
    SCALE_X, SCALE_Y = 40, 100 #x轴、y轴缩放倍数
    ox, oy = 0, 0
    x, y = 0, 0
    arc = 0 #弧度
    END_ARC = 360 * 2 #函数图形画两个周期
    
    root = Tk()
    c = Canvas(root, bg = 'white', width = WIDTH, height = HEIGHT)
    c.pack()
    
    c.create_text(200, 20, text = 'y = cos(x)')
    c.create_line(0, ORIGIN_Y, WIDTH, ORIGIN_Y) 
    c.create_line(ORIGIN_X, 0, ORIGIN_X, HEIGHT) 
    for i in range(0, END_ARC+1, 10):
        arc = math.pi * i / 180 
        x = ORIGIN_X + arc * SCALE_X
        y = ORIGIN_Y - math.cos(arc) * SCALE_Y
        c.create_line(ox, oy, x, y)
        ox, oy = x, y
    
    
    

    图形绘制模块:turtle


    后面章节内容:未完待续…

    第十四章 数值日期和时间处理


    第十五章 字符串和文本处理


    第十六章 文件和数据交换


    第十七章 数据访问


    第十八章 网络编程和通信


    第十九章 并行计算:进程、线程和协程


    第二十章 系统管理

    展开全文
  • 图灵程序设计丛书 算法(第4)pdf

    千次阅读 2018-02-05 20:48:00
    算法领域的经典参考书Sedgewick畅销著作的最新,反映了经过几十年演化而成的算法核心知识体系 内容全面全面论述排序、搜索、图处理和字符串处理的算法和数据结构,涵盖每位程序员应知应会的50种算法 全新...

    下载地址:网盘下载

     

     

    内容简介  · · · · · ·

    作者简介  · · · · · ·

    Robert Sedgewick 斯坦福大学博士,导师为Donald E. Knuth,从1985年开始一直担任普林斯顿大学计算机科学系教授,曾任该系主任,也是Adobe Systems公司董事会成员,曾在Xerox PARC、国防分析研究所(Institute for Defense Analyses)和法国国家信息与自动化研究所(INRIA)从事研究工作。他的研究方向包括解析组合学、数据结构和算法的分析与设计、程序可视化等。

    Kevin Wayne 康奈尔大学博士,普林斯顿大学计算机科学系高级讲师,研究方向包括算法的设计、分析和实现,特别是图和离散优化。

    目录  · · · · · ·

    目录
    第1章  基础  1
    1.1 基础编程模型  4
    1.1.1 Java程序的基本结构  4
    1.1.2 原始数据类型与表达式  6
    1.1.3  语句  8
    1.1.4  简便记法  9
    1.1.5  数组  10
    1.1.6  静态方法  12
    1.1.7  API  16
    1.1.8  字符串  20
    1.1.9  输入输出  21
    1.1.10  二分查找  28
    1.1.11  展望  30
    1.2  数据抽象  38
    1.2.1  使用抽象数据类型  38
    1.2.2  抽象数据类型举例  45
    1.2.3  抽象数据类型的实现  52
    1.2.4  更多抽象数据类型的实现  55
    1.2.5  数据类型的设计  60
    1.3  背包、队列和栈  74
    1.3.1  API  74
    1.3.2  集合类数据类型的实现  81
    1.3.3  链表  89
    1.3.4  综述  98
    1.4  算法分析  108
    1.4.1  科学方法  108
    1.4.2  观察  108
    1.4.3  数学模型  112
    1.4.4  增长数量级的分类  117
    1.4.5  设计更快的算法  118
    1.4.6  倍率实验  121
    1.4.7  注意事项  123
    1.4.8  处理对于输入的依赖  124
    1.4.9  内存  126
    1.4.10  展望  129
    1.5  案例研究:union-find算法  136
    1.5.1  动态连通性  136
    1.5.2  实现  140
    1.5.3  展望  148
    第2章  排序  152
    2.1  初级排序算法  153
    2.1.1  游戏规则  153
    2.1.2  选择排序  155
    2.1.3  插入排序  157
    2.1.4  排序算法的可视化  159
    2.1.5  比较两种排序算法  159
    2.1.6  希尔排序  162
    2.2  归并排序  170
    2.2.1  原地归并的抽象方法  170
    2.2.2  自顶向下的归并排序  171
    2.2.3  自底向上的归并排序  175
    2.2.4  排序算法的复杂度  177
    2.3  快速排序  182
    2.3.1  基本算法  182
    2.3.2  性能特点  185
    2.3.3  算法改进  187
    2.4  优先队列  195
    2.4.1  API  195
    2.4.2  初级实现  197
    2.4.3  堆的定义  198
    2.4.4  堆的算法  199
    2.4.5  堆排序  205
    2.5  应用  214
    2.5.1  将各种数据排序  214
    2.5.2  我应该使用哪种排序算法  218
    2.5.3  问题的归约  219
    2.5.4  排序应用一览  221
    第3章 查找  227
    3.1 符号表  228
    3.1.1 API  228
    3.1.2 有序符号表  230
    3.1.3 用例举例  233
    3.1.4 无序链表中的顺序查找  235
    3.1.5 有序数组中的二分查找  238
    3.1.6 对二分查找的分析  242
    3.1.7 预览  244
    3.2 二叉查找树  250
    3.2.1 基本实现  250
    3.2.2 分析  255
    3.2.3 有序性相关的方法与删除操作  257
    3.3 平衡查找树  269
    3.3.1 2-3查找树  269
    3.3.2 红黑二叉查找树  275
    3.3.3 实现  280
    3.3.4 删除操作  282
    3.3.5 红黑树的性质  284
    3.4 散列表  293
    3.4.1 散列函数  293
    3.4.2 基于拉链法的散列表  297
    3.4.3 基于线性探测法的散列表  300
    3.4.4 调整数组大小  304
    3.4.5 内存使用  306
    3.5 应用  312
    3.5.1 我应该使用符号表的哪种实现  312
    3.5.2 集合的API  313
    3.5.3 字典类用例  315
    3.5.4 索引类用例  318
    3.5.5 稀疏向量  322
    第4章  图  329
    4.1  无向图  331
    4.1.1  术语表  331
    4.1.2  表示无向图的数据类型  333
    4.1.3  深度优先搜索  338
    4.1.4  寻找路径  342
    4.1.5  广度优先搜索  344
    4.1.6  连通分量  349
    4.1.7  符号图  352
    4.1.8  总结  358
    4.2  有向图  364
    4.2.1  术语  364
    4.2.2  有向图的数据类型  365
    4.2.3  有向图中的可达性  367
    4.2.4  环和有向无环图  369
    4.2.5  有向图中的强连通性  378
    4.2.6  总结  385
    4.3  最小生成树  390
    4.3.1  原理  391
    4.3.2  加权无向图的数据类型  393
    4.3.3  最小生成树的API和测试用例  396
    4.3.4  Prim算法  398
    4.3.5  Prim算法的即时实现  401
    4.3.6  Kruskal算法  404
    4.3.7  展望  407
    4.4  最短路径  412
    4.4.1  最短路径的性质  413
    4.4.2  加权有向图的数据结构  414
    4.4.3  最短路径算法的理论基础  420
    4.4.4  Dijkstra算法  421
    4.4.5  无环加权有向图中的最短路径算法  425
    4.4.6  一般加权有向图中的最短路径问题  433
    4.4.7  展望  445
    第5章  字符串  451
    5.1  字符串排序  455
    5.1.1  键索引计数法  455
    5.1.2  低位优先的字符串排序  458
    5.1.3  高位优先的字符串排序  461
    5.1.4  三向字符串快速排序  467
    5.1.5  字符串排序算法的选择  470
    5.2  单词查找树  474
    5.2.1  单词查找树  475
    5.2.2  单词查找树的性质  483
    5.2.3  三向单词查找树  485
    5.2.4  三向单词查找树的性质  487
    5.2.5  应该使用字符串符号表的哪种实现  489
    5.3  子字符串查找  493
    5.3.1  历史简介  493
    5.3.2  暴力子字符串查找算法  494
    5.3.3  Knuth-Morris-Pratt子字符串查找算法  496
    5.3.4  Boyer-Moore字符串查找算法  502
    5.3.5  Rabin-Karp指纹字符串查找算法  505
    5.3.6  总结  509
    5.4  正则表达式  514
    5.4.1  使用正则表达式描述模式  514
    5.4.2  缩略写法  516
    5.4.3  正则表达式的实际应用  517
    5.4.4  非确定有限状态自动机  518
    5.4.5  模拟NFA的运行  520
    5.4.6  构造与正则表达式对应的
    5.5  数据压缩  529
    5.5.1  游戏规则  529
    5.5.2  读写二进制数据  530
    5.5.3  局限  533
    5.5.4  热身运动:基因组  534
    5.5.5  游程编码  537
    5.5.6  霍夫曼压缩  540
    第6章  背景  558
    索引  611

     

     

     

    下载地址:网盘下载

     

    转载于:https://www.cnblogs.com/long12365/p/9730776.html

    展开全文
  • 下载地址:网盘下载内容简介...全书分为2个部分共10章,内容涵盖了编程必备的基础知识(如数据结构、常用算法等),编程实例介绍,常见算法和数据结构面试题等。《妙趣横生的算法(C语言实现)》最大的特色在于实例丰...

