精华内容
下载资源
问答
  • 常见分类方法

    万次阅读 2016-12-30 10:29:19
    本文只对几种常见分类方法做简单介绍,详细的讲解和算法网上很多资源,文中会给出推荐链接。 Content 1. 决策树分类(链接:http://blog.csdn.net/github_36299736/article/details/52749999) 2. 基于规则...

    本文只对几种常见的分类方法做简单介绍,详细的讲解和算法网上有很多资源,文中会给出推荐链接。

    Content

    1.      决策树分类(链接:http://blog.csdn.net/github_36299736/article/details/52749999

    2.      基于规则分类

    3.      最邻近分类(K-NN)

    4.      朴素贝叶斯分类器

    5.      人工神经网络

    6.      支持向量机(SVM)

     

    1. 基于规则的分类器

    简单来说,基于规则的分类器就是使用一组“if… then …”的组合来进行分类的技术。通常用R =( r1˅ r2 ˅ … ˅ rk)来表示,其中 ri 就是分类的规则。

    以上图为例,r1  类就可以用如下规则判断:

            If (胎生 = 否 & 飞行动物 = 是)then (类别 = 鸟类)

    度量分类规则的质量可以用覆盖率(coverage)和准确率(accuracy)。覆盖率就是满足规则的记录数占总记录数的比例,准确率就是使用该规则正确分类的比例。

    基于规则分类还有以下两个重要的规则:

            互斥规则(Mutually Exclusive Rule)和穷举规则(Exhaustive Rule)

    互斥规则:规则集中不存在两条规则被同一条记录触发。简单说就是保证同一条记录不会同时属于两个类别。

    穷举规则:对于属性值的任一组合,R中都存在一条规则加以覆盖。即每一条记录都保证能以其中一种规则加以分类。

    这两个性质就可以保证每条记录被且仅被一条规则覆盖。但是实际情况下,分类器可能无法满足这两条性质。对于不能穷举的规则集,我们可以通过设定一个默认规则来覆盖不能被分类的记录。对于不互斥的规则集,我们可以通过建立优先级或者为规则加权等方式来解决。

     

    2. 最邻近分类器

    最邻近分类器是一种简单且常用的分类器。也就是我们常说的K-NN分类算法。它的原理非常简单,即根据与测试数据最近的K个点的类别,采用多数表决方案来确定该测试数据的分类

    以上图为例,1-最邻近(图a)中可以看到与测试数据最近的一个点为负,所以该测试点被指派到负类。2-最邻近(图b)中,与测试数据最近的两点为一正一负,可以随机选择其中一个类别。3-最邻近(图c)中,最近的三个点为两正一负,根据多数表决方案,该点被指派为正。

    从上述例子中就可以看到该算法中k值的选取非常关键。K值太小,结果容易受到数据中噪声的影响从而产生过拟合。K值太大,容易导致误分类,因为结果可能会受到距离测试数据点非常远的数据的影响。(如下图)

    算法描述如下:

    也可以对不同距离的数据点进行加权,从而提高分类的准确率。

     

    3. 朴素贝叶斯分类器

    了解朴素贝叶斯分类,首先要知道贝叶斯定理,也就是我们比较熟悉的条件概率。参考:http://blog.csdn.net/github_36299736/article/details/52800394

    朴素贝叶斯分类器的工作原理就是计算测试数据被分给各个类别的条件概率(后验概率),并将该记录指派给概率最大的分类。

    让我们用之前在决策树分类中使用过的例子来分析:

    假定一个测试数据,该测试数据的属性集可以表示为:X= {有房=否,婚姻状况=已婚,年收入=120k},我们需要将该数据分类到两个类别之一,即 Y = {拖欠贷款=是,拖欠贷款=否}。那么我们需要做的就是分别计算两种分类情况下的后验概率 P (Y|X) 。 P1 = P (拖欠贷款 = 是|X) 和P2 = P (拖欠贷款 = 否|X) ,如果P1 >P2,则记录分类为拖欠贷款 = 是,反之分类为拖欠贷款 = 否。

    朴素贝叶斯分类器更通常的表示方法:给定类标号 y,朴素贝叶斯分类器在估计条件概率时假设属性之间条件独立,若每个属性集(数据)包含d个属性X = { X1,X2,…,Xd } ,那么每个类Y的后验概率计算公式为:

    由于P(X)是固定值,因此只要找出分子最大的类就可以了。

    对于连续属性的条件概率,可以用以下两种方法来估计它的类条件概率:

    1.      把连续的属性离散化,然后用相应区间来替代连续的属性值;

    2.      假设连续变量服从某种概率分布(例如:高斯分布),然后使用训练数据估计分布的参数。

     

    4. 人工神经网络(ANN)

    类似于人脑由神经元及轴突构成的结构,人工神经网络由相互连接的结点和有向链构成。最简单的ANN模型是感知器(perceptron)。

    以上图为例,b即为一个感知器,其中,x1, x2, x3 分别为三个输入结点,在本例中表示三个输入的布尔值,还有一个输出结点。结点通常叫做神经元或单元。感知器中,每个输入结点都通过一个加权链连接到输出结点。加权链就像神经元间连接的强度,训练一个感知器模型就相当于不断调整链的权值,直到能拟合训练数据的输入输出关系为止

    感知器对输入加权求和,再减去偏置因子 t,然后考察得到的结果,得到输出值 ŷ。

    上图中分类依据为如果三个输入值中至少两个0,y取-1,至少有两个1时,y取1. 它的感知器的输出计算公式如下:

    更通用的数学表达方式是:

    其中,w1, w2, …, wd 是输入链的权值,x1, x2, …, xd 是输入属性值。

    还可以写成更简洁的形式:

    其中,w0 = -t,x0 = 1. w · x 是权值向量 w 和输入属性向量 x 的点积。

     

    多层人工神经网络

    多层神经网络相比于感知器要复杂得多,首先,网络的输入层和输出层之间可能包含多个隐藏层,隐藏层中包含隐藏结点。这种结构就叫做多层神经网络。感知器就是一个单层的神经网络

    除此之外,网络还可以使用其他激活函数(如S型函数,双曲线正切函数,符号函数等)使得隐藏结点和输出结点的输出值和输入参数呈非线性关系。

    直观上,我们可以把每个隐藏结点看成一个感知器,而每个感知器可以构造出一个超平面用于分类。如下图a中所构造的两个超平面。

    ANN学习算法的目标函数是找出一组权值w,使得误差平方和最小:

     

    对于激活函数是线性函数的情况,可以将ŷ =w · x 带入上式将其变成参数的二次函数,就可以找出全局最小解。当输出是参数的非线性函数的时候,可以采用梯度下降法来优化。

    关于神经网络的更多内容,我推荐这一篇文章,来自知乎专栏,作者:YJango,链接:https://zhuanlan.zhihu.com/p/22888385

     

    5. 支持向量机(SVM)

    SVM是现在倍受关注的分类技术,可以很好地适用于高维数据。它的特点是,使用训练实例的一个子集来表示决策边界,该子集就是支持向量。那么为什么把一个决策边界叫做“向量”呢?首先从最大边缘超平面这个概念开始了解。

    假设这是一个数据集,其中包含两类数据,分别用方块和圆来表示。非常直观地看到,我们很容易在两组数据之间找到无限个超平面(本例中是一条直线),使得不同类的数据分别在这个超平面的两侧。

    但是,有一些超平面的选择在测试未知数据时的效果可能并不好,比如下图中的红色线:

    可以看到,只要测试数据稍稍偏离一点,就容易导致分类错误。因此,我们要在这无数条分界线中找到一条最优解,使它到两边的边距最大。(如下图)

    如果将这些数据点放在坐标系中,边缘的点可以以向量的形式来表示:

     

    其中,用红色圈起来的数据点就是support vector,这也就是SVM这个算法名称的由来。

    关于支持向量机,有一系列非常好的博客可以参考,作者:pluskid,链接:http://blog.pluskid.org/?page_id=683

     

    其实常用分类方法还有很多,例如AdaBoost,以及不同分类方法的组合。本文只是参考书中内容对几种常见分类算法做了入门级介绍,可以根据实际的学习和工作需要做深入研究并择优使用。 感谢阅读。

     

    参考:《数据挖掘导论》第五章 分类:其他技术

    展开全文
  • 常见接口形式(分类)有哪些

    千次阅读 2020-01-08 14:01:57
    API作为应用程序编程接口,可以使用不同的编程语言进行API的开发,另外接口的表现形式也不同,现在最常用的接口形式以下这些: 1、HTTP 接口(RESTful) 基于HTTP协议开发的接口现在应用是最为广泛的,这类API...