    下载地址:网盘下载


    内容简介  · · · · · ·

    《妙趣横生的算法(C语言实现)》理论与实践相结合,旨在帮助读者理解算法,并提高C语言编程能力,培养读者的编程兴趣,并巩固已有的C语言知识。全书分为2个部分共10章,内容涵盖了编程必备的基础知识(如数据结构、常用算法等),编程实例介绍,常见算法和数据结构面试题等。《妙趣横生的算法(C语言实现)》最大的特色在于实例丰富,题材新颖有趣,实用性强,理论寓于实践之中。通过《妙趣横生的算法(C语言实现)》的学习,可以使读者开阔眼界,提高编程的兴趣,提高读者的编程能力和应试能力。

    《妙趣横生的算法(C语言实现)》附带1张光盘,内容为《妙趣横生的算法(C语言实现)》源代码和作者为《妙趣横生的算法(C语言实现)》录制的5.5小时多媒体教学视频。

    《妙趣横生的算法(C语言实现)》可作为算法入门人员的教程,也可以作为学习过C语言程序设计的人士继续深造的理想读物,也可作为具有一定经验的程序设计人员巩固和提高编程水平,查阅相关算法实现和数据结构知识的参考资料,同时也为那些准备参加与算法和数据结构相关的面试的读者提供一些有益的帮助。

    目录  · · · · · ·

    第1部分 基础篇 第1章 数据结构基础  1.1 什么是数据结构  1.2 顺序表   1.2.1 顺序表的定义   1.2.2 向顺序表中插入元素   1.2.3 从顺序表中删除元素   1.2.4 实例与分析  1.3 链表   1.3.1 创建一个链表   1.3.2 向链表中插入结点   1.3.3 从链表中删除结点   1.3.4 销毁一个链表   1.3.5 实例与分析  1.4 栈   1.4.1 栈的定义   1.4.2 创建一个栈   1.4.3 入栈操作   1.4.4 出栈操作   1.4.5 栈的其他操作   1.4.6 实例与分析  1.5 队列   1.5.1 队列的定义   1.5.2 创建一个队列   1.5.3 入队列操作   1.5.4 出队列操作   1.5.5 销毁一个队列   1.5.6 循环队列的概念   1.5.7 循环队列的实现   1.5.8 实例与分析  1.6 树结构   1.6.1 树的概念   1.6.2 树结构的计算机存储形式   1.6.3 二叉树的定义   1.6.4 二叉树的遍历   1.6.5 创建二叉树   1.6.6 实例与分析  1.7 图结构   1.7.1 图的概念   1.7.2 图的存储形式   1.7.3 邻接表的定义   1.7.4 图的创建   1.7.5 图的遍历(1)——深度优先搜索   1.7.6 图的遍历(2)——广度优先搜索   1.7.7 实例与分析 第2章 常用的查找与排序方法  2.1 顺序查找  2.2 折半查找  2.3 排序的概述  2.4 直接插入排序  2.5 选择排序  2.6 冒泡排序  2.7 希尔排序  2.8 快速排序 第3章 常用的算法思想  3.1 什么是算法  3.2 算法的分类表示及测评   3.2.1 算法的分类   3.2.2 算法的表示   3.2.3 算法性能的测评  3.3 穷举法思想   3.3.1 基本概念   3.3.2 寻找给定区间的素数   3.3.3 TOM的借书方案  3.4 递归与分治思想   3.4.1 基本概念   3.4.2 计算整数的划分数   3.4.3 递归的折半查找算法  3.5 贪心算法思想   3.5.1 基本概念   3.5.2 最优装船问题  3.6 回溯法   3.6.1 基本概念   3.6.2 四皇后问题求解  3.7 数值概率算法   3.7.1 基本概念   3.7.2 计算定积分第2部分 编程实例解析 第4章 编程基本功 4.1 字符类型统计器 4.2 计算字符的ASCII码 4.3 嵌套if.else语句的妙用 4.4 基于switch语句的译码器 4.5 判断闰年 4.6 指针变量作参数 4.7 矩阵的转置运算 4.8 矩阵的乘法运算 4.9 巧用位运算 4.10 文件的读写 4.11 计算文件的大小 4.12 记录程序的运行时间 4.13 十进制/二进制转化器 4.14 打印特殊图案 4.15 打印杨辉三角 4.16 复杂级数的前n项和 4.17 寻找矩阵中的“鞍点” 4.18 n阶勒让德多项式求解 4.19 递归反向输出字符串 4.20 一年中的第几天 第5章 数学趣题(一) 5.1 舍罕王的失算 5.2 求两个数的最大公约数和最小公倍数 5.3 歌德巴赫猜想的近似证明 5.4 三色球问题 5.5 百钱买百鸡问题 5.6 判断回文数字 5.7 填数字游戏求解 5.8 新郎和新娘 5.9 爱因斯坦的阶梯问题 5.10 寻找水仙花数 5.11 猴子吃桃问题 5.12 兔子产仔问题 5.13 分解质因数 5.14 常胜将军 5.15 求兀的近似值 5.16 魔幻方阵 5.17 移数字游戏 5.18 数字的全排列 5.19 完全数 5.20 亲密数 5.21 数字翻译器 5.22 递归实现数制转换 5.23 谁在说谎 第6章 数学趣题(二) 6.1 连续整数固定和问题 6.2 表示成两个数的平方和 6.3 具有特殊性质的数 6.4 验证角谷猜想 6.5 验证四方定理 6.6 递归法寻找最小值 6.7 寻找同构数 6.8 验证尼科彻斯定理 6.9 三重回文数字 6.10 马克思手稿中的数学题 6.11 渔夫捕鱼问题 6.12 寻找假币 6.13 计算组合数 6.14 递归法求幂 6.15 汉诺Hanoi塔 6.16 选美比赛 第7章 数据结构趣题 7.1 顺序表的就地逆置 7.2 动态数列排序 7.3 在原表空间进行链表的归并 7.4 约瑟夫环 7.5 二进制/八进制转换器 7.6 回文字符串的判定 7.7 括号匹配 7.8 魔王语言翻译 7.9 动态双向链表的应用 7.10 判断完全二叉树 7.11 动画模拟创建二叉树 7.12 打印符号三角形 7.13 递归函数的非递归求解 7.14 任意长度整数加法 第8章 数值计算问题 8.1 递推化梯形法求解定积分 8.2 求解低阶定积分 8.3 迭代法开平方运算 8.4 牛顿法解方程 8.5 欧拉方法求解微分方程 8.6 改进的欧拉方法求解微分方程 8.7 雅可比迭代公式求解线性方程组 第9章 综合题 9.1 破碎的砝码 9.2 计算24的问题 9.3 马踏棋盘 9.4 0-1背包问题 9.5 八皇后问题求解 9.6 简易文件加密/解密系统 第10章 算法设计与数据结构面试题精粹 10.1 常见的算法设计题 10.2 常见的数据结构题



    下载地址:网盘下载

    转载于:https://www.cnblogs.com/long12365/p/9730441.html

    展开全文
  • OpenCV 常用算法

    千次阅读 2008-09-24 15:02:00
    OpenCV 常用算法function StorePage(){d=document;t=d.selection?(d.selection.type!=None?d.selection.createRange().text:):(d.getSelection?d.getSelection():);void(keyit=window.open(http://www.365key

    OpenCV 常用算法

    <script>function StorePage(){d=document;t=d.selection?(d.selection.type!='None'?d.selection.createRange().text:''):(d.getSelection?d.getSelection():'');void(keyit=window.open('http://www.365key.com/storeit.aspx?t='+escape(d.title)+'&u='+escape(d.location.href)+'&c='+escape(t),'keyit','scrollbars=no,width=475,height=575,left=75,top=20,status=no,resizable=yes'));keyit.focus();}</script>  
    6月8日

    关于直方图

        图像直方图是图像处理中一种十分重要的图像分析工具,它描述了一幅图像的灰度级内 容。
       
        从数学上来说图像直方图是图像各灰度值统计特性与图像灰度值的函数,它统计一幅图像中各个灰度级出现的次数或概率;
       
        从图形上来说,它是一个二维图, 横坐标表示图像中各个像素点的灰度级,纵坐标为各个灰度级上图像各个像素点出现的 次数或概率。任何一幅图像的直方图都包含了丰富的信息,它主要用在图象分割,图像灰度变换等处理过程中。
       
        最合适直方图的典型特征是从左端到右端的每一个辉度级别都有相对应的图形存在,也就是说,值是平均分布的,而且图像应该服从正态分布,即中间大,两头小的情况。
     

    1.正常曝光的照片

    2.
    曝光不足的照片


    3.
    曝光过渡的照片

    4.
    反差过低的照片

    5.
    反差过高的照片

     
     

        
        没有任何两幅图像的直方图是完全一样的。 因此,利用直方图可以在目标跟踪时有所作为。
    6月1日

    你够鲁棒吗

    鲁棒是Robust的音译,也就是健壮和强壮的意思。
    鲁棒性(robustness)就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。

    4月12日

    OpenCV学习笔记(五)卡尔曼滤波器

    卡尔曼滤波器 Kalman Filter

    1    什么是卡尔曼滤波器

    What is the Kalman Filter?

    在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

    卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。19531954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf

    简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

    2.卡尔曼滤波器的介绍

    Introduction to the Kalman Filter

    为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

    在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

    假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

    好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

    假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

    由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

    现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

    就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

    下面就要言归正传,讨论真正工程系统上的卡尔曼。

    3    卡尔曼滤波器算法

    The Kalman Filter Algorithm

    在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

    首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:

    X(k)=A X(k-1)+B U(k)+W(k)

    再加上系统的测量值:

    Z(k)=H X(k)+V(k)

    上两式子中,X(k)k时刻的系统状态,U(k)k时刻对系统的控制量。AB是系统参数,对于多模型系统,他们为矩阵。Z(k)k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是QR(这里我们假设他们不随系统状态变化而变化)。

    对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

    首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

    X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

    (1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0

    到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)covariance还没更新。我们用P表示covariance

    P(k|k-1)=A P(k-1|k-1) A+Q ……… (2)

    (2)中,P(k|k-1)X(k|k-1)对应的covarianceP(k-1|k-1)X(k-1|k-1)对应的covarianceA’表示A的转置矩阵,Q是系统过程的covariance。式子12就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

    现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k)

    X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

    其中Kg为卡尔曼增益(Kalman Gain)

    Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R) ……… (4)

    到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)covariance

    P(k|k)=I-Kg(k) HP(k|k-1) ……… (5)

    其中I 1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)P(k-1|k-1)。这样,算法就可以自回归的运算下去。

    卡尔曼滤波器的原理基本描述了,式子12345就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序

     

    4月4日

    OpenCV学习笔记(四)运动物体跟踪的camshift算法

    CamShift算法
    简介
    CamShift算法,即"Continuously Apative Mean-Shift"算法,是一种运动跟踪算法。它主要通过视频图像中运动物体的颜色信息来达到跟踪的目的。我把这个算法分解成三个部分,便于理解:

    Back Projection计算。

    Mean Shift算法

    CamShift算法

    1 Back Projection计算
    计算Back Projection的步骤是这样的:

    1. 计算被跟踪目标的色彩直方图。在各种色彩空间中,只有HSI空间(或与HSI类似的色彩空间)中的H分量可以表示颜色信息。所以在具体的计算过程中,首先将其他的色彩空间的值转化到HSI空间,然后会其中的H分量做1D直方图计算。

    2. 根据获得的色彩直方图将原始图像转化成色彩概率分布图像,这个过程就被称作"Back Projection"。

    在OpenCV中的直方图函数中,包含Back Projection的函数,函数原型是:

       void cvCalcBackProject(IplImage** img, CvArr** backproject, const CvHistogram* hist);

    传递给这个函数的参数有三个:

    1. IplImage** img:存放原始图像,输入。

    2. CvArr** backproject:存放Back Projection结果,输出。

    3. CvHistogram* hist:存放直方图,输入

    下面就给出计算Back Projection的OpenCV代码。

    1.准备一张只包含被跟踪目标的图片,将色彩空间转化到HSI空间,获得其中的H分量:

      IplImage* target=cvLoadImage("target.bmp",-1);  //装载图片

      IplImage* target_hsv=cvCreateImage( cvGetSize(target), IPL_DEPTH_8U, 3 );

      IplImage* target_hue=cvCreateImage( cvGetSize(target), IPL_DEPTH_8U, 3 );

      cvCvtColor(target,target_hsv,CV_BGR2HSV);       //转化到HSV空间

      cvSplit( target_hsv, target_hue, NULL, NULL, NULL );    //获得H分量

    2.计算H分量的直方图,即1D直方图:

      IplImage* h_plane=cvCreateImage( cvGetSize(target_hsv),IPL_DEPTH_8U,1 );

      int hist_size[]={255};          //将H分量的值量化到[0,255]

      float* ranges[]={ {0,360} };    //H分量的取值范围是[0,360)

      CvHistogram* hist=cvCreateHist(1, hist_size, ranges, 1);

      cvCalcHist(&target_hue, hist, 0, NULL);

    在这里需要考虑H分量的取值范围的问题,H分量的取值范围是[0,360),这个取值范围的值不能用一个byte来表示,为了能用一个byte表示,需要将H值做适当的量化处理,在这里我们将H分量的范围量化到[0,255].

    4.计算Back Projection:

      IplImage* rawImage;

      //----------------------------------------------

      //get from video frame,unsigned byte,one channel

      //----------------------------------------------

      IplImage* result=cvCreateImage(cvGetSize(rawImage),IPL_DEPTH_8U,1);

      cvCalcBackProject(&rawImage,result,hist);

    5.结果:result即为我们需要的.

    2) Mean Shift算法
     

    这里来到了CamShift算法,OpenCV实现的第二部分,这一次重点讨论Mean Shift算法。

    在讨论Mean Shift算法之前,首先讨论在2D概率分布图像中,如何计算某个区域的重心(Mass Center)的问题,重心可以通过以下公式来计算:

    1.计算区域内0阶矩

    for(int i=0;i<height;i++)

      for(int j=0;j<width;j++)

         M00+=I(i,j)

    2.区域内1阶矩:

    for(int i=0;i<height;i++)

      for(int j=0;j<width;j++)

      {

        M10+=i*I(i,j);

        M01+=j*I(i,j);

      }

    3.则Mass Center为:

    Xc=M10/M00; Yc=M01/M00

    接下来,讨论Mean Shift算法的具体步骤,Mean Shift算法可以分为以下4步:

    1.选择窗的大小和初始位置.

    2.计算此时窗口内的Mass Center.

    3.调整窗口的中心到Mass Center.

    4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值。

    在OpenCV中,提供Mean Shift算法的函数,函数的原型是:

    int cvMeanShift(IplImage* imgprob,CvRect windowIn,

                        CvTermCriteria criteria,CvConnectedComp* out);

    需要的参数为:

    1.IplImage* imgprob:2D概率分布图像,传入;

    2.CvRect windowIn:初始的窗口,传入;

    3.CvTermCriteria criteria:停止迭代的标准,传入;

    4.CvConnectedComp* out:查询结果,传出。

    (注:构造CvTermCriteria变量需要三个参数,一个是类型,另一个是迭代的最大次数,最后一个表示特定的阈值。例如可以这样构造criteria:criteria=cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10,0.1)。)

    返回的参数:

    1.int:迭代的次数。

    实现代码:暂时缺

    3) CamShift算法
    1.原理

    在了解了MeanShift算法以后,我们将MeanShift算法扩展到连续图像序列(一般都是指视频图像序列),这样就形成了CamShift算法。CamShift算法的全称是"Continuously Apaptive Mean-SHIFT",它的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去,就可以实现对目标的跟踪。整个算法的具体步骤分5步:

    Step 1:将整个图像设为搜寻区域。

    Step 2:初始话Search Window的大小和位置。

    Step 3:计算Search Window内的彩色概率分布,此区域的大小比Search Window要稍微大一点。

    Step 4:运行MeanShift。获得Search Window新的位置和大小。

    Step 5:在下一帧视频图像中,用Step 3获得的值初始化Search Window的位置和大小。跳转到Step 3继续运行。

    2.实现

    在OpenCV中,有实现CamShift算法的函数,此函数的原型是:

      cvCamShift(IplImage* imgprob, CvRect windowIn,

                    CvTermCriteria criteria,

                    CvConnectedComp* out, CvBox2D* box=0);

    其中:

       imgprob:色彩概率分布图像。

       windowIn:Search Window的初始值。

       Criteria:用来判断搜寻是否停止的一个标准。

       out:保存运算结果,包括新的Search Window的位置和面积。

       box:包含被跟踪物体的最小矩形。

    说明:

    1.在OpenCV 4.0 beta的目录中,有CamShift的例子。遗憾的是这个例子目标的跟踪是半自动的,即需要人手工选定一个目标。我正在努力尝试全自动的目标跟踪,希望可以和大家能在这方面与大家交流。


     