    API作为应用程序编程接口,可以使用不同的编程语言进行API的开发,另外接口的表现形式也不同,现在最常用的接口形式有以下这些:
    1、HTTP 接口(RESTful)

    基于HTTP协议开发的接口现在应用是最为广泛的,这类API使用起来简单明了,因为它是轻量级的、跨平台、跨语言的,但凡是第三方提供的API都会有HTTP版本的接口。
    RESTful API也是基于HTTP协议的,只不过RESTful它并不是一种规范,它是一种设计准则,用不同的HTTP动词(GET、POST、DELETE、PUT等)来表达不同的请求。

    2、RPC 接口

    RPC技术是指远程过程调用,它本质上是一种Client/Server模式,可以像调用本地方法一样去调用远程服务器上的方法,它支持多种协议(如:HTTP、TCP、UDP、自定协议)和多种数据传输方式(如:Json、XML、Binary、Protobuf等)。

    3、Web Service 接口

    Web Service其实是一种概念,我们可以将以WEB形式提供的服务称为Web Service,所以像RESTful、XML-RPC、SOAP等都可以当成是Web Service的一种实现方式。
    不过Web Service接口和HTTP接口存在一些细小区别就是,Web Service接口支持更复杂的对象,而HTTP接口更多的就是传输字符串或者JSON文本。

    问题:httpClient能否跨语言跨平台调用第三方接口
    回答:

    对于各类开发者而言,在日常工作中经常会遇到调用第三方API的场景,因为API有很多种实现方式,不同实现方式则客户端调用方式也不同。但可以很明确的告诉你,HttpClient是可以跨语言调用第三方接口的。

    HttpClient是啥?能否跨平台调用?

    HttpClient通指HTTP协议的客户端工具包,通俗理解就是通过HttpClient客户端可以对所有的HTTP资源进行请求操作。现在主流的编程语言都有自己的HttpClient工具包,虽然名称未必就叫“HttpClient”!
    因为HTTP协议就是跨语言的,所以通过HttpClient可以跨语言调用第三方的API。比如你的项目使用的是PHP开发的,对方提供的HTTP API是Java开发的,调用是不存在问题的

    展开全文
  • 常见分类方法

    千次阅读 2016-09-27 17:32:08
    主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和...
    主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。  
    (1)决策树  
    决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。  
    主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。  
    (2)贝叶斯  
    贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(Tree Augmented Na?ve Bayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。  
    (3)人工神经网络  
    人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(或称”神经元”,或”单元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。  
    目前,神经网络已有上百种不同的模型,常见的有BP网络、径向基RBF网络、Hopfield网络、随机神经网络(Boltzmann机)、竞争神经网络(Hamming网络,自组织映射网络)等。但是当前的神经网络仍普遍存在收敛速度慢、计算量大、训练时间长和不可解释等缺点。  
    (4)k-近邻  
    k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。  
    (5)支持向量机  
    支持向量机(SVM,Support Vector Machine)是Vapnik根据统计学习理论提出的一种新的学习方法[43] ,它的最大特点是根据结构风险最小化准则,以最大化分类间隔构造最优分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。对于分类问题,支持向量机算法根据区域中的样本计算该区域的决策曲面,由此确定该区域中未知样本的类别。  
    (6)基于关联规则的分类  
    关联规则挖掘是数据挖掘中一个重要的研究领域。近年来,对于如何将关联规则挖掘用于分类问题,学者们进行了广泛的研究。关联分类方法挖掘形如condset→C的规则,其中condset是项(或属性-值对)的集合,而C是类标号,这种形式的规则称为类关联规则(class association rules,CARS)。关联分类方法一般由两步组成:第一步用关联规则挖掘算法从训练数据集中挖掘出所有满足指定支持度和置信度的类关联规则;第二步使用启发式方法从挖掘出的类关联规则中挑选出一组高质量的规则用于分类。属于关联分类的算法主要包括CBA[44] ,ADT[45] ,CMAR[46] 等。  
    (7)集成学习(Ensemble Learning)  
    实际应用的复杂性和数据的多样性往往使得单一的分类方法不够有效。因此,学者们对多种分类方法的融合即集成学习进行了广泛的研究。集成学习已成为国际机器学习界的研究热点,并被称为当前机器学习四个主要研究方向之一。  
    集成学习是一种机器学习范式,它试图通过连续调用单个的学习算法,获得不同的基学习器,然后根据规则组合这些学习器来解决同一个问题,可以显著的提高学习系统的泛化能力。组合多个基学习器主要采用(加权)投票的方法,常见的算法有装袋[47] (Bagging),提升/推进[48, 49] (Boosting)等。  
    有关分类器的集成学习见图2-5。集成学习由于采用了投票平均的方法组合多个分类器,所以有可能减少单个分类器的误差,获得对问题空间模型更加准确的表示,从而提高分类器的分类准确度。  
    图2-5:分类器的集成学习  
    以上简单介绍了各种主要的分类方法,应该说其都有各自不同的特点及优缺点。对于数据库负载的自动识别,应该选择哪种方法呢?用来比较和评估分类方法的标准[50] 主要有:(1)预测的准确率。模型正确地预测新样本的类标号的能力;(2)计算速度。包括构造模型以及使用模型进行分类的时间;(3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;(4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;(5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。  
    zz from http://hi.baidu.com/gf271828/blog/item/38df3df172e150c10b46e06d.html
    展开全文
  • 常见决策树分类算法都有哪些