    3月31日

    OpenCV学习笔记(三)人脸检测的代码分析

     
    OpenCV学习笔记(三)人脸检测的代码分析
    一、预备知识:
    1、动态内存存储及操作函数
    CvMemStorage
    typedef struct CvMemStorage
    {
        struct CvMemBlock* bottom;/* first allocated block */
        struct CvMemBlock* top; /* the current memory block - top of the stack */
        struct CvMemStorage* parent; /* borrows new blocks from */
        int block_size; /* block size */
        int free_space; /* free space in the top block (in bytes) */
    } CvMemStorage;
    内存存储器是一个可用来存储诸如序列,轮廓,图形,子划分等动态增长数据结构的底层结构。它是由一系列以同等大小的内存块构成,呈列表型 ---bottom 域指的是列首,top 域指的是当前指向的块但未必是列尾.在bottom和top之间所有的块(包括bottom, 不包括top)被完全占据了空间;在 top和列尾之间所有的块(包括块尾,不包括top)则是空的;而top块本身则被占据了部分空间 -- free_space 指的是top块剩余的空字节数。新分配的内存缓冲区(或显示的通过 cvMemStorageAlloc 函数分配,或隐示的通过 cvSeqPush, cvGraphAddEdge等高级函数分配)总是起始于当前块(即top块)的剩余那部分,如果剩余那部分能满足要求(够分配的大小)。分配后,free_space 就减少了新分配的那部分内存大小,外加一些用来保存适当列型的附加大小。当top块的剩余空间无法满足被分配的块(缓冲区)大小时,top块的下一个存储块被置为当前块(新的top块) --  free_space 被置为先前分配的整个块的大小。如果已经不存在空的存储块(即:top块已是列尾),则必须再分配一个新的块(或从parent那继承,见 cvCreateChildMemStorage)并将该块加到列尾上去。于是,存储器(memory storage)就如同栈(Stack)那样, bottom指向栈底,(top, free_space)对指向栈顶。栈顶可通过 cvSaveMemStoragePos保存,通过 cvRestoreMemStoragePos 恢复指向, 通过 cvClearStorage 重置。
    CvMemBlock
    内存存储块结构
    typedef struct CvMemBlock
    {
        struct CvMemBlock* prev;
        struct CvMemBlock* next;
    } CvMemBlock;
    CvMemBlock 代表一个单独的内存存储块结构。 内存存储块中的实际数据存储在 header块 之后(即:存在一个头指针 head 指向的块 header ,该块不存储数据),于是,内存块的第 i 个字节可以通过表达式 ((char*)(mem_block_ptr+1))[i] 获得。然而,通常没必要直接去获得存储结构的域。
    CvMemStoragePos
    内存存储块地址
    typedef struct CvMemStoragePos
    {
        CvMemBlock* top;
        int free_space;
    } CvMemStoragePos;
    该结构(如以下所说)保存栈顶的地址,栈顶可以通过 cvSaveMemStoragePos 保存,也可以通过 cvRestoreMemStoragePos 恢复。
    ________________________________________
    cvCreateMemStorage
    创建内存块
    CvMemStorage* cvCreateMemStorage( int block_size=0 );
     block_size:存储块的大小以字节表示。如果大小是 0 byte, 则将该块设置成默认值  当前默认大小为64k.
    函数 cvCreateMemStorage 创建一内存块并返回指向块首的指针。起初,存储块是空的。头部(即:header)的所有域值都为 0,除了 block_size 外.
    ________________________________________
    cvCreateChildMemStorage
    创建子内存块
    CvMemStorage* cvCreateChildMemStorage( CvMemStorage* parent );
    parent    父内存块
    函数 cvCreateChildMemStorage 创建一类似于普通内存块的子内存块,除了内存分配/释放机制不同外。当一个子存储块需要一个新的块加入时,它就试图从parent 那得到这样一个块。如果 parent 中 还未被占据空间的那些块中的第一个块是可获得的,就获取第一个块(依此类推),再将该块从 parent  那里去除。如果不存在这样的块,则 parent 要么分配一个,要么从它自己 parent (即:parent 的 parent) 那借个过来。换句话说,完全有可能形成一个链或更为复杂的结构,其中的内存存储块互为 child/ parent 关系(父子关系)。当子存储结构被释放或清除,它就把所有的块还给各自的 parent. 在其他方面,子存储结构同普通存储结构一样。
    子存储结构在下列情况中是非常有用的。想象一下,如果用户需要处理存储在某个块中的动态数据,再将处理的结果存放在该块中。在使用了最简单的方法处理后,临时数据作为输入和输出数据被存放在了同一个存储块中,于是该存储块看上去就类似下面处理后的样子: Dynamic data processing without using child storage. 结果,在存储块中,出现了垃圾(临时数据)。然而,如果在开始处理数据前就先建立一个子存储块,将临时数据写入子存储块中并在最后释放子存储块,那么最终在 源/目的存储块 (source / destination storage) 中就不会出现垃圾, 于是该存储块看上去应该是如下形式:Dynamic data processing using a child storage.
    cvReleaseMemStorage
    释放内存块
    void cvReleaseMemStorage( CvMemStorage** storage );
    storage: 指向被释放了的存储块的指针
    函数 cvReleaseMemStorage 释放所有的存储(内存)块 或者 将它们返回给各自的 parent(如果需要的话)。 接下来再释放 header块(即:释放头指针 head 指向的块 = free(head))并清除指向该块的指针(即:head = NULL)。在释放作为 parent 的块之前,先清除各自的 child 块。
    cvClearMemStorage
    清空内存存储块
    void cvClearMemStorage( CvMemStorage* storage );
    storage:存储存储块
    函数 cvClearMemStorage 将存储块的 top 置到存储块的头部(注:清空存储块中的存储内容)。该函数并不释放内存(仅清空内存)。假使该内存块有一个父内存块(即:存在一内存块与其有父子关系),则函数就将所有的块返回给其 parent.
    cvMemStorageAlloc
    在存储块中分配以内存缓冲区
    void* cvMemStorageAlloc( CvMemStorage* storage, size_t size );
    storage:内存块.
    size:缓冲区的大小.
    函数 cvMemStorageAlloc 在存储块中分配一内存缓冲区。该缓冲区的大小不能超过内存块的大小,否则就会导致运行时错误。缓冲区的地址被调整为CV_STRUCT_ALIGN 字节 (当前为 sizeof(double)).
    cvMemStorageAllocString
    在存储块中分配一文本字符串
    typedef struct CvString
    {
        int len;
        char* ptr;
    }
    CvString;
    CvString cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, int len=-1 );
    storage:存储块
    ptr:字符串
    len:字符串的长度(不计算'/0')。如果参数为负数,函数就计算该字符串的长度。
    函数 cvMemStorageAlloString 在存储块中创建了一字符串的拷贝。它返回一结构,该结构包含字符串的长度(该长度或通过用户传递,或通过计算得到)和指向被拷贝了的字符串的指针。
    cvSaveMemStoragePos
    保存内存块的位置(地址)
    void cvSaveMemStoragePos( const CvMemStorage* storage, CvMemStoragePos* pos );
    storage:内存块.
    pos:内存块顶部位置。
    函数 cvSaveMemStoragePos 将存储块的当前位置保存到参数 pos 中。 函数 cvRestoreMemStoragePos 可进一步获取该位置(地址)。
    cvRestoreMemStoragePos
    恢复内存存储块的位置
    void cvRestoreMemStoragePos( CvMemStorage* storage, CvMemStoragePos* pos );
    storage:内存块.
    pos:新的存储块的位置
    函数 cvRestoreMemStoragePos 通过参数 pos 恢复内存块的位置。该函数和函数 cvClearMemStorage 是释放被占用内存块的唯一方法。注意:没有什么方法可去释放存储块中被占用的部分内存。
    2、分类器结构及操作函数:
    CvHaarFeature
    #define CV_HAAR_FEATURE_MAX  3
    typedef struct CvHaarFeature
    {
        int  tilted; 
        struct
        {
            CvRect r;
            float weight;
    } rect[CV_HAAR_FEATURE_MAX];
     
    }
    CvHaarFeature;
    一个 harr 特征由 2-3 个具有相应权重的矩形组成
    titled :/* 0 means up-right feature, 1 means 45--rotated feature */
    rect[CV_HAAR_FEATURE_MAX];  /* 2-3 rectangles with weights of opposite signs and       with absolute values inversely proportional to the areas of the rectangles. if rect[2].weight !=0, then  the feature consists of 3 rectangles, otherwise it consists of 2 */
    CvHaarClassifier
    typedef struct CvHaarClassifier
    {
        int count; 
        CvHaarFeature* haar_feature;
        float* threshold;
        int* left;
        int* right;
        float* alpha;
    }
    CvHaarClassifier;
    /* a single tree classifier (stump in the simplest case) that returns the response for the feature   at the particular image location (i.e. pixel sum over subrectangles of the window) and gives out a value depending on the responce */
    int count;  /* number of nodes in the decision tree */
     /* these are "parallel" arrays. Every index i corresponds to a node of the decision tree (root has 0-th index).
    left[i] - index of the left child (or negated index if the left child is a leaf)
    right[i] - index of the right child (or negated index if the right child is a leaf)
    threshold[i] - branch threshold. if feature responce is <= threshold, left branch                      is chosen, otherwise right branch is chosed.
    alpha[i] - output value correponding to the leaf. */
    CvHaarStageClassifier
    typedef struct CvHaarStageClassifier
    {
        int  count;  /* number of classifiers in the battery */
        float threshold; /* threshold for the boosted classifier */
        CvHaarClassifier* classifier; /* array of classifiers */
        /* these fields are used for organizing trees of stage classifiers,
           rather than just stright cascades */
        int next;
        int child;
        int parent;
    }
    CvHaarStageClassifier;

    /* a boosted battery of classifiers(=stage classifier): the stage classifier returns 1 if the sum of the classifiers' responces is greater than threshold and 0 otherwise */
    int  count;  /* number of classifiers in the battery */
    float threshold; /* threshold for the boosted classifier */
    CvHaarClassifier* classifier; /* array of classifiers */
    /* these fields are used for organizing trees of stage classifiers, rather than just stright cascades */
    CvHaarClassifierCascade
    typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
    typedef struct CvHaarClassifierCascade
    {
        int  flags;
        int  count;
        CvSize orig_window_size;
        CvSize real_window_size;
        double scale;
        CvHaarStageClassifier* stage_classifier;
        CvHidHaarClassifierCascade* hid_cascade;
    }
    CvHaarClassifierCascade;

    /* cascade or tree of stage classifiers */
    int  flags; /* signature */
    int  count; /* number of stages */
    CvSize orig_window_size; /* original object size (the cascade is trained for) */
    /* these two parameters are set by cvSetImagesForHaarClassifierCascade */
    CvSize real_window_size; /* current object size */
    double scale; /* current scale */
    CvHaarStageClassifier* stage_classifier; /* array of stage classifiers */
    CvHidHaarClassifierCascade* hid_cascade; /* hidden optimized representation of the cascade, created by cvSetImagesForHaarClassifierCascade */
    所有的结构都代表一个级联boosted Haar分类器。级联有下面的等级结构:
        Cascade:
            Stage1:
                Classifier11:
                    Feature11
                Classifier12:
                    Feature12
                ...
            Stage2:
                Classifier21:
                    Feature21
                ...
            ...
    整个等级可以手工构建,也可以利用函数cvLoadHaarClassifierCascade从已有的磁盘文件或嵌入式基中导入。
    特征检测用到的函数:
    cvLoadHaarClassifierCascade
    从文件中装载训练好的级联分类器或者从OpenCV中嵌入的分类器数据库中导入
    CvHaarClassifierCascade* cvLoadHaarClassifierCascade(
                             const char* directory,
                             CvSize orig_window_size );
    directory :训练好的级联分类器的路径
    orig_window_size:级联分类器训练中采用的检测目标的尺寸。因为这个信息没有在级联分类器中存储,所有要单独指出。
    函数 cvLoadHaarClassifierCascade 用于从文件中装载训练好的利用海尔特征的级联分类器,或者从OpenCV中嵌入的分类器数据库中导入。分类器的训练可以应用函数haartraining(详细察看opencv/apps/haartraining)
    函数 已经过时了。现在的目标检测分类器通常存储在  XML 或 YAML 文件中,而不是通过路径导入。从文件中导入分类器,可以使用函数 cvLoad 。
    cvReleaseHaarClassifierCascade
    释放haar classifier cascade。
    void cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
    cascade :双指针类型指针指向要释放的cascade. 指针由函数声明。
    函数 cvReleaseHaarClassifierCascade 释放cascade的动态内存,其中cascade的动态内存或者是手工创建,或者通过函数 cvLoadHaarClassifierCascade 或 cvLoad分配。
    cvHaarDetectObjects
    检测图像中的目标
    typedef struct CvAvgComp
    {
    CvRect rect; /* bounding rectangle for the object (average rectangle of a group) */
    int neighbors; /* number of neighbor rectangles in the group */
    }
    CvAvgComp;
    CvSeq* cvHaarDetectObjects( const CvArr* image,
    CvHaarClassifierCascade* cascade,
                                CvMemStorage* storage,
                                double scale_factor=1.1,
                                int min_neighbors=3, int flags=0,
                                CvSize min_size=cvSize(0,0) );
    image 被检图像
    cascade harr 分类器级联的内部标识形式
    storage 用来存储检测到的一序列候选目标矩形框的内存区域。
    scale_factor 在前后两次相继的扫描中,搜索窗口的比例系数。例如1.1指将搜索窗口依次扩大10%。
    min_neighbors 构成检测目标的相邻矩形的最小个数(缺省-1)。如果组成检测目标的小矩形的个数和小于min_neighbors-1 都会被排除。如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,这种设定值一般用在用户自定义对检测结果的组合程序上。
    flags 操作方式。当前唯一可以定义的操作方式是 CV_HAAR_DO_CANNY_PRUNING。如果被设定,函数利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域,因为这样的区域一般不含被检目标。人脸检测中通过设定阈值使用了这种方法,并因此提高了检测速度。 
    min_size 检测窗口的最小尺寸。缺省的情况下被设为分类器训练时采用的样本尺寸(人脸检测中缺省大小是~20×20)。
    函数 cvHaarDetectObjects 使用针对某目标物体训练的级联分类器在图像中找到包含目标物体的矩形区域,并且将这些区域作为一序列的矩形框返回。函数以不同比例大小的扫描窗口对图像进行几次搜索(察看cvSetImagesForHaarClassifierCascade)。 每次都要对图像中的这些重叠区域利用cvRunHaarClassifierCascade进行检测。 有时候也会利用某些继承(heuristics)技术以减少分析的候选区域,例如利用 Canny 裁减 (prunning)方法。 函数在处理和收集到候选的方框(全部通过级联分类器各层的区域)之后,接着对这些区域进行组合并且返回一系列各个足够大的组合中的平均矩形。调节程序中的缺省参数(scale_factor=1.1, min_neighbors=3, flags=0)用于对目标进行更精确同时也是耗时较长的进一步检测。为了能对视频图像进行更快的实时检测,参数设置通常是:scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size> (例如, 对于视频会议的图像区域).
    cvSetImagesForHaarClassifierCascade
    为隐藏的cascade(hidden cascade)指定图像
    void cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
                                              const CvArr* sum, const CvArr* sqsum,
                                              const CvArr* tilted_sum, double scale );
    cascade 隐藏 Harr 分类器级联 (Hidden Haar classifier cascade), 由函数 cvCreateHidHaarClassifierCascade生成
    sum 32-比特,单通道图像的积分图像(Integral (sum) 单通道 image of 32-比特 integer format). 这幅图像以及随后的两幅用于对快速特征的评价和亮度/对比度的归一化。 它们都可以利用函数 cvIntegral从8-比特或浮点数 单通道的输入图像中得到。
    sqsum 单通道64比特图像的平方和图像
    tilted_sum 单通道32比特整数格式的图像的倾斜和(Tilted sum)
    scale cascade的窗口比例. 如果 scale=1, 就只用原始窗口尺寸检测 (只检测同样尺寸大小的目标物体) - 原始窗口尺寸在函数cvLoadHaarClassifierCascade中定义 (在 "<default_face_cascade>"中缺省为24x24), 如果scale=2, 使用的窗口是上面的两倍 (在face cascade中缺省值是48x48 )。 这样尽管可以将检测速度提高四倍,但同时尺寸小于48x48的人脸将不能被检测到。
    函数 cvSetImagesForHaarClassifierCascade 为hidden classifier cascade 指定图像 and/or 窗口比例系数。 如果图像指针为空,会继续使用原来的图像(i.e. NULLs 意味这"不改变图像")。比例系数没有 "protection" 值,但是原来的值可以通过函数 cvGetHaarClassifierCascadeScale 重新得到并使用。这个函数用于对特定图像中检测特定目标尺寸的cascade分类器的设定。函数通过cvHaarDetectObjects进行内部调用,但当需要在更低一层的函数cvRunHaarClassifierCascade中使用的时候,用户也可以自行调用。
    cvRunHaarClassifierCascade
    在给定位置的图像中运行 cascade of boosted classifier
    int cvRunHaarClassifierCascade( CvHaarClassifierCascade* cascade,
                                    CvPoint pt, int start_stage=0 );
    cascade Haar 级联分类器
    pt 待检测区域的左上角坐标。待检测区域大小为原始窗口尺寸乘以当前设定的比例系数。当前窗口尺寸可以通过cvGetHaarClassifierCascadeWindowSize重新得到。
    start_stage 级联层的初始下标值(从0开始计数)。函数假定前面所有每层的分类器都已通过。这个特征通过函数cvHaarDetectObjects内部调用,用于更好的处理器高速缓冲存储器。
    函数 cvRunHaarHaarClassifierCascade 用于对单幅图片的检测。在函数调用前首先利用 cvSetImagesForHaarClassifierCascade设定积分图和合适的比例系数 (=> 窗口尺寸)。当分析的矩形框全部通过级联分类器每一层的时返回正值(这是一个候选目标),否则返回0或负值。
    二、例程分析:
    例子:利用级联的Haar classifiers寻找检测目标(e.g. faces).
    #include "cv.h"
    #include "highgui.h"
    //读取训练好的分类器。
    CvHaarClassifierCascade* load_object_detector( const char* cascade_path )
    {
        return (CvHaarClassifierCascade*)cvLoad( cascade_path );
    }

    void detect_and_draw_objects( IplImage* image,
                                  CvHaarClassifierCascade* cascade,
                                  int do_pyramids )
    {
        IplImage* small_image = image;
        CvMemStorage* storage = cvCreateMemStorage(0); //创建动态内存
        CvSeq* faces;
        int i, scale = 1;
        /* if the flag is specified, down-scale the 输入图像 to get a
           performance boost w/o loosing quality (perhaps) */
        if( do_pyramids )
        {
            small_image = cvCreateImage( cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3 );
            cvPyrDown( image, small_image, CV_GAUSSIAN_5x5 );//函数 cvPyrDown 使用 Gaussian 金字塔分解对输入图像向下采样。首先它对输入图像用指定滤波器进行卷积,然后通过拒绝偶数的行与列来下采样图像。
            scale = 2;
        }
        /* use the fastest variant */
        faces = cvHaarDetectObjects( small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING );
        /* draw all the rectangles */
        for( i = 0; i < faces->total; i++ )
        {
            /* extract the rectanlges only */
            CvRect face_rect = *(CvRect*)cvGetSeqElem( faces, i, 0 );
            cvRectangle( image, cvPoint(face_rect.x*scale,face_rect.y*scale),
                         cvPoint((face_rect.x+face_rect.width)*scale,
                                 (face_rect.y+face_rect.height)*scale),
                         CV_RGB(255,0,0), 3 );
        }
        if( small_image != image )
            cvReleaseImage( &small_image );
        cvReleaseMemStorage( &storage );  //释放动态内存
    }
    /* takes image filename and cascade path from the command line */
    int main( int argc, char** argv )
    {
        IplImage* image;
        if( argc==3 && (image = cvLoadImage( argv[1], 1 )) != 0 )
        {
            CvHaarClassifierCascade* cascade = load_object_detector(argv[2]);
            detect_and_draw_objects( image, cascade, 1 );
            cvNamedWindow( "test", 0 );
            cvShowImage( "test", image );
            cvWaitKey(0);
            cvReleaseHaarClassifierCascade( &cascade );
            cvReleaseImage( &image );
        }
        return 0;
    }
    关键代码很简单,装载分类器,对输入图像进行金字塔采样,然后用cv的函数进行检测目标,最后输出检测到的目标矩形。