    千次阅读 2019-02-22 14:22:11
    其实决策树的算法也是很多的,我们在这篇文章中给大家详细地介绍一下决策树的分类算法。 首先我们给大家介绍一下C4.5算法,这种算法就是基于ID3算法的改进,主要包括:使用信息增益率替换了信息增益下降度作为属性...


    我们都知道,在机器学习中我们有很多的问题都是需要使用决策树来解决,由此我们不难发现决策树是一个十分实用的内容,这是因为决策树的算法是十分给力的。其实决策树的算法也是有很多的,我们在这篇文章中给大家详细地介绍一下决策树的分类算法。

    首先我们给大家介绍一下C4.5算法,这种算法就是基于ID3算法的改进,主要包括:使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性。

    然后我们给大家介绍一下CLS算法。这种算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。

    接着我们给大家介绍一下ID3算法,这种算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。而ID3算法的核心思想:根据样本子集属性取值的信息增益值的大小来选择决策属性(,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。这种算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。

    我们在这篇文章中给大家介绍了决策树分类算法的具体内容,不难发现决策树的算法都是经过不断的改造而趋于成熟的,希望这篇文章能够帮助大家更好带来理解决策树的知识。

    展开全文
  • 这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。  机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来...
  • 文本分类——常见分类模型

    万次阅读 多人点赞 2018-11-06 17:37:56
      文本分类方法模型主要分为两个大类,一类是基于规则的分类模型;另一类是基于概率统计的模型。 基于规则的模型   基于规则的分类模型相对简单,易于实现。它在特定领域的分类往往能够取得较好的效果。相对于...
  • 常见分类算法

    万次阅读 2018-05-17 11:38:48
    常见分类算法 朴素贝叶斯网络、贝叶斯信念网络、随机森林、k-最近邻分类 云聚类算法引擎 k-Means、Canopy、Fuzzy K-Means、Mean Shift 云关联规则算法引起 FP-Growth关联规则 云智能推荐算法引擎 基于内存的...
  • 数据分析常见方法及模型分类

    千次阅读 2020-08-05 10:33:26
    今天跟大家分享一下比较常见的数据分析方法以及模型分类。 在工作中,很多的数据分析方法和模型,但是对于新入门的人来说,可能不能够一下子就找到合适的数据分析方法以及模型,进而影响到工作的进度。所以今天...
  • 信息技术的分类方法有哪些

    千次阅读 2019-03-04 11:32:09
    信息技术的分类方法有哪些? 一、按照是否可物化为实物形态分类 按照是不否可以物化为实物形态,信息技术可 或分为“硬”信息技术和“软”信息技术两大类。硬信息技术是指各种已经或即将转化为信息设备的信息技术,...
  • 异常检测3——常见方法分类

    千次阅读 2019-10-12 14:48:24
    异常检测3——常见方法分类基于统计学极值分析对数据分布进行假设基于线性分析基于时空空间关系造成的异常时间序列上的异常基于相似性分析建立在距离度量上的异常检测建立在密度分析上的异常检测基于聚类的异常检测...
  • 操作系统的两个作用:首先直接和(CPU,内存,硬盘,声卡等)硬件打交道,其次把操作硬件的方法封装成系统调用供程序员直接访问,从而实现硬件的的功能。 那些主流的操作系统? 1 Desktop OS:: windows, MacOS, ...
  • 分类常见的类别不平衡问题解决方法