    OpenCV学习笔记(二)基于Haar-like特征的层叠推进分类器快速目标检测


    OpenCV学习笔记之二――基于Haar-like特征的层叠推进分类器快速目标检测
    一、简介
    目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
    分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
    分类器训练完以后,就可以应用于输入图像中的感兴趣区域(与训练样本相同的尺寸)的检测。检测到目标区域(汽车或人脸)分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
    目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。
    "boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。
    根据上面的分析,目标检测分为三个步骤:
    1、 样本的创建
    2、 训练分类器
    3、 利用训练好的分类器进行目标检测。
    二、样本创建
    训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指其它任意图片,所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。
    负样本
    负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件必须手工创建。
    e.g: 负样本描述文件的一个例子:
    假定目录结构如下:
    /img
    img1.jpg
    img2.jpg
    bg.txt
    则背景描述文件bg.txt的内容为:
    img/img1.jpg
    img/img2.jpg
    正样本
    正样本由程序craatesample程序来创建。该程序的源代码由OpenCV给出,并且在bin目录下包含了这个可执行的程序。
    正样本可以由单个的目标图片或者一系列的事先标记好的图片来创建。
    Createsamples程序的命令行参数:
    命令行参数:
    -vec <vec_file_name>
    训练好的正样本的输出文件名。
    -img<image_file_name>
    源目标图片(例如:一个公司图标)
    -bg<background_file_name>
    背景描述文件。
    -num<number_of_samples>
    要产生的正样本的数量,和正样本图片数目相同。
    -bgcolor<background_color>
    背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。
    -bgthresh<background_color_threshold>
    -inv
    如果指定,颜色会反色
    -randinv
    如果指定,颜色会任意反色
    -maxidev<max_intensity_deviation>
    背景色最大的偏离度。
    -maxangel<max_x_rotation_angle>
    -maxangle<max_y_rotation_angle>,
    -maxzangle<max_x_rotation_angle>
    最大旋转角度,以弧度为单位。
    -show
    如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。
    -w<sample_width>
    输出样本的宽度(以像素为单位)
    -h《sample_height》
    输出样本的高度,以像素为单位。
    注:正样本也可以从一个预先标记好的图像集合中获取。这个集合由一个文本文件来描述,类似于背景描述文件。每一个文本行对应一个图片。每行的第一个元素是图片文件名,第二个元素是对象实体的个数。后面紧跟着的是与之匹配的矩形框(x, y, 宽度,高度)。
    下面是一个创建样本的例子:
    假定我们要进行人脸的检测,有5个正样本图片文件img1.bmp,…img5.bmp;有2个背景图片文件:bg1.bmp,bg2.bmp,文件目录结构如下:
    positive
      img1.bmp
      ……
      Img5.bmp
    negative
      bg1.bmp
      bg2.bmp
    info.dat
    bg.txt
    正样本描述文件info.dat的内容如下:
    Positive/imag1.bmp 1 0 0 24 28
    ……
    Positive/imag5.bmp 1 0 0 24 28
    图片img1.bmp包含了单个目标对象实体,矩形为(0,0,24,28)。
    注意:要从图片集中创建正样本,要用-info参数而不是用-img参数。
    -info <collect_file_name>
    标记特征的图片集合的描述文件。
    背景(负样本)描述文件的内容如下:
    nagative/bg1.bmp
    nagative/bg2.bmp
    我们用一个批处理文件run.bat来进行正样本的创建:该文件的内容如下:
    cd  e:/face/bin
    CreateSamples   -vec e:/face/a.vec
     -info e:/face/info.dat
    -bg e:/face/bg.txt
    -num 5
    -show
    -w 24
     -h 28
    其中e:/face/bin目录包含了createsamples可执行程序,生成的正样本文件a.vec在e:/face目录下。
    三、训练分类器
    样本创建之后,接下来要训练分类器,这个过程是由haartraining程序来实现的。该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。
    Haartraining的命令行参数如下:
    -data<dir_name>
    存放训练好的分类器的路径名。
    -vec<vec_file_name>
    正样本文件名(由trainingssamples程序或者由其他的方法创建的)
    -bg<background_file_name>
    背景描述文件。
    -npos<number_of_positive_samples>,
    -nneg<number_of_negative_samples>
    用来训练每一个分类器阶段的正/负样本。合理的值是:nPos = 7000;nNeg = 3000
    -nstages<number_of_stages>
    训练的阶段数。
    -nsplits<number_of_splits>
    决定用于阶段分类器的弱分类器。如果1,则一个简单的stump classifier被使用。如果是2或者更多,则带有number_of_splits个内部节点的CART分类器被使用。
    -mem<memory_in_MB>
    预先计算的以MB为单位的可用内存。内存越大则训练的速度越快。
    -sym(default)
    -nonsym
    指定训练的目标对象是否垂直对称。垂直对称提高目标的训练速度。例如,正面部是垂直对称的。
    -minhitrate《min_hit_rate》
    每个阶段分类器需要的最小的命中率。总的命中率为min_hit_rate的number_of_stages次方。
    -maxfalsealarm<max_false_alarm_rate>
    没有阶段分类器的最大错误报警率。总的错误警告率为max_false_alarm_rate的number_of_stages次方。
    -weighttrimming<weight_trimming>
    指定是否使用权修正和使用多大的权修正。一个基本的选择是0.9
    -eqw
    -mode<basic(default)|core|all>
    选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。
    -w《sample_width》
    -h《sample_height》
    训练样本的尺寸,(以像素为单位)。必须和训练样本创建的尺寸相同。
    一个训练分类器的例子:
    同上例,分类器训练的过程用一个批处理文件run2.bat来完成:
    cd e:/face/bin
    haartraining -data e:/face/data
    -vec e:/face/a.vec
    -bg e:/face/bg.txt
    -npos 5
    -nneg 2
     -w 24
     -h 28
    训练结束后,会在目录data下生成一些子目录,即为训练好的分类器。
    注:OpenCv的某些版本可以将这些目录中的分类器直接转换成xml文件。但在实际的操作中,haartraining程序却好像永远不会停止,而且没有生成xml文件,后来在OpenCV的yahoo论坛上找到一个haarconv的程序,才将分类器转换为xml文件,其中的原因尚待研究。
    四、目标检测
    OpenCV的cvHaarDetectObjects()函数(在haarFaceDetect演示程序中示例)被用来做侦测。关于该检测的详细分析,将在下面的笔记中详细描述。

     
    3月29日

    一个合格的程序员该做的事情


    2006.03.15  来自:CSDN 选自Mailbomb 的blog  
     

      程序员每天该做的事

    1、总结自己一天任务的完成情况

    最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多

    2、考虑自己明天应该做的主要工作

    把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作

    3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法

    出错不要紧,最重要的是不要重复犯相同的错误,那是愚蠢

    4、考虑自己一天工作完成的质量和效率能否还能提高

    一天只提高1%,365天你的效率就能提高多少倍你知道吗? (1+0.01)^365 = 37 倍

    5、看一个有用的新闻网站或读一张有用的报纸,了解业界动态

    闭门造车是不行的,了解一下别人都在做什么,对自己能带来很多启示

    6、记住一位同事的名字及其特点

    你认识公司的所有同事吗?你了解他们吗?

    7、清理自己的代码

    今天完成的代码,把中间的调试信息,测试代码清理掉,按照编码风格整理好,注释都写好了吗?

    8、清理自己的桌面

    当日事当日毕,保持清洁干劲的桌面才能让你工作时不分心,程序员特别要把电脑的桌面清理干净

    程序员每月该做的事

    1、至少和一个同事一起吃饭或喝茶
    不光了解自己工作伙伴的工作,还要了解他们的生活

    2、自我考核一次
    相对正式地考核自己一下,你对得起这个月的工资吗?

    3、对你的同事考核一次
    你的同事表现怎么样?哪些人值得学习,哪些人需要帮助?

    3、制定下月的计划,确定下月的工作重点

    4、总结自己工作质量改进状况
    自己的质量提高了多少?

    5、有针对性地对一项工作指标做深入地分析并得出改进的方案
    可以是对自己的,也可以是对公司的,一定要深入地分析后拿出自己的观点来。要想在老板面前说得上话,做的成事,工作上功夫要做足。

    6、与老板沟通一次
    最好是面对面地沟通,好好表现一下自己,虚心听取老板的意见,更重要的是要了解老板当前关心的重点

    程序员每年该做的事

    1、年终总结
    每个公司都会做的事情,但你真正认真地总结过自己吗?

    2、兑现给自己、给家人的承诺
    给老婆、儿子的新年礼物买了没有?给自己的呢?

    3、下年度工作规划
    好好想想自己明年的发展目标,争取升职/加薪、跳槽还是自己出来干?

    4、掌握一项新技术
    至少是一项,作为程序员一年要是一项新技术都学不到手,那就一定会被淘汰。
    掌握可不是看本书就行的,要真正懂得应用,最好你能够写一篇教程发表到你的blog

    5、推出一种新产品
    可以是一个真正的产品,也可以只是一个类库,只要是你创造的东西就行,让别人使用它,也为世界作点贡献。当然如果真的很有价值,收点注册费也是应该的

    6、与父母团聚一次
    常回家看看,常回家看看

     

    3月28日

    OpenCV学习笔记(一)概述和系统配置


    OpenCV学习笔记(一)概述和系统配置

    一、概述
    OpenCV是英特尔公司于1999年在俄罗斯设立的软件开发中心“Software Development Center”开发的。该公司一直致力于基于个人电脑的计算机视觉应用的开发,可以实时追踪的视觉用户接口技术的普及为目标。初步拟定应用于Human-Computer Interaction(HCI,人机互动)、物体确定、面孔识别、表情识别,移动物体追踪、自主运动(Ego-motion)、移动机器人等领域。因此,“OpenCV 2.1将提供给玩具制造商及机器人制造商等从事计算机视觉相关技术的各类企业/团体”
        OpenCV将以公开源码的方式提供,也就是接受方有权在修改之后另行向第三方提供。源代码(C语言)中包括有库(Library)的所有功能。详细情况刊登在OpenCV的WWW站点上。
    英特尔公司解释说,“速度更高的微处理器、廉价的数码相机以及USB 2等技术使高速视频捕获(Video Capture)成为可能,因此,基于普通个人电脑的实时计算机视觉将有望实现”。
    OpenCV的最新版本为beta5。
    二、OpenCV组成部分
    目前OpenCV包含下面几个部分:
        cvcore:一些基本函数(各种数据类型的基本运算等)
        cv:    图像处理和计算机视觉功能(图像处理,结构分析,运动分析,物体跟踪,模式识别,摄像机定标)
        cvaux:一些实验性的函数(view morphing,三维跟踪,pca,hmm)
        highgui 用户交互部分(GUI,图像视频I/O,系统调用函数)
        另外还有cvcam,不过linux版本已经抛弃。windows版本中将directX支持加入highgui后,cvcam将被彻底去掉。
    三、OpenCV特点
    OpenCV是Intel公司开发的图像处理和计算机视觉函数库,它有以下特点:
    1) 开放C源码
    2) 基于Intel处理器指令集开发的优化代码
    3) 统一的结构和功能定义
    4) 强大的图像和矩阵运算能力
    5) 方便灵活的用户接口
    6)同时支持MS-WINDOWS、LINUX平台
    四、下载OpenCV
        http://www.sourceforge.net/projects/opencvlibrary
    五、参考资料
        =》源代码及文档下载:SOURCEFORGE.NET
    http://sourceforge.net/projects/opencvlibrary/
        =》INTEL的OPENCV主页:
    http://www.intel.com/research/mrl/research/opencv/
        =》YAHOO OPENCV 的邮件列表:
    http://groups.yahoo.com/group/OpenCV/
        =》CMU(卡耐基-梅隆大学)的计算机视觉主页:
    http://www-2.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html
        =》OPENCV 更为详细的介绍
    http://www.assuredigit.com//incoming/sourcecode/opencv/chinese_docs/index.htm
        =》OPENCV 的常用问题与解答
    http://www.assuredigit.com//incoming/sourcecode/opencv/chinese_docs/faq.htm
        =》OPENCV 的安装指南
    http://www.assuredigit.com//incoming/sourcecode/opencv/chinese_docs/install
        =》更多的最新资料,请访问
    http://blog.csdn.net/hunnishhttp://rocee.bokee.com
    六、创建一个 DeveloperStudio 项目来开始 OpenCV
    1. 在 Developer Studio 中创建新的应用程序:
    选择菜单 "File"->"New..."->"Projects" . 选择 "Win32 Application" 或 "Win32 console application" - 后者是更简单的方法。
    键入项目名称,并且选择存储位置
    可以为项目创建一个单独的 workspace ("Create new workspace") , 也可以将新的项目加入到当前的 workspace 中 ("Add to current workspace").
    单击 "next" 
    选择 "An empty project", 点击 "Finish", "OK".
    经过以上步骤,Developer Studio 会创建一个项目目录 (缺省情况下,目录名就是项目名), .dsp 文件以及.dsw,.ncb ... ,如果你创建自己的workspace.
    2添加文件到 project 中:
    选择菜单"File"->"New..."->"Files" .
    选择"C++ Source File", 键入文件名,点击"OK"
    增加 OpenCV 相关的 头文件目录 #include :
            #include "cv.h"
            /* #inlcude "cvaux.h" // experimental stuff (if need) */
            #include "highgui.h"
         
    或者你可以拷贝部分已有的文件 (如:opencv/samples/c/morphology.c) 到项目目录中,打开它,并且加入到项目中 (右键点击编辑器的视图 -> "Insert File into Project" -> ).
    3配置项目:
    选择菜单"Project"->"Settings..."以激活项目配置对话框 .
    在左边选择你的项目.
    调节设置,对 Release 和 Debug 配置都有效:
    选择 "Settings For:"->"All Configurations"
    选择 "C/C++" tab -> "Preprocessor" category -> "Additional Include Directories:". 加入用逗号分隔的相对路径 (对文件 .dsp 而言) 或绝对路径
     d:/opencv/cxcore/include,d:/opencv/cv/include,d:/opencv/otherlibs/highgui, d:/opencv/cvaux/include(optionally,)
    选择 "Link" tab -> "Input" category -> "Additional library path:".
    加入输入库所在的路径 (cxcore[d].lib cv[d].lib hihghui[d].lib cvaux[d].lib)
    d:/opencv/lib
    调节 "Debug" 配置:
    选择 "Settings For:"->"Win32 Debug".
    选择 "Link" tab -> "General" category -> "Object/library modules". 加入空格分隔的 cvd.lib,cxcored.lib highguid.lib,cvauxd.lib (optionally)
    可以改变输出文件的名称和位置。如想把产生的 .exe 文件放置于项目目录而不是Debug/ 子目录下,可在 "Link" tab -> "General" category -> "Output file name:" 中键入 ./d.exe 
    调节 "Release" 配置
    选择 "Settings For:"->"Win32 Release".
    选择 "Link" tab -> "General" category -> "Object/library modules". 加入空格分隔的cv.lib cxcore.lib highgui.lib cvaux.lib (optionally)
    4增加从属性项目到 workspace 中:
    选择菜单: "Project" -> "Insert project into workspace".
    选择 opencv/cv/make/cv.dsp.
    同样步骤对 opencv/cvaux/make/cvaux.dsp, opencv/otherlibs/highgui/highgui.dsp.
    设置从属性:
    选择菜单: "Project" -> "Dependencies..."
    对 "cv" 选择 "cxcore",
    对 "cvaux" 选择 "cv", "cxcore",
    对 "highgui" 选择 "cxcore",
    对你的项目,选择所有的: "cxcore", "cv", "cvaux", "highgui".
    从属性配置保证了在源代码被改变的情况下,自动重新编译 opencv 库.
    5就这么多。可以编译并且运行一切了。
    七、库设置:
       静态库设置:
       Opencv程序需要静态库设置,其release版本的静态库在系统的lib目录下,其debug版本的静态库需要重新全编译所有的程序。
        动态库设置:
       OPenCV启动时需要一些动态库的支持,这些动态库必须放在系统目录下或者当前目录下。
        Cv097.dll,cvaux097.dll,cvcam097.dll,cxcore097.dll highguid097.dll,libguide40.dll


     

    出租司机给"我"上的MBA课

    Posted on 2006-03-15 01:14 刘润
    我要从徐家汇赶去机场,于是匆匆结束了一个会议,在美罗大厦前搜索出租车。一辆大众发现了我,非常专业的、径直的停在我的面前。这一停,于是有了后面的这个让我深感震撼的故事,象上了一堂生动的MBA案例课。为了忠实于这名出租车司机的原意,我凭记忆尽量重复他原来的话。
    “去哪里……好的,机场。我在徐家汇就喜欢做美罗大厦的生意。这里我只做两个地方。美罗大厦,均瑶大厦。你知道吗?接到你之前,我在美罗大厦门口兜了两圈,终于被我看到你了!从写字楼里出来的,肯定去的不近~~~”
    “哦?你很有方法嘛!”我附和了一下。
    “做出租车司机,也要用科学的方法。”他说。我一愣,顿时很有些兴趣“什么科学的方法?”
    “要懂得统计。我做过精确的计算。我说给你听啊。我每天开17个小时的车,每小时成本34.5元……”
    “怎么算出来的?”我追问。
    “你算啊,我每天要交380元,油费大概210元左右。一天17小时,平均每小时固定成本22元,交给公司,平均每小时12.5元油费。这是不是就是34.5元?”,我有些惊讶。我打了10年的车,第一次听到有出租车司机这么计算成本。以前的司机都和我说,每公里成本0.3元,另外每天交多少钱之类的。
    “成本是不能按公里算的,只能按时间算。你看,计价器有一个“检查”功能。你可以看到一天的详细记录。我做过数据分析,每次载客之间的空驶时间平均为7分钟。如果上来一个起步价,10元,大概要开10分钟。也就是每一个10元的客人要花17分钟的成本,就是9.8元。不赚钱啊!如果说做浦东、杭州、青浦的客人是吃饭,做10元的客人连吃菜都算不上,只能算是撒了些味精。”
    强!这位师傅听上去真不象出租车司机,到象是一位成本核算师。“那你怎么办呢?”我更感兴趣了,继续问。看来去机场的路上还能学到新东西。
    “千万不能被客户拉了满街跑。而是通过选择停车的地点,时间,和客户,主动地决定你要去的地方。”我非常惊讶,这听上去很有意思。“有人说做出租车司机是靠运气吃饭的职业。我以为不是。你要站在客户的位置上,从客户的角度去思考。”这句话听上去很专业,有点象很多商业管理培训老师说的“put yourself into others' shoes.”
    “给你举个例子,医院门口,一个拿着药的,一个拿着脸盆的,你带哪一个。”我想了想,说不知道。
    “你要带那个拿脸盆的。一般人病小痛的到医院看一看,拿点药,不一定会去很远的医院。拿着脸盆打车的,那是出院的。住院哪有不死人的?今天二楼的谁死了,明天三楼又死了一个。从医院出来的人通常会有一种重获新生的感觉,重新认识生命的意义,健康才最重要。那天这个说:走,去青浦。眼睛都不眨一下。你说他会打车到人民广场,再去做青浦线吗?绝对不会!”
    我不由得开始佩服。
    “再给你举个例子。那天人民广场,三个人在前面招手。一个年轻女子,拿着小包,刚买完东西。还有一对青年男女,一看就是逛街的。第三个是个里面穿绒衬衫的,外面羽绒服的男子,拿着笔记本包。我看一个人只要3秒钟。我毫不犹豫地停在这个男子面前。这个男的上车后说:延安高架、南北高架~~~还没说后面就忍不住问,为什么你毫不犹豫地开到我面前?前面还有两个人,他们要是想上车,我也不好意思和他们抢。我回答说,中午的时候,还有十几分钟就1点了。那个女孩子是中午溜出来买东西的,估计公司很近;那对男女是游客,没拿什么东西,不会去很远;你是出去办事的,拿着笔记本包,一看就是公务。而且这个时候出去,估计应该不会近。那个男的就说,你说对了,去宝山。”
    “那些在超市门口,地铁口打车,穿着睡衣的人可能去很远吗?可能去机场吗?机场也不会让她进啊。”
    有道理!我越听越有意思。
    “很多司机都抱怨,生意不好做啊,油价又涨了啊,都从别人身上找原因。我说,你永远从别人身上找原因,你永远不能提高。从自己身上找找看,问题出在哪里。”这话听起来好熟,好像是“如果你不能改变世界,就改变你自己”,或者Steven Corvey的“影响圈和关注圈”的翻版。“有一次,在南丹路一个人拦车,去田林。后来又有一次,一个人在南丹路拦车,还是去田林。我就问了,怎么你们从南丹路出来的人,很多都是去田林呢?人家说,在南丹路有一个公共汽车总站,我们都是坐公共汽车从浦东到这里,然后搭车去田林的。我恍然大悟。比如你看我们开过的这条路,没有写字楼,没有酒店,什么都没有,只有公共汽车站,站在这里拦车的多半都是刚下公共汽车的,再选择一条最短路经打车。在这里拦车的客户通常不会高于15元。”
    “所以我说,态度决定一切!”我听十几个总裁讲过这句话,第一次听出租车司机这么说。
    “要用科学的方法,统计学来做生意。天天等在地铁站口排队,怎么能赚到钱?每个月就赚500块钱怎么养活老婆孩子?这就是在谋杀啊!慢性谋杀你的全家。要用知识武装自己。学习知识可以把一个人变成聪明的人,一个聪明的人学习知识可以变成很聪明的人。一个很聪明的人学习知识,可以变成天才。”
    “有一次一个人打车去火车站,问怎么走。他说这么这么走。我说慢,上高架,再这么这么走。他说,这就绕远了。我说,没关系,你经常走你有经验,你那么走50块,你按我的走法,等里程表50块了,我就翻表。你只给50快就好了,多的算我的。按你说的那么走要50分钟,我带你这么走只要25分钟。最后,按我的路走,多走了4公里,快了25分钟,我只收了50块。乘客很高兴,省了10元钱左右。这4公里对我来说就是1块多钱的油钱。我相当于用1元多钱买了25分钟。我刚才说了,我一小时的成本34.5块,我多合算啊!”
    “在大众公司,一般一个司机3、4千,拿回家。做的好的大概5千左右。顶级的司机大概每月能有7000。全大众2万个司机,大概只有2-3个司机,万里挑一,每月能拿到8000以上。我就是这2-3个人中间的一个。而且很稳定,基本不会大的波动。”
    太强了!到此为止,我越来越佩服这个出租车司机。
    “我常常说我是一个快乐的车夫。有人说,你是因为赚的钱多,所以当然快乐。我对他们说,你们正好错了。是因为我有快乐、积极的心态,所以赚的钱多。”
    说的多好啊!
    “要懂得体味工作带给你的美。堵在人民广场的时候,很多司机抱怨,又堵车了!真是倒霉。千万不要这样,用心体会一下这个城市的美,外面有很多漂亮的女孩子经过,非常现代的高楼大厦,虽然买不起,但是却可以用欣赏的眼光去享受。开车去机场,看着两边的绿色,冬天是白色的,多美啊。再看看里程表,100多了,就更美了!每一样工作都有她美丽的地方,我们要懂得从工作中体会这种美丽。”
    “我10年前是强生公司的总教练。8年前在公司作过三个不同部门的部门经理。后来我不干了,一个月就3、5千块,没意思。就主动来做司机。我愿意做一个快乐的车夫。哈哈哈哈。”
    到了机场,我给他留了一张名片,说:“你有没有兴趣这个星期五,到我办公室,给微软的员工讲一讲你怎么开出租车的?你就当打着表,60公里一小时,你讲多久,我就付你多少钱。给我电话。”
    我迫不及待的在飞机上记录下他这堂生动的MBA课。
    展开全文
  •  新版已上市:《算法竞赛入门经典(2)》  如果你是一名程序员,如果你参加NOIP、NOI、ACM/ICPC竞赛,只要你对算法感兴趣,那就来吧!就是这本被很多程序员所喜爱、被大量学校广泛作为教材的算法竞赛经典之作...
  • 下载地址:网盘下载数据结构、算法与应用:C++语言描述(原书2)共分三个部分。一部分从1章到4章,旨在复习C++程序设计的概念以及...三部分从17章到21章,研究常用算法,包括贪婪算法、分而治之算法、...
  • ACM or CSP——Python常用算法模板