    万次阅读 多人点赞 2017-08-29 11:01:32
    通常的分类学习方法中都一个共同的假设,即不同类别的训练样例数目相同。如果不同类别的训练样例数目稍差别,通常对分类影响不大,但是若差别很大,则会对学习造成影响,测试结果非常差。例如二分类问题中998...
  • 拒绝服务攻击 利用性攻击 扫描窥探攻击 畸形报文攻击 假消息攻击 中间人攻击
  • 常见分类算法优缺点

    千次阅读 2018-10-21 21:36:54
    机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM...
  • 常见排序算法分类

    千次阅读 2015-05-08 00:49:21
    只介绍常见排序算法有哪些,并按照什么进行分类。    排序算法分为两大类:   比较类非线性时间排序: 交换类排序(快速排序和冒泡排序)、插入类排序(简单插入排序和希尔排序)、选择类排序(简单选择排序...
  • 常见的文本分类方法

    千次阅读 2019-07-13 15:28:13
    机器学习:朴素贝叶斯,支持向量机,K近邻,决策树 深度学习:CNN,RNN,fasttext.lstm
  • 常见的DOM操作有哪些

    万次阅读 多人点赞 2019-05-16 14:51:59
    常见的DOM操作有哪些】 这里是修真院前端小课堂,每篇分享文从 【背景介绍】【知识剖析】【常见问题】【解决方案】【编码实战】【扩展思考】【更多讨论】【参考文献】 八个方面深度解析前端知识/技能,本篇...
  • 性能测试常见分类

    千次阅读 2019-03-15 14:21:55
    性能测试(狭义)  性能测试方法是通过模拟生产运行的业务压力量和使用场景组合,测试系统的性能是否满足生产性能要求。通俗地说,这种方法就是要在特定的运行条件下...也就是说,这种方法是对系统性能已经了解...
  • 机器学习的常见分类及常用算法

    千次阅读 2019-06-01 23:54:40
    3.机器学习常见分类 4.机器学习常用算法 1. 机器学习概述 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或...
  • 进入移动互联网时代,移动广告给广告主带来丰厚流量收益的同时,广告作弊相关灰色产业链的潜在威胁也给业界人士敲响了警钟:据世界广告主联合会(WFA)...一、常见的作弊行为 1、机器行为:IP重复刷量、换不同IP重...
  • 常见分类模型python实现

    万次阅读 2019-09-03 23:17:06
    1.常用分类模型 SVM MLP Bayes GBDT Logistic Regressor 2.python实现 sklearn上已经现成的包。 SVC: import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2...
  • 常见加密算法分类

    千次阅读 2018-07-10 17:20:00
    假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。对...
  • 数据建模及常见分类算法

    万次阅读 2018-07-17 15:04:38
    模型的建立需要依赖于算法,一般,常见的算法有分类明确类别)、聚类(无明确类别)、关联、回归等。 2.python数据分类实现过程 数据分类主要处理现实生活中的分类问题,一般处理思路如下: (1)首先明确需....
  • 机器学习常见算法分类

    千次阅读 2016-08-08 15:10:45
    这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家...
  • 性能测试常见指标有哪些

    千次阅读 多人点赞 2020-03-10 17:50:44
    1、性能指标分类 系统性能指标 资源性能指标 中间件指标 数据库指标 稳定性指标 可扩展性指标 可靠性指标 2、系统性能指标 响应时间 系统处理能力 吞吐量 并发用户数 错误率 2.1 响应时间 Response Time 简称RT,是...
  • 常见异常分类、异常处理(一)

    千次阅读 2019-04-02 20:11:34
    常见异常分类、异常处理 常见的异常分类: 程序中的异常 示例1:给出除数和被除数,求商 如果除数为0,出异常 如果除数或者被除...
  • 常见机器学习分类

    万次阅读 多人点赞 2017-10-16 11:07:56
    本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,...
  • 常见的接口分类

    千次阅读 2019-11-21 11:48:12
    一、前言: API作为应用程序编程接口,(API:Application Program Interface),可以使用不同的编程语言进行...二、按照接口表现形式,分类 序号 接口 基于或支持的协议 描述 1 HTTP 接口 HTTP协议 使用广...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 320,883
精华内容 128,353
关键字:

常见的分类方式有哪些