    千次阅读 2019-03-26 20:34:53
    ACM or CSP——Python常用算法输入多组输入,读取到文件末尾EOF结束输入不确定行数的数据正则表达式正则表达式的() [] {}有不同的意思。字符串匹配和搜索字符串搜索和替换字符串忽略大小写的搜索替换多行匹配模式...
  • 下载地址:网盘下载内容简介······世界顶级程序设计高手的经验总结【ACM-ICPC全球总冠军】巫泽俊主译日本ACM-ICPC参赛者人手一册本书对程序设计竞赛中的基础算法和经典问题进行了汇总,分为准备篇、初级篇、...
  •   在之前的工作中,用到了CRC16、MD5 和 SHA1 算法,主要用来校验下发的文件。网上关于这些算法的文章铺天盖地,以下内容仅仅是自己在学习时候的一个记录,一些套话来自于互联网。下面先来看看 SHA1。    以下...
  • 第6章 其他算法 066 通过活用微分来求高次方程式解的牛顿法 067 联合方程组的求解方法是高斯消元法 068 根据梯形面积的计算求定积分值的梯形法 069 用于求最短时间、最短距离之类的最优路径的方法:基于图的...
  • 深度学习常用优化算法

    万次阅读 2017-06-03 16:51:36
    梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会考察梯度下降法的各种变体...
  • 常用算法(搜索) 二

    千次阅读 2013-09-22 19:21:24
    poj-- 2449 K短路,BFS A* poj--2908 BFS+优先队列+HASH 1010 stamps 1011 sticks Accepted 2006-08-03 04:09 1020 Anniversary Cake 1022 Packing Unit 4D Cubes 1024 Tester Program 1054 ...
  • 机器学习初探-常用优化算法介绍

    千次阅读 2018-01-10 11:31:31
    目的:简单介绍机器学习中常用的一些优化算法,主要用于无约束最优化问题的求解。具体包括梯度下降法(最速梯度下降),牛顿法,几个拟牛顿法(包括DFP,BFGS,LBFGS等,共轭方向法,共轭梯度法,信赖域方法等不在本次...
  • 《C Primer Plus 第6版 中文版》的《C Primer Plus 第6版 中文版习题解答》隆重出版。北京师范大学名师详细剖析所有题目,全面提升C编程能力的优选编程练习册。学习C Primer Plus的不再愁自己啃习惯了。 本...
  • 算法学习资料: AI_Tutorial 各大厂架构开发学习资源;精华机器学习,NLP,图像识别等人工智能领域学习资料,搜索,推荐,广告系统架构及算法技术资料吐血整理 你还在为学习算法摸不着头脑么?你还在为技术调研...
  • 算法导论第3新增27章:多线程算法(完整

    万次阅读 热门讨论 2010-02-25 15:07:00
    多线程算法(完整) ——算法导论第3新增27章 ThomasH. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
  • 一篇为常用工具和基础知识的介绍;二篇从攻击者的视角出发,揭秘了攻击者利用漏洞的常用伎俩,了解这些知识对进行计算机应急响应和提高软件产品安全性至关重要;三篇在二篇的基础上,从安全专家的角度介绍了...
  • 【C7】《Java语言程序设计-进阶篇(原书第8)》PDF 下载  jichu 内容简介 《Java语言程序设计:进阶篇(原书第8)》是Java语言的经典教材,中文分为《Java语言程序设计基础篇》和《Java语言程序设计进阶篇》,...
  • 计算机图形学pdf(可copy内容

    热门讨论 2011-04-12 08:03:41
    6 章曲线与曲面 6.1 曲线曲面参数表示的基础知识 6.1.1 非参数表示和参数表示 6.1.2 参数表示的基本特征 6.1.3 曲线段之间的连续性 6.1.4 曲线曲面设计中的几个概念 6.2 常用参数曲线 6.2.1 一般规则空间曲线 ...
  • 数据结构与算法分析(C++)() 内容简介 本书采用程序员最爱用的面向对象C++语言来描述数据结构和算法,并把数据结构原理和算法分析技术有机地结合在一起,系统介绍了各种类型的数据结构和...
  • 1、python本课程的机器学习的算法都是基于python语言实现的,所以你需要有一定的python语言基础,可以参考彭亮在麦子学院讲授的“Python语言编程基础”。2、python机器学习的库:scikit-learn特性: 简单高效的数据...
  • c语言程序设计谭浩强版pdf 内容简介 由谭浩强教授著、清华大学出版社出版的《C程序设计》经过近三十年一千多万读者的实践检验,被公认为学习C语言程序设计的经典教材。根据C语言的发展和计算机教学的需要,作者...
  • 给大家带来的一篇关于Python相关的电子书资源,介绍了关于Python、机器学习方面的内容,本书是由清华大学出版社出版,格式为PDF,资源大小153.8 MB,段小手编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:...
  • 4.7 for循环语句 4.8 break语句 4.9 continue语句 4.10 else语句 第5章 列表、元组和字符串 5.1 列表:一个"打了激素”的数组 5.2 元组:戴上了"枷锁”的列表 5.3 字符串 5.4 序列 第6章 函数 6.1 Python的乐高积木 ...
  • Qt5开发及实例(完整版PDF)part1

    热门讨论 2015-03-06 13:35:41
    2.4.1 Qt 5常用算法 42 2.4.2 基本的正则表达式 43 2.5 控件 44 2.5.1 按钮组(Buttons) 44 2.5.2 输入控件组(Input Widgets) 46 2.5.3 显示控件组(Display Widgets) 48 2.5.4 空间间隔组(Spacers) 49 2.5.5 ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 12,464
精华内容 4,985
关键字:

常用算法程序集第6版pdf